
Citation: Stefanidis, V.-A.; Verginadis,

Y.; Mentzas, G. MulticloudFL:

Adaptive Federated Learning for

Improving Forecasting Accuracy in

Multi-Cloud Environments.

Information 2023, 14, 662. https://

doi.org/10.3390/info14120662

Academic Editor: Luis Martínez

López

Received: 1 December 2023

Accepted: 12 December 2023

Published: 14 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

MulticloudFL: Adaptive Federated Learning for Improving
Forecasting Accuracy in Multi-Cloud Environments
Vasilis-Angelos Stefanidis 1,*, Yiannis Verginadis 1,2 and Gregoris Mentzas 1

1 Institute of Communications and Computer Systems, National Technical University of Athens,
Iroon Polytechniou 9, 15780 Zografou, Greece; jverg@aueb.gr (Y.V.); gmentzas@mail.ntua.gr (G.M.)

2 School of Business, Department of Business Administration, Athens University of Economics and Business,
Patission 76, 10434 Athens, Greece

* Correspondence: va_stefanidis@hotmail.com

Abstract: Cloud computing and relevant emerging technologies have presented ordinary methods
for processing edge-produced data in a centralized manner. Presently, there is a tendency to offload
processing tasks as close to the edge as possible to reduce the costs and network bandwidth used. In
this direction, we find efforts that materialize this paradigm by introducing distributed deep learning
methods and the so-called Federated Learning (FL). Such distributed architectures are valuable assets
in terms of efficiently managing resources and eliciting predictions that can be used for proactive
adaptation of distributed applications. In this work, we focus on deep learning local loss functions
in multi-cloud environments. We introduce the MulticloudFL system that enhances the forecasting
accuracy, in dynamic settings, by applying two new methods that enhance the prediction accuracy in
applications and resources monitoring metrics. The proposed algorithm’s performance is evaluated
via various experiments that confirm the quality and benefits of the MulticloudFL system, as it
improves the prediction accuracy on time-series data while reducing the bandwidth requirements
and privacy risks during the training process.

Keywords: deep learning; federated learning; client participation; multi-cloud computing; data
abnormalities

1. Introduction

In present times, there is massive data generation from a constantly and exponentially
increasing number of edge devices, such as wearables, smartphones, smart cards, sensors,
GPS-enabled devices, mobile phones, and other IoT devices. The IDC Data Age 2025 report
on “The Digitization of the World: From Edge to Core” forecasts that the total data to be
generated by the year 2025 is estimated to reach an astounding 175 zettabytes—a tenfold
increase from 2016 levels. The edge-proximate Internet of Things (IoT) devices, alone,
are expected to generate over 90 zettabytes of data. Such massive data volumes require
adequately substantial data processing and interpretation capabilities [1,2]. Currently,
there are nearly 7 billion connected IoT devices [3] and 3 billion smartphones around
the world. These devices are equipped with increasingly advanced sensors, computing,
and communication capabilities. New data-intensive applications, data services, and dis-
tributed workloads, increasingly dictate new architectures to sufficiently support proactive
maintenance and management of these dynamic environments. Technical specifications
are required to support highly available, data-intensive applications that can be provided
through multi-cloud environments at remote sites. These specifications will target both
current requirements and future innovations, ultimately driving the adoption of Edge
Cloud Computing Architectures [4]. With the massive increase in the number of edge
devices and the advancements in computation technology, the Federated Learning [5,6]
techniques may cope with the challenges of this domain. But, in order to do so, these
techniques need to be extended to utilize in a more efficient way the total computing

Information 2023, 14, 662. https://doi.org/10.3390/info14120662 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14120662
https://doi.org/10.3390/info14120662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3213-6124
https://orcid.org/0000-0002-3305-3796
https://doi.org/10.3390/info14120662
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14120662?type=check_update&version=2

Information 2023, 14, 662 2 of 28

power across the cloud computing continuum thus improving prediction analytics over
distributed streamed data. The exploitation of various data sources hosted on edge devices
increases the data availability and contributes to improved federated algorithms training,
along with their respected prediction accuracy.

According to the usual deep learning process, data are gathered in one place for
centralized processing. This includes detection, classification (i.e., in training and test
data), and prediction of future events and values. An example can be considered with
temperature sensors’ data, residing at the edge of the network and an application topology
that is used to process them. In this case, deep learning may help in the prediction of
future incidents relevant to temperature fluctuations or forecasting on edge and cloud
resources metrics (such as CPU consumption). Such accurate predictions may indicate the
need for proactive reconfigurations to maintain the desired quality of service (QoS). The
centralized data processing approach generates a lot of issues that are related to limited
bandwidth problems and unstable connection issues. Such issues may increase the delay in
the deep learning process and deteriorate the final forecasting accuracy. Moreover, other
resource constraints, in terms of huge storage capacity and extreme CPU consumption in a
centralized server, constitute also a problem that may cause delays in the outcome of the
learning process or even give corrupted results according to relevant works [3]. Moreover,
the fact that in a centralized approach, all the sensitive and non-sensitive data are sent to a
remote cloud server, imposes a full set of security concerns and private data leakages. This
is due to the fact the produced data must leave their origin source node (i.e., edge devices)
and be aggregated in an external centralized cloud node. During this raw data exchange
process, many security risks are introduced such as man-in-the-middle attacks, distributed
denial of service (DDoS) attacks, data, and deep learning model poisoning, adversarial
threats, etc. [7].

Federated Learning (FL) and Edge Computing systems give a solution to the above
problems since both FL and Edge Computing technology refer to a close-to-data-source
framework that brings the data processing activity closer to the data source, integrating
network, computing, storage, and other capabilities. In these cases, a distributed algorithm
is used which provides near-end services such as predictions and prognosis results to end
users [8,9]. FL enables incremental training of deep learning models with shared data
from cloud and private edge nodes, without explicitly exchanging any private data [10].
It supports privacy and data security protection by design and, at the same time, it can
reduce network load and achieve lower latency and power consumption [11]. Particularly,
FL allows for local nodes to train several local models, by using local data and at the same
time to propagate the locally trained hyper-parameters with a central model located on a
centralized server. Thus, no exchange of raw or private data takes place among these nodes
but only their model hyper-parameters can be exchanged. In this way, we may argue that
FL brings the learning process closer to the data sources.

Despite the above-presented benefits of Federated Learning, there are still a few
challenges and risks. As it is widely known, the identification of rare incidents or ab-
normal events and behavior patterns during a general deep learning process in cyber-
security, safety-critical systems, and enemy activities is called anomaly detection [12].
Back-propagation is the essence of neural and deep neural network training. It is the
practice of fine-tuning the weights of a learning network based on the error rates coming
from loss functions obtained from the previous epoch in an iterative process. When data
abnormalities and patterns do exist during these iterations, high values of loss functions
are produced that may cause time delays and give deteriorated final weight parameters
in the models. This fact may lead to prediction inaccuracies for future values or events
for various measured metrics, i.e., CPU consumption in the virtual machines of a multi-
cloud environment.

In this paper, a decentralized and operationally independent from one specific cloud
provider (multi-cloud architecture) FL model is used for the prediction of time-related
metric values. The introduced approach not only leverages the widely known benefits over

Information 2023, 14, 662 3 of 28

a centralized data approach, such as lower network bandwidth use (resources constraints),
lower latency, less data privacy issues, but it also adopts a client node selective approach.
In this way, it increases the accuracy in the prediction of time-related metrics by elaborating
both the detection and rejection of data abnormalities. Furthermore, it investigates, for each
client node, the sufficient data size to develop a high-quality model. During the mentioned
FL process, Deep Learning models are used, a fact that increases even more the total model
accuracy. What is more, in this work an extended algorithm and experiment setup takes
place with respect to the data distribution of various nodes in the FL cluster. In half of the
nodes, data samples are distributed randomly per node and have uniform information. In
other words, data are Identically and Independent Distributed (IID) meaning that there are
no overall trends–the distribution does not fluctuate and all items in the sample are taken
from the same probability distribution. Having IID data at the client side means that each
mini-batch of data used for a client’s local update is statistically identical to a uniformly
drawn sample from the entire training dataset, which is the union of all local datasets at the
clients of the FL system. In practice, it is unrealistic to assume that the local data on each
client node are always IID. Thus, in the remaining half of the nodes, all data have the same
label representing the cases where nodes have non-uniform information. This happens
because the entire dataset has samples with multiple different labels and belongs to the
non-IID data scenario. As a result, we can argue that this work also innovates in the way
the data distribution can take place in various nodes of an FL cluster (combination of iid
and non-iid scenario) because the data distribution is unknown beforehand in most of the
real scenarios.

Therefore, a selective FL model aggregation algorithm is used based on two conditions
that should both be satisfied. Firstly, the data size condition ensures sufficient data volume
in terms of training data. Often, the amount of local training data is different for each
client node. Secondly, the local loss function value condition helps with anomaly detection
in the data of each client node. If a high loss value exists on a client node, this proves
the low quality of local (i.e., anomalous case) data that may give inaccurate local model
parameters. In our approach, such client nodes should be excluded from the global model
training process. This path is used since a given local training dataset is not representative
of the population distribution. By using these two crucial conditions along with the fact
that Deep Learning [13,14] non-convex optimization local loss functions [15] are being
used in MulticloudFL, it ensures a higher total accuracy of the whole system in terms of
metrics prediction values in a multi-cloud environment. The non-convex optimization loss
functions applied at each client node have the same advantages as convex functions and
at the same time benefit from the fact that optimization is achieved faster when searching
for a local optimum rather than on a global optimum (convex functions), by using convex
methods such as stochastic gradient descent [14,16] and mini-batching.

The rest of the paper is organized as follows. Section 2 discusses related work on
Federated Learning mechanisms in Edge, cloud, and multi-cloud computing systems. In
Section 3, we start by presenting the general flow of our MulticloudFL system (client
participation adaptive federated learning system) for supporting forecasting in distributed
de-centralized cloud environments. Moreover, the client selection adaptive federated
learning algorithm along with the control algorithm are presented. The system architecture
is presented in Section 4. In Section 5, an illustrative example is analyzed presenting
experimental results of our work and comparisons with previous research works. Finally,
the paper is summarized, and conclusions are presented in Section 6.

2. Related Work

In this section, we discuss some of the research performed concerning the FL mecha-
nisms in Edge cloud and multi-cloud computing systems. Various parameters are examined
in this section such as the synchronous or asynchronous communication used. Previous
Federated Learning approaches use synchronous communication protocols in which the
server distributes the central model to a selected portion of clients and aggregates model

Information 2023, 14, 662 4 of 28

information by applying weighted averaging, after receiving all updates from these clients.
This method is costly due to synchronization delay since the server needs to wait for all
local updates before aggregating data. The consideration of lagging devices is inevitable,
while network unreliability can cause problems in the federated learning process. On the
other hand, the asynchronous communication methods on federated learning are presented
as alternatives where the server can aggregate without waiting for any lagging client nodes.
However, this method assumes a fixed magnitude of client data during the training process,
which is not practical in real-life settings. The use of convex or non-convex deep learning
local loss functions is examined in state-of-the-art presented works in this section since the
convergence guarantee of adaptive aggregation schemes is considered only for convex local
loss functions and a restricted family of non-convex problems. Finally, global aggregation
methods, the client participation or selection option, and the prediction accuracy performed
are examined in this section as well.

An asynchronous online federated learning framework is presented in the work [8]
where some edge devices are connected to the central cloud server in an online way.
This server aggregates the local device model parameters that were extracted by using
convex and deep learning loss functions executed locally at each device. Good prediction
performance is achieved (for the used datasets) but there are no aggregation decisions
based on local data size, nor any client selection processes that improve the final prediction
accuracy (as in our MulticloudFL approach). A similar asynchronous communication
method is followed in the research work of [17], where the proposed approach has near-
linear convergence to a global optimum, for strongly convex functions. Deep learning local
loss functions are not used in this work [17]. Moreover, even though the whole system
shows that it can converge quickly, it seems that it cannot handle data abnormalities or
heterogeneous client data effectively.

Considering mobile edge computing networks, the work by [11] uses FL to accurately
forecast the resource requests of the more popular application types in the network. By
using synchronous communication among the mobile edge devices and cloud servers and
by applying convex local loss functions, the proposed model achieves a high accuracy level
for resource demand predictions. The aggregation at the global level is based on a weighted
model according to the data size located in each mobile edge device. Nevertheless, no client
participation decision takes place and thus no possible data abnormalities can be avoided
or excluded. In another work [18], a traffic flow prediction system is proposed following
an FL approach. In this case, an accurate and privacy-preserving traffic prediction model
provides promising results in terms of improved forecasting higher over the advanced
deep learning models. There is no compromise in the privacy and security of raw data
for each end-user device. Nevertheless, no weighted global aggregation method is used,
based on each client data size, nor client participation decisions with an adaptive global
aggregation time window are used (as in MulticloudFL).

In comparison to the traditional distributed learning paradigms and FL processes with
global aggregation, an innovative privacy-enriched FL method is proposed in [9]. In this
work, a compressed communication method among nodes and a cloud parameter server is
applied for security reasons, without a significant effect on the accuracy in comparison to
non-compressed methods. Nevertheless, by not using Deep Learning local loss functions
and without client participation decision, the expected and the pragmatic achieved accuracy
results are not high enough. What is more, since the reliability in terms of data content used
by local models may vary from client to client of an FL system, the work [19] proposes a
selective model aggregation for online anomaly detection. Because several trained models
can possibly contain characteristics of anomalous data, the unsatisfying local models can
be excluded from FL, which is a fact that finally improves anomaly detection accuracy.
Unfortunately, there is no condition for examining in each local node the efficient data size
for the local training that would increase accuracy even more.

A synchronous way of communication between client and server in an FL system is
examined in the work of [20] that exchanges Gradient Descent parameters and finally uses

Information 2023, 14, 662 5 of 28

the global aggregation of these gradient parameters at each learning step on the aggregator
server. No deep learning loss functions are used, and no client participation decision
is an option in this method. The results show a significant communication reduction in
comparison to ordinary FL systems but no significant improvement in prediction accuracy.
Another work on abnormal client behavior is presented in the work [21] and concerns
cases that may intentionally or unintentionally deviate from the ordinary federated model
learning resulting in abnormal behaviors. In this work, a synchronous communication
method is applied by using all types of loss functions such as convex, non-convex, and deep
learning along with a global aggregation method based only on local loss function values.

An evaluation of some Federated Learning Aggregation Algorithms is examined in
terms of application to Human Activity Recognition in the work by [22]. The aggregation
algorithms that are used are FedAvg, FedPer, and FedMA. The experiment results show a
moderate overall prediction accuracy for classification problems. No data abnormalities
or other special issues on FL are examined in this work. Another approach for FL that
takes into consideration cases of data heterogeneity can be found in the research [23].
More specifically, in this research, a FedPer, a base and personalization layer approach for
federated training of deep feedforward neural networks is proposed which can combat the
ill effects of statistical network heterogeneity. Nevertheless, data abnormalities issues that
may appear in such environments and their possible resolution are not part of this work.

In the research work [24], new optimization algorithms of FL are proposed based on
cloud edge computing to overcome the problem that is caused by the hardware restrictions
of participating mobile devices since large computational resources are needed for using
the algorithm of FedAvg. In the presented work, there is a separation of the process that
concerns the completion of local updates both on the mobile devices and on the edge server,
and on the process of global aggregation which is executed among edge servers and the
central server. Nevertheless, no client participation method is used to tackle abnormalities
in the personal data of clients and thus cannot improve the prediction accuracy further.

The client participation method applied in the presented FL Mobile Edge system [25]
seems to mitigate resource constraint problems such as limited computational resources
or poor wireless channel conditions. In that way, the new method allows the server to
aggregate as many client updates as possible, accelerate performance improvement in Ma-
chine Learning models, and use Deep Learning local loss functions. Nevertheless, the client
selection takes place in a random way which means that it does not significantly improve
the prediction accuracy nor does it efficiently handle possible client data abnormalities.

In the work [26], an FL system is developed for handling intensive care heterogeneous
data in a cloud-distributed environment. The algorithm LoAdaBoost, which increases the
efficiency of the federated machine learning system in terms of prediction accuracy, is used
but with a slow convergence. The ordinary resources constraint problem is not taken into
consideration nor the client selection decisions in the distributed environment. On the
other hand, concerning the work [27] there is an FL optimization system presented that
resolves issues that have to do with heterogeneity in federated networks. The missing point
in this approach is the consideration of data abnormalities in the clients, which negatively
affect the forecasting accuracy.

Finally, elaborated work at [16] shows a gradient-descent-based FL system with an
adaptive control algorithm that determines the best trade-off frequency between local
update and global parameter aggregation to find the minimum global loss function. This
significant work [16] constitutes the starting point for our MulticloudFL approach in this
paper. The loss function in [16] corresponds to the specific resource parameters of the
FL system. The results show good performance in terms of accuracy, but they do not
take into consideration the deep learning local loss functions in the respective clients,
nor do they consider revisions in client participation according to any data abnormalities.
These two important dimensions are covered in our MulticloudFL approach, as extensions
to [16] to further increase the prediction accuracy of various monitoring metrics, e.g., CPU
consumption in VMs used for hosting multi-cloud data-intensive applications.

Information 2023, 14, 662 6 of 28

In contrast to the state-of-the-art presented, our work formally addresses both the
issues of dynamically determining the global aggregation frequency within a given time
resource budget and the improvement of prediction accuracy by excluding data abnor-
malities. This improvement takes place by using: (i) deep learning local loss function in
each FL client while taking into consideration the data abnormalities in the local client
data during global aggregation; and (ii) by considering adequate data volumes during the
client participation process in the global aggregation procedure of MulticloudFL. Moreover,
our work presents an innovative approach to the way the data distribution can take place
in various nodes of the FL cluster (a combination of iid and non-iid scenarios). Finally,
deep learning local loss function is used in each participating node that shows a very good
convergence in comparison to other functions. A fundamental comparison of the above
research works and their features is shown in Table 1.

Table 1. Relevant research work comparison.

Papers Synchronous/
Asynchronous
Communica-

tion

Convex
Loss

Function

Non-Convex
Loss

Function

Deep
Learning

Loss
Function

Aggregation
Based on
Weighted

Average of
Data

Volume of
Each

Participant

Client
Participant
Selection
Based on

Local Data
Volume Size

Client
Participant
Selection
Based on

Local Value
of Loss

Function

Control
Algorithm

for
Dynamic

Time
Window

for Global
Aggrega-

tions

[8] Asynchronous yes yes yes no no no no

[17] Asynchronous yes restricted
(small cases) no no no no no

[11] Synchronous yes no no yes no no no

[18] Synchronous yes yes yes no no no no

[9] Asynchronous yes yes no no no no no

[19] Synchronous yes no no yes no yes no

[20] Synchronous yes yes n/a no no yes no

[21] Synchronous yes yes yes yes yes no no

[22] Synchronous yes yes yes no no no no

[23] Synchronous yes yes yes no no no no

[24] Synchronous yes yes yes no no no no

[25] Synchronous yes yes yes no no no no

[26] Synchronous yes yes no no no no no

[27] Synchronous yes yes yes no no no no

[16] Synchronous yes no no yes no no yes

MulticloudFL Synchronous yes yes yes yes yes yes yes

3. Research Methodology of Client Participation Adaptive Federated Learning System
3.1. General Flow

In our paper, we present a gradient descent algorithm adapted from [16] to solve the
machine learning problem that refers to the minimization of the global loss function of a FL
that involves multi-cloud and edge nodes:

w∗ , argminF(w) (1)

where w∗ is the parameter vector of the global model when it reaches its minimum. F(w)
is the global loss function of all the distributed client nodes (multi-cloud nodes or edge
nodes) datasets:

F(w) =
∑N

i=1 DiFi(w)

D
(2)

Information 2023, 14, 662 7 of 28

where N defines the number of client nodes, Di denotes the size of the local client node
dataset, and D the total size of the dataset of the entire edge and multi-cloud computing
system, provided in the following listing:

D ,
N

∑
i=1

Di (3)

Last, Fi(w)is the client node’s local loss function that captures the error of the client
node’s model on its local training data. Thus, each client node i has its local model
parameter wi(t) where t = 0,1,2,. . . denotes the iteration index. At t = 0, the aggregator
initializes the communication to clients and sends the initial model parameter w(0) along
with the time step τ∗ = 1 to all client nodes. In this way, the local parameters for all nodes i
are initialized to the same value. More specifically, the initial global model weights w(0),
before starting the learning process, are set to the value zero. After one or more local
iterations, a global aggregation occurs on the aggregator server only if the time of execution
is a multiple of the basic time step τ∗,i.e., t = Kτ∗ where K = integer number.

For the timestamp t > 0, new values of the local model parameters wi(t) are calculated
based on the gradient descent update rule of the local loss function for each client node
i. Every local update uses as the initial value for the current iteration the value that came
from the previous iteration t-1, according to the following gradient descent rule:

wi(t) =
∼
wi(t− 1)− n∇Fi

(∼
wi(t− 1)

)
(4)

where n is the learning rate. The global aggregation process gathers multiple client updates
to further improve the FL model. We already defined that the system performs τ* steps of
local updates at each client node between every two global aggregations. After the global
aggregation, the local parameter wi(t) at each node client i usually changes. For clarification,
we use

∼
wi(t) to emphasize the parameter at node i after possible global aggregation. If no

aggregation is performed at iteration t, we have
∼
wi(t) = wi(t). If aggregation has occurred

at iteration t then
∼

wi(t) 6= wi(t) and for that reason we set
∼

wi(t) = wi(t), where the wi(t) is
the weighted average according to the data volume contribution from each client node:

w(t) =
∑N

i=1 Diwi(t)
D

(5)

Our work is related to the work [16] where a gradient-descent-based FL system with an
adaptive control algorithm was introduced. Compared to [16], the current paper presents
an innovative client selection method among the client nodes that participate in every
global aggregation. Given the fact that local client nodes are likely to contain noisy or
anomalous data and have potential risks of being attacked, we carefully select members
that participate in the federated learning process. Otherwise, aggregating inaccurate or
insecure local models’ parameters into the global model setup may inversely reduce the
prediction accuracy. Moreover, a single client node may face insufficient training data
to develop a high-quality model because of limited computation and energy resources.
Thus, we should exclude it from the model aggregation to avoid its adverse impact on the
global model.

The proposed selection method is based on an adaptive threshold coming from the
value of local data sizes and on an appropriate loss function threshold value coming from
the local loss values of client nodes. Both these adaptive thresholds are calculated from
their mean values of the local data sizes and local losses, respectively, minus the standard
deviation for each case. We are considering the mean values because we want the client
participating nodes to be in an almost similar state regarding the losses of their models and
the amount of data used for training. The standard deviation parameter is a commonly
used deviation affordable in such cases of finding similar member conditions. After an

Information 2023, 14, 662 8 of 28

analysis of the aggregator to find the optimum adaptive threshold for local data sizes and
local loss function executed, two major conditions are considered:

i. The data size of each node should be bigger than an adaptive threshold of data sizes as
mentioned before, to be able to contribute effectively to the global aggregation process.

ii. The adequate small value of each local loss function for each client node should be
below the already mentioned threshold. Otherwise, a large and above-the-threshold
local loss value implies a high probability that the state of the chosen client is
deviating from the normal client states. Consequently, the specific client should be
excluded from the model parameters aggregation to avoid its adverse impact on
the global model.

Because the above thresholds come from mean values of nodes participating in the
FL cluster, the possibility of not satisfying both of the above conditions by any client is
not considered feasible. At least one node of the FL cluster will participate in the global
aggregation in each iteration loop.

In the current work, Deep Learning, i.e., Long short-term memory (LSTM) algo-
rithm [28] local loss functions are used in the local iterations, as a new type of local loss
function in comparison to previous work [16]. This decision further increases the prediction
accuracy of our MulticloudFL. The local models converge to a local minimum. Our FL
model is gradient-based as already stated and a novel convergence bound is achieved that
incorporates non-independent and identically distributed (non i.i.d) data distributions
among nodes and an arbitrary number of local updates between two global aggregations.
Of course, we have to highlight that a parameter that influences the convergence rate is the
step size, which is a hyperparameter that needs fine-tuning during the initial setup of our
model in order to ensure convergence.

Moreover, a major operation of MulticloudFL is the fact that given a specific amount
of resources’ constraints, i.e., the maximum available time in which the FL system should
have completed the learning process, it should find the optimal values of τ∗ and T = K*τ∗

(as already defined) so that the global loss function of the FL system is minimized at the
end (Equation (2)). For that purpose, a Control Algorithm is applied. The step time τ∗ for
each local update and the parameters of this Control Algorithm are optimized, first locally
at each client node and finally after each global aggregation procedure. In general, as part
of the whole FL process, the crucial point is the examination of whether the minimum
value of the global loss function has been achieved. If not, then the new calculated model
parameters and new step time τ∗ are sent back to the client nodes, the local training on the
nodes is re-initiated and the whole described learning process is repeated. It is true that
the process of the multi-cloud synchronous federated learning may initially cause some
delays as the number of participating nodes increases. Of course, the whole FL system is
fully scalable in terms of nodes, and, in conjunction with the control algorithm, the time
execution is optimized. Theoretically, no restrictions on the number of participating nodes
should be met. In Figure 1, we provide a flow diagram that depicts the main steps of
our MulticloudFL.

3.2. Client Selection Adaptive Federated Learning Algorithm

In the FL system that is presented in this paper, an innovative method is proposed
that ensures an increase in the final prediction accuracy. The previous works [16,25] use
a weighted average method during global aggregation of all the connected client nodes
(meaning either multi-cloud nodes or edge nodes). The already existing research works, as
it was discussed in Section 2, cannot provide an adequate solution for coping with the low
quality of local client data (abnormalities) nor cope with cases of small local data volumes
that cannot successfully train ML algorithms. With our new adaptive FL multi-cloud client
selection method, both discussed drawbacks are avoided effectively.

Information 2023, 14, 662 9 of 28

Information 2023, 14, 9 of 30

parameters and new step time 𝜏𝜏∗ are sent back to the client nodes, the local training on the
nodes is re-initiated and the whole described learning process is repeated. It is true that
the process of the multi-cloud synchronous federated learning may initially cause some
delays as the number of participating nodes increases. Of course, the whole FL system is
fully scalable in terms of nodes, and, in conjunction with the control algorithm, the time
execution is optimized. Theoretically, no restrictions on the number of participating nodes
should be met. In Figure 1, we provide a flow diagram that depicts the main steps of our
MulticloudFL.

Figure 1. General flow of the MulticloudFL system.

3.2. Client Selection Adaptive Federated Learning Algorithm
In the FL system that is presented in this paper, an innovative method is proposed

that ensures an increase in the final prediction accuracy. The previous works [16,25] use a
weighted average method during global aggregation of all the connected client nodes
(meaning either multi-cloud nodes or edge nodes). The already existing research works,
as it was discussed in Section 2, cannot provide an adequate solution for coping with the
low quality of local client data (abnormalities) nor cope with cases of small local data

Figure 1. General flow of the MulticloudFL system.

Specifically, the first part of our selection algorithm, which runs on the aggregator
server, incorporates the discovery process of the data residing in each client and the related
final local loss values before global aggregation takes place. As soon as the discovery
process is complete, an adaptive threshold is calculated after the analysis of gathered
information, that considers the existence of extreme data abnormalities meaning data
points that differ enormously from other observations. These extreme data abnormalities
called outliers [29] may exist due to variability in the measurement or it may indicate an
experimental error and not a violation of any anomalous condition. These can cause serious
problems in statistical analysis and for that purpose, they should be avoided.

For these reasons, we define an adaptive threshold thr for the distributed dataset by
excluding the outliers that may exist in local data or local loss values as follows:

thrDataSize =


MEAN(Total Data Size) − 0.5 ∗ std(Total Data Size) ,

if MEAN(Total Data Size) < std(Total Data Size)
MEAN(Total Data Size) − 1.0 ∗ std(Total Data Size),

if MEAN(Total Data Size) > std(Total Data Size)

(6)

Information 2023, 14, 662 10 of 28

thrLoss Value =



MEAN(local loss value) − 0.5 ∗ std(local loss value),
if MEAN(local loss value) < std(local loss value)

MEAN(local loss value) − 1.0 ∗ std(local loss value),
if MEAN(local loss value)mean value

of local loss > std(local loss value)

(7)

where we use the standard deviation as the std function in the above equations. The
dynamic selection process of Equations (6) and (7) is based mostly on experimental results.
Assuming a Gaussian distribution for the data size and the loss, rejecting the lowest part
below 1σ, is equivalent to accepting 5 out of 6 nodes. This is a tradeoff to ignore the outliers
without having much underutilization. This approach represents a fail-safe mechanism to
avoid the dilution of the performance of the total model with less trained nodes.

The second step of our client selection algorithm is the global aggregation on the server
following a weighted-average process according to each client’s data size. In this process,
only the clients whose data size satisfies the above data threshold and, at the same time,
those whose local loss functions are smaller than the above-defined loss threshold, take
part in the global aggregation. In this way, we ensure that data with adequate volume size
contribute additively to the learning process without adding data with erroneous behavior
that may lead to incorrect and inaccurate prediction results.

The described process is shown in the following Equation (8) and in the following
Algorithm 1 where we describe the presented algorithm using pseudocode.

w(t) =


∑iε{1,...,N} Diwi

∑iε{1,...,N} Di
, data size(i) > thrDataSize

and loss(i) < thrLoss Value
w(t), data size(i) < thrDataSize or loss(i) > thrLoss Value

(8)

Therefore, in Equation (8), we assume that our FL system has N client nodes: 1, 2,. . .,
N with local datasets for each of these nodes. Di denotes the data size of the local dataset
for each client node i that should satisfy both of the two mentioned conditions for local data
size and local loss value. Moreover, wi denotes the locally trained model parameters of
client node i that will participate in the global aggregation giving, in the end, the weighted
average of the w(t) global model parameter.

Algorithm 1 Client Selection FL Algorithm

Client Selection FL Algorithm
Require: Local minibatch size B, number of client participants m
per global aggregation, number of local iterations τ, learning rate n,
N total number of client nodes

Ensure: Global model w(t)

[Participant i]
receive w global model parameter for i participant from Server
Local Training (i,w):
Split local dataset Di to minibatches of size B minimum

For each local epoch j from 1 to τ DO:
For each b ε B DO:

wi <-- w - n*∆L(w;b) (n is the learning rate and ∆L is the gradient
of local Loss on b.)

end For
end For

send the wi model parameter to Server

Information 2023, 14, 662 11 of 28

Algorithm 1 Cont.

[Server]
Initialize w(0):

For each iteration τ from 1 to T(=κ*τ) DO:
Receive from Client Participants all wi local model parameters

For each Client Participant (1,. . .,N) DO in parallel:
wi(t+1) <-- LocalTraining (i,w(t))

end For
Discover from all Client participants N:

- Data Size Threshold T1
- Local Loss Threshold T2

Choose a subset of S of m participants from N when
the 2 conditions are achieved:
participant Data Size > T1 and Loss value <T2

For each participant i ε S (1,. . .,m):
Calculate the Average Weighted Aggregation
based on Data Size of each client (Equation (8))

end For
end For

send to Client Participants the new w global model parameter values

3.3. Control Algorithm

In this subsection, the resources control algorithm for adaptive FL is presented, which
describes the steps that are followed for recomputing the τ* (time window) after every
global aggregation execution based on parameters from the last state of the system.

Specifically, the important point in our control algorithm is the optimum use of
available computing resources within the scope of minimizing the prediction errors and
thus the loss function during FL training. Consequently, for the distributed stochastic
gradient descent [14] used in our case, the problem turns out to be the optimization of the
values of T and τ and thus τ*. These optimized parameters manage to minimize the final
global loss function of the system given the specific resource constraints. We define the
equation that relates the T and τ as T = K*τ, which helps with the process of minimization
of the local and global loss functions.

In general, we consider M different types of resources that may involve various cases
such as time, communication bandwidth, heat energy, etc. For each m∈{1,2,. . ., M}, for
each local update step, all nodes of the multi-cloud FL system consume cm units of type m
resource and each global aggregation step consumes bm units of type m resource where
both cm > 0 and bm > 0 (finite numbers). For the given parameters for T and τ the total
consumed resource is given by the following equation:

TotalResConsumption = (T + 1) cm+(K + 1) bm (9)

For Equation (9), it is important to note that, during the FL process, each client node
i first computes the local loss value and then sends the result to the server aggregator to
compute the global loss function weighted aggregated value. Since each client node knows
the K-th global model parameter values only after the K-th global aggregation (global
model parameters are known to each node after global aggregation completes), the local
loss function at the K-th round will be sent to the aggregator at the K + 1 time aggregation
step and the aggregator then computes the K-th global loss function, which is sent back to
all clients. In order to compute the last global loss function (T = K*τ) an additional local
and global update is needed at the end and that is why the plus one addition: (T + 1) and
(K + 1) parameters are used in Equation (9).

Saying that Rm is the total resource consumption of type m, our control algorithm tries to
find a minimum value of the global loss function to complete the Federated Learning process
by ensuring the utilization of a maximum value of the total budget of type-m resource:

minGlobal Loss Function
τ,K∈{1,2,3,...}

Information 2023, 14, 662 12 of 28

with the condition: (T + 1) cm+ (K + 1) bm ≤ Rm,

∀m ∈ {1,, M} (10)

In general terms, it is very difficult to use an analytical expression to relate τ and K and
their effect on the Global Loss Function of the multi-cloud FL system. This difficulty can be
recognized in the correlation point of the convergence property with gradient descent while
at the same time, it is imperative to find the impact of the global aggregation frequency on
the convergence property. Cmand bm coefficients can also be time-varying. For that reason,
we propose the mentioned iterative FL control algorithm.

According to the theoretical analysis and definitions presented in relevant work [16],
the basic task of the control algorithm is the minimization of the following expression,
which is derived from the Equation (10) and comes as the result of the substruction of a
given global loss function F(w) from its minimum value (constant). With this approximation
and by rearranging the inequality constraints of Equation (10) as follows, we can conclude
the value of G(τ):

G(τ) ,
maxm

cmτ+bm
R’

mτ

2ηϕ
+

√√√√(
maxm

cmτ+bm
R’

mτ

)2

4n2ϕ2 +
ρh(τ)
nϕτ

+ ρh(τ) (11)

where R’
m = Rm − bm − cm and Rm is the total resource consumption of type m. Moreover,

n is the learning rate, ϕ is the Constant defined in the Lemma 2 control parameter in
Algorithm 2, h(τ) is the function showing the gap difference between the model parameters
obtained from distributed and centralized gradient descents, ρ is the Lipschitz parameter,
and β is the Smoothness parameter. All these definitions are explained in the work of [16].

Based on the above expression, the minimization of G(τ) for the optimal value of τ
(which represents the number of local update steps that are executed between two global
aggregations) is defined as τ* and is given by the following expression:

τ∗ = argminτε{1,2,3,...}G(τ) (12)

and after the optimal definition of the above τ*, we can calculate the optimal total number
of global aggregation steps K* as follows:

K∗ = minm
R’

m
cmτ∗ + bm

(13)

The expression of G(τ) has parameters that are related to the resources’ consumption
parameters cm and bm(for any resource type)and other parameters ρ, β, and δ that are
related to the loss function characteristics. This calculation takes place in real time during
the FL process.

The values of cm and bm are derived from the measurements of resource metric
consumptions at the client nodes side and the aggregator side, respectively. For the time
resources used in our work, the maximum computation time per local update at all nodes
is considered cm. Moreover, the aggregator refers to the total resource type m (i.e., time)
consumption bm of each resource and compares the total resource consumption against the
resource budget Rm. In other words, cm and bm correspond to the actual time needed for
each local update and for each global aggregation. If the consumed resources approach the
budget limit of a specific type m resource (in our case m is time) then it stops the learning
process of the algorithm and returns the final result.

The values of ρ, β, δ are estimated from the local and global losses and gradients
computed locally at each client node and globally at the aggregator server, during the
FL. For the efficiency of this calculation, each client node needs to have access to both
its local model parameter and at the same time to the related global model parameters
(same iteration at timestamp t) created at the aggregator, which can happen when global

Information 2023, 14, 662 13 of 28

aggregation is completed at iteration t. Because global model parameters are known to each
node after global aggregation completes, the calculated values ρ, β, δ are only available for
re-calculating τ* starting from the second global aggregation step after initialization, which
uses estimates from the previous global aggregation step. This is obvious in the description
of the Control Algorithm in Algorithm 2.

Moreover, during the re-computation in the aggregation after each global aggregation
step, we look for new values of τ* with the upper limitation of γ threshold times the
current value of τ* and find τ* that minimizes, as already discussed before, G(τ) whereby
γ > 0 is a fixed parameter. This γ threshold is configurable. The role of γ is to limit the
search space and to prevent τ* from growing too rapidly and causing inaccuracies at the
end [16]. Moreover, a maximum value of τ* is used because if τ* reaches too large values it
is going to violate the total resource budget and deteriorate the operation of the system.
The new estimated value τ* is sent back to each node after global aggregation along with
the global model parameters just calculated. The description of the major points of the
Control Algorithm is shown in Algorithm 2.

We note that the Algorithms presented in this paper differ from previous work [16]
mainly on the selection method applied during the FL process and the Regressive Deep
Learning method for minimization of the local loss function. Moreover, the Control Algo-
rithm used takes into consideration the resource parameters only of the selected clients.
To be more specific, the aggregator server after selecting the appropriate clients that par-
ticipate in global aggregation, calculates the global values of ρ, β, δ as the mean value of
only the selected clients. These new calculated values are those that contribute to the final
re-estimation of τ* according to Equation (12). These innovative and newly introduced
calculations are proved to give more accurate prediction results compared to work [16] as
shown in the next sections.

Algorithm 2 Resources Control Algorithm

Control Algorithm
Require: Resource budget R, control parameter ϕ,
search range parameter γ, maximum τ value τmax

Define: global model parameter vector w(t)
local model parameter vector wi(t)
local resource parameter ci
local resource parameter bi

--

[Server]
Initialize τ* <-- 1 ;
Initialize t <-- 0 ;
Initialize s <-- 0 //s resource counter;
Initialize w(0) as a constant;
Initialize w(global) <--- w(0);
REPEAT:

send w(t) parameters and τ* to all client nodes;

save iteration index of last transmission of w(t): t0<-t ;

next global aggregation is after τ iterations : t <-- t + τ*;

Receive wi(t), ci from each client node ;
compute the weighted average with client selection of w(t) global model;

Receive ρi, βi, Local Loss function, Anadelta of Local Loss fuction from each client selected
node i;

Estimate weighted average ρ based on Data Size of each client selected node i;

Estimate weighted average β based on Data Size of each client selected node i;
Compute Anadelta of loss function and from difference of Anadeltas of local
and global loss functions estimate finally the weighted average δ ; [see ref [6]]

Information 2023, 14, 662 14 of 28

Algorithm 2 Cont.

Compute new value of τ* according to Equation (9) via linear search on integer values of τ
within [1, min {γτ*;τmax};

Estimate resource consumptions cm, bm using cι received from all nodes ι and local
parameters at the aggregator;
sm <-- sm +cm * τ+bm;

IF sm>Rm then decrease τ* to the maximum possible value such that the estimated
resource consumption for remaining iterations is within Resource budget Rm.

[Participant]

Receive w(t) and new τ* from Server;

Estimate local ρi,βi

Estimate type-m (time) resource consumption cm,i for one local update at node i;

Send all parameters wi(t) (updated) , ρi, βi, local loss function of wi(t) , anadelta of loss
function of wi(t), to Server

4. Architecture of the System

As stated in the Introduction section, in this paper we introduce a Federated Learning
approach with decentralized client nodes (multi-cloud and edge) that is implemented as a
client-server architecture. It uses multiple node clients hosted in various cloud providers
with a remote aggregator server located in any of these cloud providers. The whole system
performs both local processing tasks and remote coordination/execution tasks.

As shown in the flow chart of Section 3.1, in the MulticloudFL system the learning
process includes local model update steps, where each client node (multi-cloud node
or edge node) performs gradient descent to adapt the local model parameters. This is
described in Equation (4) where n is the learning rate which is defined as the step size of
the model parameter update. The definition of the learning rate value takes place at the
configuration file of the system where the chosen value is a result of various experiments
towards finding the optimum one. The training epoch represents a complete repetition
of the parameter update that involves the complete training dataset at a certain time.
It is important to note that the learning rate should be selected wisely so that it does
not influence the learning process. The gradient descent algorithm is used to minimize
training errors and to repetitively update the network hyper-parameters through every
training epoch.

The learning rate has a huge impact on training neural networks and federated
algorithms. It can speed up the training time, help navigate flat surfaces better, and
overcome pitfalls of non-convex functions. Adaptive learning rates allow us to change the
learning rates for the FL model parameters in response to gradient and momentum.

In our local client node model implementation, the optimization method of Adam
has been used [30]. Adam, which denotes adaptive moment estimation, is the latest
evolution of adaptive learning algorithms that integrate the ideas from AdaGrad, RMSProp,
and momentum [31,32]. Just like AdaGrad and RMSProp, Adam provides an individual
learning rate for each model parameter. It has been designed specifically for training deep
neural networks, it is more memory efficient and needs less computational power than the
other two algorithms. Adam uses the first moment (mean used in RMSProp optimizer) as
well as the second moments of the gradients utilizing the exponential moving average of
the squared gradient. In other words, the mechanism of Adam is used to calculate adaptive
linear regression for each parameter in the model.

When the amount of training data is large, it is usually computationally prohibitive to
compute the gradient descent of the loss function defined on the entire local client dataset.
In cases such as our work, stochastic gradient descent is used [8,20], which elaborates the
gradient computed on the loss function defined on a randomly sampled dataset of the
whole local available training data, which is called a mini-batch. Every mini-batch can be

Information 2023, 14, 662 15 of 28

considered an undersized collection of samples with no overlap between them. Each local
iteration step (τ) corresponds to a step of gradient descent where the gradient is calculated
on a mini-batch of local training data. The mini-batch changes for every step (τ) of local
iteration, i.e., for each new local iteration, a new mini-batch of a given size is randomly
selected from the local training data.

During the training of the local model on each node a method of lowering the risk of
overfitting and speeding up the training process is applied, which is called dropout [33]. In
the dropout technique, we randomly choose units and nullify their weights and outputs so
that they do not influence the forward pass or the backpropagation during the training. By
contrast, the full-scale network is utilized to perform prediction during the testing process.

According to the above, the local model updates, minimize the loss function defined
according to the data content of the local dataset. The federated learning process also
executes global aggregation steps after the model parameters are trained locally (in node
clients) and then they are sent to an aggregator mode, located in a remote server in the cloud.
The aggregator selects the “appropriate” client nodes to achieve the optimum prediction
accuracy, by taking the weighted average of their model parameters according to their local
data volume. After the completion of an aggregation process, the updated parameters are
sent back to all the node clients belonging to the FL system.

Due to the adaptive resource nature of MulticloudFL, the frequency of global aggrega-
tion can be re-estimated during the learning process, and it can take values that minimize
the global loss function of the whole system (see Equations (1) and (12)). In this way, the
frequency of global aggregation performs efficient use of the available resources of the FL
system without over-using or under-using the resources. In our case, the major resource
dynamically adapted is the time parameter.

A high-level view of the system architecture is provided in Figure 2.

Information 2023, 14, 16 of 30

By contrast, the full-scale network is utilized to perform prediction during the testing

process.

According to the above, the local model updates, minimize the loss function defined

according to the data content of the local dataset. The federated learning process also

executes global aggregation steps after the model parameters are trained locally (in node

clients) and then they are sent to an aggregator mode, located in a remote server in the

cloud. The aggregator selects the “appropriate” client nodes to achieve the optimum

prediction accuracy, by taking the weighted average of their model parameters according

to their local data volume. After the completion of an aggregation process, the updated

parameters are sent back to all the node clients belonging to the FL system.

Due to the adaptive resource nature of MulticloudFL, the frequency of global

aggregation can be re-estimated during the learning process, and it can take values that

minimize the global loss function of the whole system (see Equations (1) and (12)). In this

way, the frequency of global aggregation performs efficient use of the available resources

of the FL system without over-using or under-using the resources. In our case, the major

resource dynamically adapted is the time parameter.

A high-level view of the system architecture is provided in Figure 2.

Figure 2. MulticloudFL System Architecture.

Moreover, in Figure 3, we ground the general flow presented in Section 3.1, and

discuss the technology used for each of the components of the system developed. In that

figure, we present the new innovative elements and modules developed in comparison to

the ones presented in work [16]. The two basic functionalities that MulticloudFL

introduces and evolves are the deep learning use for local loss functions optimizations

(i.e., LSTM algorithm), the Client parameters discovery module, and the Client selection

method that ensures higher prediction accuracy.

Figure 2. MulticloudFL System Architecture.

Moreover, in Figure 3, we ground the general flow presented in Section 3.1, and discuss
the technology used for each of the components of the system developed. In that figure,

Information 2023, 14, 662 16 of 28

we present the new innovative elements and modules developed in comparison to the
ones presented in work [16]. The two basic functionalities that MulticloudFL introduces
and evolves are the deep learning use for local loss functions optimizations (i.e., LSTM
algorithm), the Client parameters discovery module, and the Client selection method that
ensures higher prediction accuracy.

Information 2023, 14, 18 of 30

Figure 3. Conceptual Code Architecture.

Regarding the deployment process of the model of the Federated System, we follow

the following steps:

1. Train and Build the final model where the final global loss function will be minimal

according to Figure 1. The server.py module is located on the central server, which

aggregates the various local trained weights and the client.py module, which is lo-

cated on each of the nodes (local weights).

2. After the training of the model, its parameters are saved with the model.save function

of Tensorflow Keras library (https://www.tensorflow.org/guide/keras (accessed on 1

January 2021)) on the aggregator central server. In this way, the model is saved in a

format that can be loaded in various server nodes where the inference data (real data)

reside. The above command saves the trained model in the HDF5 file format [36],

which includes both the model architecture and the learned weights.

3. In order to deploy the Trained model to various nodes, we use the Tensorflow Serv-

ing and then the local inference on each node’s real data of the federated system can

take place.

4. After the deployment of the mentioned model, predictions based on real data (i.e.,

test/validation) take place.

The implementation of the described Architecture of our MulticloudFL system can

be found for more detailed analysis on GitHub: https://github.com/vasilaros/Multicloud-

Federated-Learning-FL.git (accesed on 1 September 2023).

5. Experimental Results

We note that the Client Participation Adaptive Federated Learning System (Mul-

ticloudFL), presented in this paper, has been tested and evaluated in several real-applica-

tion scenarios. In this section, we present one of them as an illustrative example for high-

lighting the value of our approach. We refer to a Computational Fluid Dynamic Simula-

tion application inspired by one of the Nebulous pilots introduced by the ICON company

for the analysis of fluid models (https://www.iconcfd.com/ (accessed on 1 September

2023)) and fluid mobility-related data. This application produces valuable insights that

refer to simulations that examine model design and the effectiveness of fluid dynamics.

More specifically, the simulation application concerns a two-dimensional fluid case.

Figure 3. Conceptual Code Architecture.

The model used is a deep recurrent neural network that elaborates supervised learning
with labeled data. To be more specific, time series data that refer to CPU consumption over
time are used as training and test/validation datasets. Thus, we have a case of regression
problem. Our RNN model uses the long short-term memory approach (LSTM). LSTM
network is one of the emerging methods for time series prediction and has been widely
researched during the last few years. The suitability of LSTMs arises from the fact that they
can learn the dependencies between the data points. LSTM models develop a function to
learn from the previous historic points to predict future points. A hidden layer is included
in our model and a dropout layer to avoid, as already mentioned, the phenomenon of
overfitting. The initial values of global model weights before the learning process are set to
the value of zero, as discussed previously. This is achieved by filling with zeros the array
vector of global_grad_global_weight of class ControlAlgAdaptiveTauServer.

As can be seen in the described class diagram of Figure 3, our client-server basic
schema architecture is given by the Server-Client modules. To be more specific, the server is
the central module where the global aggregation process, the Client parameters discovery
method, and the Client selection method run as part of the Client Selection Adaptive
Federated Learning Algorithm (described in Section 3.1). Moreover, the adaptivetau
module is used in the Server with the ControlAlgAdaptiveTauServer Class as part of the
control algorithm process for the optimization of the resources (time) usage (τ value) by
using the selected client nodes parameters and resources. Last, on the server side the two
methods used for the communications with the client nodes (multi-cloud and edge nodes)
are the send_msg and recv_msg methods.

On the Client nodes side, the core module that is used in each client is the Client
module. With the help of this module local update steps are executed in each client of
the FL until a local convergence is achieved by using the Gradient Descent algorithm and
the Loss function of LSTM that is included in the RNN class. Moreover, the mentioned
local learning process is executed based on the local data of each client by fetching the

Information 2023, 14, 662 17 of 28

data for training, with the methods get_data() and get_train_data () from the local dataset
storage. The get_indices() method is used for the Stochastic Gradient Descent data read.
As in the Server side, the methods: send_msg and recv_msg are also used here to help for
the communications and model parameters exchange among client nodes and aggregator
server. Finally, the ControlAlgAdaptiveTauClient is used in each client as part of the control
algorithm process (for the optimization of τ value).

It is important to mention that the various modules, classes, and methods are im-
plemented by using python language version 3. The open-source libraries developed by
Google of Tensorflow [34] are used in our FL system, focusing on the Keras technology [35].
A general overview of the Architecture with the newly developed modules emphasized
with gray color is shown in the following Figure 3.

Regarding the deployment process of the model of the Federated System, we follow
the following steps:

1. Train and Build the final model where the final global loss function will be minimal
according to Figure 1. The server.py module is located on the central server, which
aggregates the various local trained weights and the client.py module, which is located
on each of the nodes (local weights).

2. After the training of the model, its parameters are saved with the model.save function
of Tensorflow Keras library (https://www.tensorflow.org/guide/keras (accessed on
1 January 2021)) on the aggregator central server. In this way, the model is saved in a
format that can be loaded in various server nodes where the inference data (real data)
reside. The above command saves the trained model in the HDF5 file format [36],
which includes both the model architecture and the learned weights.

3. In order to deploy the Trained model to various nodes, we use the Tensorflow Serving
and then the local inference on each node’s real data of the federated system can take
place.

4. After the deployment of the mentioned model, predictions based on real data (i.e.,
test/validation) take place.

The implementation of the described Architecture of our MulticloudFL system can be
found for more detailed analysis on GitHub: https://github.com/vasilaros/Multicloud-
Federated-Learning-FL.git (accesed on 1 September 2023).

5. Experimental Results

We note that the Client Participation Adaptive Federated Learning System (Multi-
cloudFL), presented in this paper, has been tested and evaluated in several real-application
scenarios. In this section, we present one of them as an illustrative example for highlight-
ing the value of our approach. We refer to a Computational Fluid Dynamic Simulation
application inspired by one of the Nebulous pilots introduced by the ICON company for
the analysis of fluid models (https://www.iconcfd.com/ (accessed on 1 September 2023))
and fluid mobility-related data. This application produces valuable insights that refer to
simulations that examine model design and the effectiveness of fluid dynamics. More
specifically, the simulation application concerns a two-dimensional fluid case. Initially, the
fluid is flowing from left to right, and a linear barrier diverts the fluid and creates vortices.
The colors appearing in the application similar to the ICON case indicate the curl, or local
rotational motion, of the fluid. By using the controls to adjust the flow speed and viscosity,
the application draws different barriers, drags the fluid around, plots other quantities
besides the curl, shows the force exerted by the fluid on the barriers, and measures the
fluid’s density and velocity at any point. Computational Fluid Dynamic Application is
focused on simulations requiring a variable number of resources. Specifically, we planned
three categories of simulations: hi-fi (high fidelity), low-fi (low-fidelity), and a combination
of them. The former low-fi or low-fidelity simulations which give pixel-moderate, required
few CPU resources (Figure 4) because the low-fi simulation was used to build knowledge.
The simulations in this category became the least real to the learner. These included static
models and two-dimensional displays that gave a general (not in detail) view of reality. On

https://www.tensorflow.org/guide/keras
https://github.com/vasilaros/Multicloud-Federated-Learning-FL.git
https://github.com/vasilaros/Multicloud-Federated-Learning-FL.git
https://www.iconcfd.com/

Information 2023, 14, 662 18 of 28

the other hand, the hi-fi or high-fidelity simulations, which are typically represented by
pixel-perfect, production-ready, interactive prototypes required high performance, espe-
cially concerning CPU (Figure 5). This is because the hi-fi simulation is about a test that
mirrors or closely simulates a real-world situation in which test takers act based on the
scenario and available information just as they would in real life. There is also a third
simulation case as a combination of the two already mentioned which gave CPU polarized
workload data (Figure 6).

The MulticloudFL System copes with the above challenge of dynamically diverse
demand. It helps the Computational Fluid Dynamic Simulation application to obtain the
resources proactively to minimize cost and optimize the cost-to-simulation-time ratio based
on end-user constraints, depending on individual Service Level Agreements (SLAs) and
the number and type of simulations requested. The computing resources are dynamically
optimized on the fly based on the current load and projected simulation loads.

The initial deployment of this application consists of two main component instances
(excluding the aggregator instance) and then the re-deployment of the application is
examined on 3, 5, and 20 main component instances since the specific application does not
need more nodes for efficient deployment.

Information 2023, 14, 19 of 30

Initially, the fluid is flowing from left to right, and a linear barrier diverts the fluid and

creates vortices. The colors appearing in the application similar to the ICON case indicate

the curl, or local rotational motion, of the fluid. By using the controls to adjust the flow

speed and viscosity, the application draws different barriers, drags the fluid around, plots

other quantities besides the curl, shows the force exerted by the fluid on the barriers, and

measures the fluid’s density and velocity at any point. Computational Fluid Dynamic Ap-

plication is focused on simulations requiring a variable number of resources. Specifically,

we planned three categories of simulations: hi-fi (high fidelity), low-fi (low-fidelity), and

a combination of them. The former low-fi or low-fidelity simulations which give pixel-

moderate, required few CPU resources (Figure 4) because the low-fi simulation was used

to build knowledge. The simulations in this category became the least real to the learner.

These included static models and two-dimensional displays that gave a general (not in

detail) view of reality. On the other hand, the hi-fi or high-fidelity simulations, which are

typically represented by pixel-perfect, production-ready, interactive prototypes required

high performance, especially concerning CPU (Figure 5). This is because the hi-fi simula-

tion is about a test that mirrors or closely simulates a real-world situation in which test

takers act based on the scenario and available information just as they would in real life.

There is also a third simulation case as a combination of the two already mentioned which

gave CPU polarized workload data (Figure 6).

Figure 4. CPU Increasing Load with Spikes prediction result. Figure 4. CPU Increasing Load with Spikes prediction result.

Information 2023, 14, 20 of 30

Figure 5. CPU Periodically Increasing Load with Fluctuations prediction result.

Figure 6. CPU Polarized Workload prediction result.

The MulticloudFL System copes with the above challenge of dynamically diverse de-

mand. It helps the Computational Fluid Dynamic Simulation application to obtain the

resources proactively to minimize cost and optimize the cost-to-simulation-time ratio

based on end-user constraints, depending on individual Service Level Agreements (SLAs)

and the number and type of simulations requested. The computing resources are dynam-

ically optimized on the fly based on the current load and projected simulation loads.

The initial deployment of this application consists of two main component instances

(excluding the aggregator instance) and then the re-deployment of the application is ex-

amined on 3, 5, and 20 main component instances since the specific application does not

need more nodes for efficient deployment.

To evaluate the performance of the proposed MulticloudFL, we used an experimental

environment of three types of datasets over CPU consumption metrics by using 2 up to 20

Figure 5. CPU Periodically Increasing Load with Fluctuations prediction result.

Information 2023, 14, 662 19 of 28

Information 2023, 14, 20 of 30

Figure 5. CPU Periodically Increasing Load with Fluctuations prediction result.

Figure 6. CPU Polarized Workload prediction result.

The MulticloudFL System copes with the above challenge of dynamically diverse de-

mand. It helps the Computational Fluid Dynamic Simulation application to obtain the

resources proactively to minimize cost and optimize the cost-to-simulation-time ratio

based on end-user constraints, depending on individual Service Level Agreements (SLAs)

and the number and type of simulations requested. The computing resources are dynam-

ically optimized on the fly based on the current load and projected simulation loads.

The initial deployment of this application consists of two main component instances

(excluding the aggregator instance) and then the re-deployment of the application is ex-

amined on 3, 5, and 20 main component instances since the specific application does not

need more nodes for efficient deployment.

To evaluate the performance of the proposed MulticloudFL, we used an experimental

environment of three types of datasets over CPU consumption metrics by using 2 up to 20

Figure 6. CPU Polarized Workload prediction result.

To evaluate the performance of the proposed MulticloudFL, we used an experimental
environment of three types of datasets over CPU consumption metrics by using 2 up to
20 client nodes coming as results of the three simulation cases of the distributed Fluid
Dynamic Simulation application (Figures 4–6). The CPU consumption for each node
(virtual machine) refers to the total CPU core consumption per node of the system. Specific
CPU workload accuracy prediction metrics were used for the evaluation of each simulation
case. There is also the need to validate the stability of the total federated learning model.
Thus, we cannot fit the model just to the training data and expect that would accurately
work on real data it has never encountered before. There is a need for assurance that the
federated model has appropriately received most of its patterns from the actual data, and it
is not picking up too much on the noise, or in other words it is low on bias and variance.
In our experiments, we have used an amount of local data of 2000 CPU consumption (%)
time series points (consumption-time per second) measurements for each node. From that
data, 75% of them are used for training the local gradient node model and 25% for the
validation-test of the local node model. We used most of the data for training purposes
because otherwise, we could risk losing important patterns and trends in the data set,
which in turn could increase the bias-induced error. Moreover, each node used the gradient
computed on the loss function, which was defined on a randomly sampled data subset
(mini-batch) to approximate the real gradient. In other words, the stochastic gradient
descent is used for each node of the federated system and thus the data used for local
training in each iteration are different from node to node. Each local iteration step (epoch)
corresponds to a step of gradient descent where the gradient is computed on a mini-batch
of local training data. This mini-batch changes for every step (epoch) of local iteration
randomly from the local training data.

The usage of test or validation data (inference process) is a very useful technique for
assessing the effectiveness of the federated learning model, particularly in cases where we
need to mitigate overfitting. These kinds of data represent the use of data that the model
has never encountered before.

The environment was set up with the help of Docker Cloud technology in a virtual
architecture [37]. The aggregator server and each client node were implemented by de-
ploying a virtual machine with 4 cores VCPU, 8 GB RAM, and 30 GB Hard Disk Drives
each time.

Information 2023, 14, 662 20 of 28

5.1. Experiment Measurement Setup

We used a multi-cloud and edge computing environment with varying nodes from 2 to
20 and heterogeneous datasets in terms of local data content and local data size. This means
that each node uses for each local iteration a different subset of data (different mini-batch
of data). The aggregator is located on a server separated from these nodes. For the specific
conducted experiments, we used as resource type only the time parameter. Thus, M = 1.
For the values used in our control algorithm, cm and bmcorrespond to the actual time used
for each local update and global aggregation, respectively. We compare our experimental
results with experimental results on a similar type of time regression dataset by using the
Adaptive Federated Learning method already presented in the research work [16].

We use three different types of Datasets and the Stochastic Gradient Descent method
for reading the data as a local solver (optimizer). The three datasets come from the measured
CPU consumptions of the three simulation cases of the Computational Fluid Dynamic
Simulation distributed application. These measurements come from one of the nodes of
the distributed system for each case. The first simulation case gives the “CPU Increasing
Load with Spikes” results, which are quite anomalous fluctuations of CPU workload with
constantly increasing spikes (Figure 4). The related metric results are shown in Table 2 for
further evaluation. The second simulation case presents the “CPU Periodically Increasing
Load with Fluctuations prediction result”, which refers to very abrupt fluctuations of CPU
workload (Figure 5) and its related metrics are given in Table 3. Finally, the last simulation
case gives data for CPU workload, which is presented in Figure 6 “CPU Polarized Workload”
and the related results metrics are given in Table 4. For the specific data type, CPU
consumption refers to periodic CPU workload fluctuation between a minimum (0%) and a
maximum value (100%).

For all the datasets, the mini-batch sampling uses the same initial random data source
at all nodes, which means that when the datasets at all nodes are of the same data type,
the mini-batches at all nodes are also identical in size in the same iteration. The model
that is used as a loss function in our SGD comes from the LSTM algorithm [28]. The data
distribution to our clients (nodes) is random and with various data sizes and data contents
for each of them.

Table 2. CPU Increasing Load with Spikes—prediction accuracy metrics.

No of Nodes N = 2
[16]

N = 2
MulticloudFL

N = 3
[16]

N = 3
MulticloudFL

N = 5
[16]

N = 5
MulticloudFL

N = 20
[16]

N = 20
MulticloudFL

MAE 0.047440 0.042696 0.043762 0.041137 0.043922 0.041287 0.0449 0.0429

MSE 0.005175 0.004197 0.004580 0.004031 0.004571 0.003977 0.0047 0.0041

RMSE 0.047440 0.042696 0.043763 0.041138 0.043922 0.041287 0.04477 0.042138

MAPE 25.946501 21.795061 22.8357 20.55213 22.827179 20.31619 21.827179 20.33

SMAPE 21.018166 18.706168 19.267344 17.91863 19.170655 17.82871 19.12 17.9

Table 3. CPU Periodically Increasing load with fluctuations—prediction accuracy metrics.

No of Nodes N = 2
[16]

N = 2
MulticloudFL

N = 3
[16]

N = 3
MulticloudFL

N = 5
[16]

N = 5
MulticloudFL

N = 20
[16]

N = 20
MulticloudFL

MAE 0.034889 0.029656 0.031341 0.029931 0.033381 0.032714 0.0337 0.0323

MSE 0.001949 0.001735 0.001749 0.001723 0.001978 0.001969 0.00199 0.001969

RMSE 0.034889 0.029656 0.031178 0.029931 0.040524 0.039714 0.041 0.0399

MAPE 56.295043 52.35439 62.452406 59.95431 51.151822 46.03664 51.22 47.037

SMAPE 25.119926 23.86393 23.688836 23.21506 26.845978 25.50368 26.9876 26.0001

Information 2023, 14, 662 21 of 28

Table 4. CPU Polarized Workload—prediction accuracy metrics.

No of Nodes N = 2
[16]

N = 2
MulticloudFL

N = 3
[16]

N = 3
MulticloudFL

N = 5
[16]

N = 5
MulticloudFL

N = 20
[16]

N = 20
MulticloudFL

MAE 0.033437 0.032434 0.035118 0.028446 0.034642 0.027714 0.035 0.028713

MSE 0.011076 0.010966 0.012115 0.011389 0.011651 0.010952 0.0117 0.01123

RMSE 0.034141 0.032434 0.034690 0.028446 0.034643 0.027715 0.03567 0.028815

MAPE 16181355 14725033 18406291 13859375 19496125 12087598 19556125 12197598

SMAPE 103.2559 102.2234 104.0340 101.9534 105.251958 102.0944 106.251958 103.0944

The control parameters used in the configuration file of our multi-cloud edge FL
system are as follows. We use search range parameter γ = 10, we set τmax = 100 (maximum
τ value), the control parameter is set to ϕ = 0.01 for the LSTM algorithm [28] that is used in
the loss function and the gradient descent step size is set to n = 0.1. This value of learning
rate was found to be the optimum after many trial and error efforts giving that optimum
performance. Moreover, the resource (i.e., time used) budget for our experiments is set
to R = 15 s. The parameter for denoting that all data should be read by using stochastic
gradient descent is also set to yes as already explained. The number of Data Points used
in total in MulticloudFL is 2000 from where the various random mini-batches of data
come from.

One major parameter in our setup is the data distribution in different nodes. Regarding
the distribution settings, we followed a combined method of uniform and non-uniform
data distribution cases. This means that data samples with the first half of the labels are
distributed to the first half of the nodes where each node has uniform information. The
other samples are distributed to the second half of the nodes with data that have the same
label in each node. This represents the case where each node has non-uniform information
because the entire dataset has samples with multiple different labels. To be more specific,
each time that there are more labels than nodes, each node may have data with more than
one label, but the number of labels at each node is no more than the total number of labels
divided by the total number of nodes rounded to the next integer.

In our setup, we used specific hyperparameters for our model: a dense regression
deep learning network with 50 neurons (one LSTM hidden layer), a time distributed Dense
Layer, and a dropout layer (output) with a rate equal to 0.2. For the time-distributed Dense
Layer, we process 60 time steps of the input sequence at a time. The learning rate as already
stated came after many trials to be equal to 0.1, which is an optimum value giving a low
global loss function and convergence of the algorithm. Moreover, an optimization with
adaptive moment estimation is used.

5.2. Experiment Measurement Results and Analysis

In the experiments shown in this section, CPU consumption metrics are used from
various client nodes to give an accurate prediction of future CPU consumption (workload).
Therefore, after the training of the Total FL algorithm, there is a comparison between the
Inference results (Predicted green lines in the figures) and the Real expected results (Actual
Test orange lines). We adopt the Mean Absolute Error (MAE) [38], Mean Squared Error
or Loss [39] (MSE), Root Mean Squared Error (RMSE) [40], Mean Absolute Percentage
Error (MAPE) [41], and Symmetric Mean Absolute Percentage Error (SMAPE) [42] to give
an overview of the accuracy achieved for each data type case (n = number of nodes,yi
is the pragmatic value (orange lines in the following figures), ŷp is the predicted value
(green lines)):

MAE =
1
n
×

n

∑
i=1

∣∣∣yi − ŷp

∣∣∣ (14)

MSE =
1
n
×

n

∑
i=1

(
yi − ŷp

)2
(15)

Information 2023, 14, 662 22 of 28

RMSE =

[
1
n
×

n

∑
i=1

(
yi − ŷp

)2
]1/2

(16)

MAPE =
100%

n
×

n

∑
i=1

∣∣∣∣∣ ŷp − yi

yi

∣∣∣∣∣ (17)

SMAPE =
100%

n
×

n

∑
i=1

∣∣∣ŷp − yi

∣∣∣(∣∣∣ŷp

∣∣∣+ |yi|
)

/2
(18)

We examined three types of Datasets: one that contains CPU consumption patterns
with increasing spikes, another dataset with periodic fluctuations of CPU consumption,
and a third case where a polarized CPU consumption pattern is present. All the datasets
refer to CPU consumption (workload) metrics gathered from each node of our Multicloud
FL Computing system. For each of the Dataset types, we measured the accuracy by using
the above equations giving a visualization graph. For each experiment conducted, we
make a comparison with the case with no Client Selection in the Adaptive Federated
Learning Algorithm and with non-Deep Learning local loss function (as dictated by [16])
and calculated the differences as already stated in previous Section 5.1.

Additionally, as described already in Section 3.3 for the Control Algorithm and re-
garding the time complexity and time management we can argue that, when we have an
unlimited time budget, it is always optimal to set τ = 1 and perform global aggregation after
every step of local update. However, when the time resource is limited, the training will be
terminated after a finite number of iterations, thus the value of T is finite. Of course, the
number of nodes that are excluded for the global aggregation influences the total execution
time of the FL algorithm and is expected to reduce it. Comparisons of the current work
of this paper with the respective time execution results of work [16] are presented later in
this section.

The first type of Dataset gives us the following results by applying the Client Partici-
pation Adaptive Federated Learning System (MulticloudFL system) with Deep Learning
Regressive (LSTM) local loss functions running at each node locally. We use 2–20 nodes and
1 aggregator server for CPU Increasing Load with Spikes. The specific dataset as explained
before concerns low-phi Computational Fluid Dynamic Simulation:

In Table 5, the above-mentioned results of MulticloudFL show improved outcomes
(decreased loss functions) against the metric results of [16] in which there is no Client
Selection Adaptive Federated Learning Algorithm participation and there is no use of Deep
Learning local loss function.

Table 5. Comparison % metrics values for CPU Increasing with Load Spikes.

Number of Nodes N = 2 N = 3 N = 5 N = 20

MAE −10% −6% −6% −4%

MSE (loss) −18.9% −12% −13% −12%

RMSE −10% −6% −6% −5%

MAPE −16% −10% −11% −6%

SMAPE −11% −7% −7% −6%

The second type of Dataset that we used for our experiments is the CPU Periodically
Increasing Load with Fluctuations which provided the following results. The specific
dataset concerns hi-fi Computational Fluid Dynamic Simulation Case:

In Table 6, the above-mentioned CPU consumption results of MulticloudFL present
improved outcomes (decreased loss functions) against the metric results of [16] in which

Information 2023, 14, 662 23 of 28

there is no Client Selection Adaptive Federated Learning Algorithm participation and no
use of Deep Learning local loss function.

Table 6. Comparison % metrics values for CPU Periodically Increasing load with fluctuations.

Number of Nodes N = 2 N = 3 N = 5 N = 20

MAE −15% −4.5% −2% −4.1%

MSE (loss) −11% −1.5% −0.5% −1%

RMSE −15% −4% −2% −2.6%

MAPE −7% −4% −10% −8%

SMAPE −5% −2% −5% −3.6%

The third type of Dataset refers to CPU Polarized Workload, which comes from an
application simulation case of a combination of the two already mentioned (hi-fi and low-fi)
giving the following results:

In Table 7, the above-mentioned CPU consumption results of MulticloudFL present
improved outcomes (decreased loss functions) against the metric results of [16].

Table 7. Comparison % metrics values for CPU Polarized Workload.

Number of Nodes N = 2 N = 3 N = 5 N = 20

MAE −3% −19% −20% −17%

MSE (loss) −1% −6% −6% −4%

RMSE −5% −18% −20% −19%

MAPE −9% −20% −38% −37%

SMAPE −1% −2% −3% −2.9%

Regarding the training time execution results, in order to evaluate the final model
weights set, we compare the various time metrics among the two approaches (MulticloudFL
and [16]). The number of nodes varies from 2 to 20 for each of the three different dataset
types already described. We may see the following three graphs (Figures 7–9 where time is
given in minutes on the vertical axis (Y) and the number of FL Client nodes is given on the
horizontal axis (X)):

Information 2023, 14, 25 of 30

MAPE −9% −20% −38% −37%

SMAPE −1% −2% −3% −2.9%

Regarding the training time execution results, in order to evaluate the final model

weights set, we compare the various time metrics among the two approaches (Mul-

ticloudFL and [16]). The number of nodes varies from 2 to 20 for each of the three different

dataset types already described. We may see the following three graphs (Figures 7–9

where time is given in minutes on the vertical axis (Y) and the number of FL Client nodes

is given on the horizontal axis (X)):

Figure 7. CPU Periodically Increasing Load with Spikes in time executions results (current work

and work of [16]).

Figure 8. CPU Periodically Increasing Load with Fluctuations in time execution results (current

work and work of [16]).

0

2

4

6

8

10

12

14

16

18

2 Clients 3 Clients 4 Clients 5 Clients 20 Clients

CPU Periodically Increasing Load with Spikes

Work of Wang, 2019. Current Work

0

5

10

15

20

2 Clients 3 Clients 4 Clients 5 Clients 20 Clients

CPU Periodically Increasing Load with
Fluctuations

Work of Wang, 2019. Current Work

Figure 7. CPU Periodically Increasing Load with Spikes in time executions results (current work and
work of [16]).

Information 2023, 14, 662 24 of 28

Information 2023, 14, 25 of 30

MAPE −9% −20% −38% −37%

SMAPE −1% −2% −3% −2.9%

Regarding the training time execution results, in order to evaluate the final model

weights set, we compare the various time metrics among the two approaches (Mul-

ticloudFL and [16]). The number of nodes varies from 2 to 20 for each of the three different

dataset types already described. We may see the following three graphs (Figures 7–9

where time is given in minutes on the vertical axis (Y) and the number of FL Client nodes

is given on the horizontal axis (X)):

Figure 7. CPU Periodically Increasing Load with Spikes in time executions results (current work

and work of [16]).

Figure 8. CPU Periodically Increasing Load with Fluctuations in time execution results (current

work and work of [16]).

0

2

4

6

8

10

12

14

16

18

2 Clients 3 Clients 4 Clients 5 Clients 20 Clients

CPU Periodically Increasing Load with Spikes

Work of Wang, 2019. Current Work

0

5

10

15

20

2 Clients 3 Clients 4 Clients 5 Clients 20 Clients

CPU Periodically Increasing Load with
Fluctuations

Work of Wang, 2019. Current Work

Figure 8. CPU Periodically Increasing Load with Fluctuations in time execution results (current work
and work of [16]).

Information 2023, 14, 26 of 30

Figure 9. CPU Polarized Workload time executions results (current work and work of [16]).

Regarding the above results on Figures 7–9, we can say that the current work for all

the dataset types, and all the number of nodes give slightly better (smaller) time execution

training time which means better time resource efficiency of the algorithm.

5.3. Discussion

Concluding the results from all dataset types, it seems that Tables 2–4 present a better

performance regarding the MAE metric values for MulticloudFL from 3% up to 20% com-

pared to the MAE metric measured values of the adaptive federated learning system of

the work [16]. The specific metric expresses the results of measuring the difference be-

tween two continuous time variables: the actual CPU consumption and its predicted

value. We can see that the CPU-polarized workload gives better MAE values than those

given for CPU-increasing load and CPU-increasing load with spikes because in CPU-po-

larized workload the predicted and actual values are extremely close to each other with-

out any peculiar or outlier behavior of observed actual data. In other words, MAE gives

less weight to outliers and performs better when they do not exist [43].

For MSE (loss definition) and RMSE metrics, there is also an improvement in the

measured values as can be seen in Tables 2–4 for our current MulticloudFL system com-

pared to the measured results of the Adaptive Federated system of work [16]. More spe-

cifically, the improvement varies from 1% up to almost 20% for all dataset types. This is

an expected outcome since our client selection algorithm copes effectively with client data

that cause high local loss values during the training process, such as the spikes do. These

loss values are excluded during the total FL process. Therefore, specifically for the dataset

of CPU Increasing load with spikes, better results have been observed than the other two

dataset types. The same stands for RMSE, which is sensitive to extreme values as well.

Following the same concept, MAPE is quite sensitive to outliers and peculiar data graphs

and performs better in their absence [43–45]. We find from the results that all three work-

load datatypes provide improved results that vary from 1% to 38% in comparison to the

measured results of the Adaptive Federated system of work [16] with CPU Polarized

Workload dataset giving better MAPE results. This is due to the fact that it does not con-

tain any outliers. Nevertheless, it is widely known from [43,45,46], that SMAPE is very

sensitive and depends heavily on the level of time series and on the existence of extremely

small actual values (close to zero). This is why we observe worse performance both for

CPU Polarized Workload and CPU Increasing Load with Fluctuations for the SMAPE ac-

curacy metric. The first datatype of CPU Increasing Load with Spikes does not include

many CPU consumption values close to zero and performs better in terms of SMAPE.

0

2

4

6

8

10

12

14

16

18

2 Clients 3 Clients 4 Clients 5 Clients 20 Clients

CPU Polarized Workload

Work of Wang, 2019. Current Work

Figure 9. CPU Polarized Workload time executions results (current work and work of [16]).

Regarding the above results on Figures 7–9, we can say that the current work for all
the dataset types, and all the number of nodes give slightly better (smaller) time execution
training time which means better time resource efficiency of the algorithm.

5.3. Discussion

Concluding the results from all dataset types, it seems that Tables 2–4 present a
better performance regarding the MAE metric values for MulticloudFL from 3% up to 20%
compared to the MAE metric measured values of the adaptive federated learning system of
the work [16]. The specific metric expresses the results of measuring the difference between
two continuous time variables: the actual CPU consumption and its predicted value. We
can see that the CPU-polarized workload gives better MAE values than those given for
CPU-increasing load and CPU-increasing load with spikes because in CPU-polarized
workload the predicted and actual values are extremely close to each other without any
peculiar or outlier behavior of observed actual data. In other words, MAE gives less weight
to outliers and performs better when they do not exist [43].

Information 2023, 14, 662 25 of 28

For MSE (loss definition) and RMSE metrics, there is also an improvement in the
measured values as can be seen in Tables 2–4 for our current MulticloudFL system compared
to the measured results of the Adaptive Federated system of work [16]. More specifically,
the improvement varies from 1% up to almost 20% for all dataset types. This is an expected
outcome since our client selection algorithm copes effectively with client data that cause
high local loss values during the training process, such as the spikes do. These loss
values are excluded during the total FL process. Therefore, specifically for the dataset
of CPU Increasing load with spikes, better results have been observed than the other
two dataset types. The same stands for RMSE, which is sensitive to extreme values as
well. Following the same concept, MAPE is quite sensitive to outliers and peculiar data
graphs and performs better in their absence [43–45]. We find from the results that all three
workload datatypes provide improved results that vary from 1% to 38% in comparison to
the measured results of the Adaptive Federated system of work [16] with CPU Polarized
Workload dataset giving better MAPE results. This is due to the fact that it does not contain
any outliers. Nevertheless, it is widely known from [43,45,46], that SMAPE is very sensitive
and depends heavily on the level of time series and on the existence of extremely small
actual values (close to zero). This is why we observe worse performance both for CPU
Polarized Workload and CPU Increasing Load with Fluctuations for the SMAPE accuracy
metric. The first datatype of CPU Increasing Load with Spikes does not include many CPU
consumption values close to zero and performs better in terms of SMAPE.

Generally speaking, the results in the current work show an increase in the prediction
accuracy in comparison to previously presented research works [9,16,18] as explained
before. The use of Deep Learning local loss functions in combination with the selection
methods presented in previous sections is an innovative approach that has not been used in
previous works [19,21,25]. It is important to note that the convergence time seems to be also
improved compared to work [16] since only the selected clients are taken into consideration
in every global iteration. Finally, we should mention that the proposed methods for
time regressive type of problems presented in this work are freshly introduced providing
improved and accurate predictions. Thus, it is going a step further from the current
SOTA, which usually offers prediction improvements performed for data classification
problems [11,16,22]. Last but not least, our current work gives better time execution training
time meaning better time resource efficiency of the total algorithm.

Nevertheless, despite the many advantages of the current work, we can detect some
limitations, especially regarding the process of multi-cloud synchronous federated learning.
One significant limitation is that the total FL model does not consider participants who can
join halfway through the training process (i.e., training already in progress). Asynchronous
communication is proposed to resolve that issue and improve the scalability and efficiency
of the FL approach. Moreover, another limitation seems to be the convergence of the model
based on the fine-tuning of its hyperparameters. This process depends on the experience of
the engineer who designs the model that needs to take into account many trade-off tunings
such as the convergence with the time execution.

6. Conclusions

Federated learning methods were originally proposed to enable clients to collabora-
tively train a machine learning model while ensuring privacy for each cloud client node.
In this paper, we focus on the gradient-descent-based federated learning algorithm that
includes both local updates using Deep Learning local loss functions and global aggrega-
tion techniques. After applying the global aggregation techniques, we exclude cloud node
clients that may deteriorate the prediction accuracy and the performance of the system. A
control algorithm is also used to achieve the optimal frequency between local updates and
global aggregations to obtain a global minimum loss value under specific resource con-
straints. Using various types of experimental datasets, we presented an improvement from
3% up to 38%, in terms of prediction accuracy in comparison to related methods presented

Information 2023, 14, 662 26 of 28

in previous works [16]. Both iid and non-iid dataset scenarios have been investigated on
the mentioned experimental results.

Nevertheless, some limitations already mentioned in the previous section exist, and
they relate to: (i) potential participant nodes that may join halfway through the learning
process and (ii) potential scalability issues that may arise due to the synchronous way of
communication among the participating clients. An asynchronous mode of communication
may be examined in the future as a possible improvement of the current work.

In future work, we will also examine possible encryption methods that may apply
to the trained local model parameters that are exchanged among cloud clients and the
central cloud servers of the FL system to avoid man-in-the-middle attacks, data leakages,
or other similar cyberattacks. Moreover, there could exist a trustworthy federation schema
based on various concepts such as the trust scores of various nodes of the FL system in a
safe network [46,47]. The importance of the above observations motivates the following
open questions:

• How can we protect our FL system from malicious participants who may send incorrect
or malicious model parameters to falsify the learning global aggregation process?

• Can we set up our MulticloudFL in a blockchain-trustworthy network?
• Can we consider, in the MulticloudFL client selection, process any trust score metrics

as criteria for node selection in the global model aggregation process?
• How may security issues of edge devices or edge servers decrease the accuracy predic-

tions of the FL multi-cloud system?

The above questions are challenges for future tasks that could elaborate and enhance
the presented system.

Author Contributions: Initial idea and design of the paper V.-A.S., Y.V. and G.M.; First draft of paper
V.-A.S.; Federated Learning Architecture Overview V.-A.S., Y.V. and G.M.; Related work analysis,
V.-A.S., Y.V. and G.M.; Research methodology V.-A.S., Y.V. and G.M.; Algorithm Analysis and Design
V.-A.S.; Implementation of Algorithm V.-A.S.; Experiment Results Analysis and Evaluation V.-A.S.,
Y.V. and G.M.; Final evaluation V.-A.S., Y.V. and G.M.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the EU’s Horizon research and innovation programme under
grant agreement No. 101070516 NebulOuS project. The authors would like to thank the partners of
the Nebulous project (https://www.nebulouscloud.eu/ (accessed on 7 December 2022) and especially
ICON for the introduced pilot demonstrator that inspired our experimentation approach. This work
reflects only the authors’ view, and the European Commission is not responsible for any use that may
be made of the information it contains.

Data Availability Statement: Data can be found from the related cases described: https://nebulouscloud.
eu/use-cases/ (accessed on 24 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alahakoon, D.; Nawaratne, R.; Xu, Y.; De Silva, D.; Sivarajah, U.; Gupta, B. Self-Building Artificial Intelligence and Machine

Learning to Empower Big Data Analytics in Smart Cities. Inf. Syst. Front. 2020, 25, 221–240. [CrossRef]
2. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.; Makaya, C.; He, T.; Chan, K. When edge meets learning: Adaptive control for

resource-constrained distributed machine learning. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer
Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 63–71. [CrossRef]

3. Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.-C.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge
Networks: A Comprehensive Survey. IEEE J. Commun. Surv. Tutor. 2020, 22, 2031–2063. [CrossRef]

4. Sittón-Candanedo, I.; Alonso, R.S.; Rodríguez-González, S.; Coria, J.A.G.; De La Prieta, F. Edge Computing Architectures in
Industry 4.0: A General Survey and Comparison. In Proceedings of the SOCO 2019: 14th International Conference on Soft
Compu-ting Models in Industrial and Environmental Applications, Seville, Spain, 1 May 2019; pp. 121–131. [CrossRef]

5. Konecny, J.; McMahan, H.B.; Ramage, D.; Richtarik, P. Federated optimization: Distributed machine learning for on-device
intelligence in Machine Learning. arXiv 2016, arXiv:1610.02527.

6. Konecny, J.; McMahan, H.B.; Yu, F.X.; Richtarik, P.; Suresh, A.R.; Bacon, D. Federated learning: Strategies for improving
communication efficiency in Machine Learning. arXiv 2016, arXiv:1610.05492.

https://www.nebulouscloud.eu/
https://nebulouscloud.eu/use-cases/
https://nebulouscloud.eu/use-cases/
https://doi.org/10.1007/s10796-020-10056-x
https://doi.org/10.1109/INFOCOM.2018.8486403
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1007/978-3-030-20055-8_12

Information 2023, 14, 662 27 of 28

7. Bdtechtalks: The Security Threat of Adversarial Machine Learning Is Real. Available online: https://bdtechtalks.com/2020/10/
26/adversarial-machine-learning-threat-matrix/ (accessed on 2 April 2020).

8. Chen, Y.; Slawski, M.; Ning, Y.; Rangwala, H. Asynchronous Online Federated Learning for Edge Devices with Non-IID Data.
arXiv 2020, arXiv:1911.02134.

9. Lu, X.; Liao, Y.; Lio, P.; Hui, P. Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing.
IEEE Access 2020, 8, 48970–48981. [CrossRef]

10. Imakura, A.; Inaba, H.; Okada, Y.; Sakurai, T. Interpretable collaborative data analysis on distributed data. Expert Syst. Appl. 2021,
177, 114891. [CrossRef]

11. Fantacci, R.; Picano, B. A Federated Learning Framework for Mobile Edge Computing Nodes. CAAI Trans. Intell. Technol. 2020, 5,
15–21. [CrossRef]

12. Chandola, V.; Banerjee, T.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 20–58. [CrossRef]
13. Martin-Doñas, J.M.; Gomez, A.M.; Gonzalez, J.A.; Peinado, A.M. A Deep Learning Loss Function Based on the Perceptual

Evaluation of the Speech Quality. IEEE Signal Process. Lett. 2018, 25, 1680–1684. [CrossRef]
14. Toulis, P.; Airoldi, E. Asymptotic and finite-sample properties of estimators based on stochastic gradients. Ann. Stat. 2017, 45,

1694–1727. [CrossRef]
15. Srivastava, Y.; MuraliShiv, V.; Dubey, R. A Performance Evaluation of Loss Functions for Deep Face Recognition. In Proceedings

of the 7th National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics, NCVPRIPG, Hubballi,
India, 22–24 December 2019.

16. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.; Makaya, C.; He, T.; Chan, K. Adaptive Federated Learning in Resource Constrained
Edge Computing Systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [CrossRef]

17. Xie, C.; Koyejo, O.; Gupta, I. Asynchronous Federated Optimization. In Proceedings of the OPT2020: 12th Annual Workshop on
Optimization for Machine Learning, Online, 11–12 December 2020; pp. 1–11.

18. Liu, Y.; Yu, J.J.Q.; Kang, J.; Niyato, D.; Zhang, S. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE
Internet Things 2020, 7, 7751–7763. [CrossRef]

19. Qin, Y.; Matsutani, H.; Kondo, M. A Selective Model Aggregation Approach in Federated Learning for Online Anomaly
Detection. In Proceedings of the 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and
IEEE Congress on Cybermatics (Cybermatics), Rhodes, Greece, 20 November 2020.

20. Chen, T.; Giannakis, G.B.; Suny, T.; Yin, W. LAG: Lazily Aggregated Gradient for Communication Efficient Distributed Learning.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8
December 2018.

21. Li, S.; Cheng, Y.; Liu, Y.; Wang, W.; Chen, T. Abnormal Client Behavior Detection in Federated Learning. In Proceedings of the
2nd International Workshop on Federated Learning for Data Privacy and Confidentiality (NeurIPS 2019), Vancouver, BC, Canada,
13 December 2019; pp. 1–7.

22. Ek, S.; Portet, F.; Lalanda, P.; Vega, G. Evaluation of Federated Learning Aggregation Algorithms with Application to Human
Activity Recognition. In Proceedings of the UbiComp-ISWC ‘20: Adjunct Proceedings of the 2020 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable
Computers, Online, 12–17 September 2020; pp. 638–643.

23. Arivazhagan, M.; Aggrarwal, V.; Singh, A.; Choudhary, S. Federated Learning with Personalization Layers. In Proceedings of the
AISTATS 2020: The 23rd International Conference on Artificial Intelligence and Statistics, Online, 26–28 August 2020.

24. Ye, Y.; Li, S.; Liu, F.; Tang, Y.; Hu, W. EdgeFed: Optimized Federated Learning Based on Edge Computing. IEEE Access 2020, 8,
209191–209198. [CrossRef]

25. Nishio, T.; Yonetani, R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In Proceedings of
the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7.

26. Huang, L.; Yin, Y.; Fu, Z.; Zhang, S.; Deng, H.; Liu, D. LoAdaBoost: Loss-based AdaBoost federated machine learning with
reduced computational complexity on IID and non-IID intensive care data. PLoS ONE 2020, 15, e0230706. [CrossRef]

27. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks. In
Proceedings of the 3rd MLSys Conference, Austin, TX, USA, 2–4 March 2020; pp. 1–22.

28. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
29. Hodge, V.; Austin, J. A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [CrossRef]
30. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
31. Definition of AdaGrad Optimizer. Available online: https://optimization.cbe.cornell.edu/index.php?title=AdaGrad (accessed

on 20 April 2020).
32. Definition of RMSProp Optimizer. Available online: https://optimization.cbe.cornell.edu/index.php?title=RMSProp (accessed

on 20 April 2020).
33. Bengio, Y. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
34. Definition and Description of Tensorflow Environments. Available online: https://www.tensorflow.org/ (accessed on 20 April 2020).
35. Definition of Keras Library of Tensorflow. Available online: https://www.tensorflow.org/api_docs/python/tf/keras (accessed

on 20 April 2020).

https://bdtechtalks.com/2020/10/26/adversarial-machine-learning-threat-matrix/
https://bdtechtalks.com/2020/10/26/adversarial-machine-learning-threat-matrix/
https://doi.org/10.1109/ACCESS.2020.2978082
https://doi.org/10.1016/j.eswa.2021.114891
https://doi.org/10.1049/trit.2019.0049
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/LSP.2018.2871419
https://doi.org/10.1214/16-AOS1506
https://doi.org/10.1109/JSAC.2019.2904348
https://doi.org/10.1109/JIOT.2020.2991401
https://doi.org/10.1109/ACCESS.2020.3038287
https://doi.org/10.1371/journal.pone.0230706
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://optimization.cbe.cornell.edu/index.php?title=AdaGrad
https://optimization.cbe.cornell.edu/index.php?title=RMSProp
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras

Information 2023, 14, 662 28 of 28

36. Definition of HDF5 File Format. Available online: https://www.hdfgroup.org/solutions/hdf5/ (accessed on 20 April 2020).
37. Definition and Description of Docker Environments. Available online: https://www.docker.com/ (accessed on 20 April 2020).
38. DeGroot, M.H. Optimal Statistical Decisions; McGraw-Hill Book Co.: New York, NY, USA, 1970; p. 232.
39. Mood, A.; Graybill, F.; Boes, D. Introduction to the Theory of Statistics; McGraw-Hill: New York, NY, USA, 1974; p. 229.
40. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
41. Sungil, K.; Heeyoung, K. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2006, 32,

669–679. [CrossRef]
42. Tofallis, C. A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation. J. Oper. Res. Soc. 2015,

66, 1352–1362. [CrossRef]
43. Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical comparisons. Int. J. Forecast.

1992, 8, 69–80. Available online: https://econpapers.repec.org/RePEc:eee:intfor:v:8:y:1992:i:1:p:69-80 (accessed on 9 February 2021).
[CrossRef]

44. Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [CrossRef]
45. Goodwin, P.; Lawton, R. On the asymmetry of the symmetric MAPE. Int. J. Forecast. 1999, 15, 405–408. [CrossRef]
46. Alkhabbas, F.; Alawadi, S.; Ayyad, M.; Spalazzese, R. ART4FL: An Agent-based Architectural Approach for Trustworthy

Federated Learning in the IoT. In Proceedings of the 8th IEEE International Conference on Fog and Mobile Edge Computing,
Washington, DC, USA, 26–28 June 2021; pp. 1–7.

47. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning Research in Deep Learning; The MIT Press: London, UK, 2016; pp. 475–710.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.hdfgroup.org/solutions/hdf5/
https://www.docker.com/
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1057/jors.2014.103
https://econpapers.repec.org/RePEc:eee:intfor:v:8:y:1992:i:1:p:69-80
https://doi.org/10.1016/0169-2070(92)90008-W
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1016/S0169-2070(99)00007-2

	Introduction
	Related Work
	Research Methodology of Client Participation Adaptive Federated Learning System
	General Flow
	Client Selection Adaptive Federated Learning Algorithm
	Control Algorithm

	Architecture of the System
	Experimental Results
	Experiment Measurement Setup
	Experiment Measurement Results and Analysis
	Discussion

	Conclusions
	References

