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Abstract: In recent years, social platforms have become integrated in a variety of economic, political
and cultural domains. Social media have become the primary outlets for many citizens to consume
news and information, and, at the same time, to produce and share online a large amount of data
and meta-data. This paper presents an innovative system able to analyze visual information shared
by citizens on social media during extreme events for contributing to the situational awareness and
supporting people in charge of coordinating the emergency management. The system analyzes all
posts containing images shared by users by taking into account: (a) the event class and (b) the GPS
coordinates of the geographical area affected by the event. Then, a Single Shot Multibox Detector
(SSD) network is applied to select only the posted images correctly related to the event class and
an advanced image processing procedure is used to verify if these images are correlated with the
geographical area where the emergency event is ongoing. Several experiments have been carried out
to evaluate the performance of the proposed system in the context of different emergency situations
caused by earthquakes, floods and terrorist attacks.

Keywords: deep neural networks; geo-validation; social media; computer vision; visual social data;
natural disasters; feature matching; image classification; event-related images

1. Introduction

Within a relatively short time span, social platforms have intruded into all parts of
life with potentially profound consequences. They have become integrated in a variety of
economic, political and cultural domains and have reconfigured the entire media system,
transforming older forms of communication and changing the information landscape.
Social media, in fact, have become the primary outlets for many citizens to consume news
and information, and, at the same time, to produce and share online content (the so-called
User Generated Content (UGC) and User Distributed Content (UDC)), both in ordinary and
extraordinary times [1]. In this paper, the exploitation of social media content produced
during extreme events, such as natural or manmade disasters, is investigated.

Several studies have demonstrated that social media use rises during extraordinary
situations as people seek immediate and up-to-date news [2], especially when official
sources provide information too slowly or are unavailable. In addition, as the recent
catastrophic events, from the devastating California fires to the Ecuador earthquake, or
the terrorist attacks [3] in Nice (2016), Brussels (2016), Paris (2015–2018), Strasbourg (2018)
or Vienna (2020) have clearly confirmed, social platforms—most notably Twitter and
Facebook—represent the primary place citizens turn to interact with others and spread
first-hand information more quickly than traditional news sources.

During extraordinary situations, social media enable citizens to play at least three roles:
(i) first responders/volunteers; (ii) citizen journalists/reporters; and (iii) social activists [4].
These practices provide an up-to-date picture of what is happening on the ground in a
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specific area, and could represent a useful resource for emergency operators to organize
the rescue operations in a more accurate way. As explained in [5], in fact, oftentimes, indi-
viduals experiencing the event first-hand are on the scene of the disaster and can provide
updates more quickly than traditional news sources and disaster response organizations. In
this sense, some scholars have used the definition of “citizens as sensors”, as non-specialist
creators of geo-referenced information that contribute to crisis situation awareness [6].
Despite a lot of evident potentials of analyzing in real-time visual information coming
directly from the area where the event is in progress, there are also a lot of challenges using
this source of data because in some cases the posts of citizens report untrue data such as
images that refer to previous events [7], images not related to the event described in the
post [8,9], etc.

Given the increasing availability of data and meta-data produced and distributed
online by people affected by disasters, our study aims to develop an innovative system
that enables the use of grassroots information as a source for emergency management. In
particular, it collects and analyses visual data produced and shared on Twitter, a popular
social micro-blogging platform widely spread internationally, for contributing to the general
understanding of what has happened and supporting officials to coordinate and execute
a response.

This paper presents a smart system, called Automatic Social Media Interpretation
System (ASMIS), for the automatic analysis of visual content shared by users on Twitter
during an emergency event (Figure 1). With the support of advanced image processing
techniques and deep learning algorithms, the system is able to automatically select posts
containing visual data which are related to a given type of emergency event (e.g., a flood,
an earthquake, a terrorist attack, etc.). The final goal of the system is to provide to the
emergency operators selected images that, after an automatic geo-validation performed by
a matching procedure with street view data, can be used to have a quick overview of the
event thus better organize the rescue operations.

Figure 1. General overview of the ASMIS system for automatic analysis of visual content shared by
users on Twitter during emergency events.

The ASMIS system presents several novelties compared to the current state-of-the-art
in the field of emergency management systems based on computer vision [10] and social
data [11–15]:

– It exploits not only the keywords used within the tweets, but also the images shared
by users during and immediately after the extreme event, selecting only the most
appropriate ones and discarding those deemed uninformative and useless;

– Contrary to other emergency management systems which are focused only on data
coming from devices controlled by public authority (e.g., police, military, etc.), it uses
social media as an intelligent “geosensor” network to monitor extreme events and to
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create a sort of crowd-sourced mapping which is pivotal to support the coordination
efforts of the humanitarian relief services (i.e., Civil Protection, Red Cross and so on);

– It has been designed by an original pipeline and represents a system that uses data
produced by citizens: (a) to help the authorities to allow a more accurate situational
awareness, (b) to take informed and better decisions during emergencies and (c) to
respond quickly and efficiently.

– The system automatically detects the event class of the posted image and matches its
GPS coordinates with those of the geographical area where the event occurs;

– Since not all posts contain useful images, the system is able to match the input image
with available images acquired from Google Street View Map or local datasets of the
interesting geographical area to select only images correlated with the ongoing event.

The rest of the paper is structured as follows. In Section 2, we will provide a state-
of-the-art overview of the existing emergency management systems based on social data.
In Section 3, we will illustrate the main components of our system and, in Section 4, the
experimental results will be presented.

2. Related Works

Social media and video/photo-sharing applications are playing an increasingly important
role during and in the aftermath of an extraordinary situation. Numerous case studies
show how citizens and public institutions are using them to spread and gather specific
information and to support recovery actions. So far, several systems have been developed
to satisfy emergency management needs by extracting and analyzing the content shared by
users on social media platforms. The development of the so-called “Social Emergency Man-
agement Systems” [16] has represented a real paradigm shift in the literature on this topic
because usually, in the case of disasters, citizens have always been considered as people
to be rescued rather than active participants. Social platforms instead promote a two-way
(or, to be more precise, multi-directional) communication environment, supporting inter-
action between citizens and emergency coordinators, and provide additional perspective
on a certain situation. Moreover, especially when official sources make available relevant
information too slowly, people turned to social media in order to obtain time-sensitive and
unique information [17]. They have changed the information dissemination pathways in
crisis and enabled the ways in which emergencies are tracked to be transformed.

In general terms, the literature reveals how eyewitness content provides an up-to-date
line of communication and offers unique and relevant crisis information such as locat-
ing involved friends, sharing personal safety status, indicating collapsed buildings and
requesting intervention from professionals. Although scholars are now engaging in a
growing volume of research in this field, it should be pointed out that the vast majority
of existing studies and research related to the exploitation of social content for situational
awareness and emergency management purposes is focused on Twitter, probably due
to the specific affordances of the platform [16,17]. Most of the approaches used in these
studies show an event detection mechanism based on the extraction of textual data (see,
for example Ref. [18]) and metadata information, such as time and date of the tweet, GPS
coordinates, URLs shared, etc. (see, for example Ref. [19]), to identify and process messages
coming from the public during a crisis.

One of the most popular platforms centered on a bottom-up approach is Twitci-
dent [20], a Web-based system developed at the Delft University of Technology in the
Netherlands. Twitcident works by first monitoring local emergency broadcasts for an
incident. Then, once an incident is reported, it sifts through local tweets and funnels
helpful logistical information directly to first responders. It cuts through Twitter’s noise,
and focuses on the most relevant aspects of an incident, using specific filters to reveal a
disaster’s location, the amount of damaged reported and if casualties have been suffered.

Another initiative by U.S. Geological Survey (USGS) has developed a platform called
TED (Twitter Earthquake Detector) that can filter place, time and keywords to identify
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possible earthquakes and gather geo-located tweets about shaking, using a short-term-
average, long-term-average algorithm [21].

Havas et al. [22] present an architecture able to integrate user-generated data from
social media and targeted crowdsourcing activities with remotely sensed data (satellite
images). Posted images are not analyzed to verify their truthfulness.

A further system that mines microblogs in real-time is ESA (Emergency Situation
Awareness via Microbloggers), which is able to extract and visualize data related to in-
cidents and to evaluate the impact on the community. In this way, it can equip the right
authorities and the general public with situational awareness [23]. Moreover, a solution has
also been proposed for real-time detection of small-scale incidents in microblogs, based on
a machine-learning algorithm which combines text classification and semantic enrichment
of microblogs [24].

An additional system worth mentioning is AIDR (Artificial Intelligence for Disaster
Response), a platform designed to perform machine learning classification of the tweets
that people post during disasters, using a set of user-defined categories of information
(e.g., “needs”, “damage”, etc.) [25].

Lagerstrom et al. [26] present a system for image classification to support emergency
situation awareness. In particular, the authors investigate image classification in the context
of a bush fire emergency in the Australian state of NSW, where images associated with
tweets during the emergency were used to train and test classification approaches. No
geo-validation has been performed on the analyzed images.

Kumar et al. [27] presents a deep multi-modal neural network for informative Twitter
content classification during emergencies, while Johnson et al. [28] present a study to
evaluate the performance of transfer learning to classify hurricane-related images posted
on Twitter.

One of the main limitations of the majority of existing systems is that they usually
examine the social platform as a stand-alone information source. However, in more recent
times, systems capable of combing grassroots data with official sources of information have
also been developed. For example, Ref. [29] combine Federal Emergency Management
Agency reports with related terms found in tweet messages, while Ref. [30] suggest a rank-
ing and clustering method of tweets called the GeoCONAVI (Geographic CONtext Analysis
for Volunteered Information) approach. The GeoCONAVI system integrates authoritative
data sources with Volunteered Geographic Information (VGI) extracted by tweets and uses
spatio-temporal clustering to support scoring and validation. Nevertheless, it is important
to underline that even in the systems where the geo-social content is integrated with GIS
data from various sources, this accomplishment usually needs an “a posteriori” analysis of
the tweets mostly based on classification [31,32], natural language processing methods [33]
or machine learning techniques [34]. Such “a posteriori” analysis, however, adds critical
time overheads that delay the effective and timely response to an emergency.

The ASyEM (Advanced System for Emergency Management) [16] is able to aggregate
two different kinds of data: (1) text data shared online through Twitter by citizens during
or immediately after the disaster and (2) data acquired by smart sensors (i.e., cameras,
microphones, acoustic arrays, etc.) distributed in the environment. The main limit of
the ASyEM is that it cannot correctly work in the absence of distributed sensors in the
environment’s area. The main severe restriction is that most existing systems based on
tweet mining do not take into account visual items (images, video, etc.), an integral and
significant category of content shared by users to convey a richer message [35]. Visual
items in fact are particularly important in the context of disaster management because
they give precious additional insights into the event by providing to the operators a more
accurate situational awareness of the event. To overcome this limitation, we developed the
ASMIS system, which takes advantages of the existing works and enriches them through
the collection and automated analysis of images shared on Twitter. Moreover, through
geo-location validation of images, the system is able also to discharge uninformative and
useless images.
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3. The Automatic Social Media Interpretation System (ASMIS)

The ASMIS system has been expressly designed for situational awareness applications.
In particular, it is focused on the analysis of visual content shared by users on Twitter during
an emergency situation or a crisis event, and it is able to classify the type of event and
perform geo-location validation. The choice to focus on Twitter is based on several reasons
strictly linked to the platform’s specific affordances: the instantaneous nature of tweets,
which makes the platform particularly suitable for rapid communications; the architecture
of the platform and some specific technical features, which contribute to a widespread
dissemination of information (i.e., the possibility to share content using hashtags (#), an
annotation format to indicate the core meaning of the tweet through a single keyword and
to promote focused discussions, even among people who are not in direct contact with
each other); the prevailing public nature of the great majority of the accounts, which makes
it easier to conduct analyses that aim to retrace the spread of communication flows within
the platform and makes the use of tweets for research purposes less critical from an ethical
point of view; and the fact that the platform provides an API (Application Programming
Interface) that can be used to access, retrieve and analyze data programmatically.

The logical architecture of the ASMIS system is illustrated in Figure 2. The system
is able to present to the operator accurate information on how the event is evolving by
collecting useful visual data shared by users from the emergency area (and automatically
discharging uninformative ones). The ASMIS system is composed of two main modules:
(a) the Post Data Retriever (PDR) and (b) the Image Data Analyzer (IDA). The PDR module
is in charge of retrieving the content shared by users on Twitter during a given emergency
event. It uses specific APIs to establish a connection with the social platform in order to
extract in real-time the data stream produced by the users.

Figure 2. Logical architecture of the ASMIS system for automatic analysis of visual content shared
by users on Twitter, including the PDR (Post Data Retriever) module and the IDA (Image Data
Analyzer) module.

The IDA module uses a deep neural network, an improved version of the Single
Shot Multibox Detector (SSD) network [36], for classifying all the input images, thus
discarding uninformative or meaningless images. The principal advantage of the use of
this network in the proposed system is to avoid the use of datasets containing tens of
thousands of training images (for certain types of disaster events, many images are not
always available for network training) and to avoid the explicit selection and computation
of a set of visual features since these are effectively computed in the SSD layers. The features
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for the classification layer are automatically computed by the convolutional components,
thus avoiding the problem of searching for the best feature class, and providing a new
class of features especially suited for a specific task. The SSD is trained by using images
retrieved from past events. Then, it is applied to classify each input image retrieved from
social user posts in order to select images belonging to the class of the ongoing emergency
event. Afterwards, the classification process is followed by an image analysis process in
which the geo-located images retrieved from the social platform are compared with the
corresponding images obtained from Google Street View or from other available databases
at the same geographical coordinates. Interesting features such as SIFT, SURF, ORB and
FAST [37–40] have been analyzed in order to find the more suitable for the image matching
process. Finally, selected images combined with the most relevant information contained
in the post (e.g., the text shared, the user’s profile, etc.), are sent to emergency operators
in order to have a better overview and awareness of what is happening in the observed
geographical area.

3.1. Post Data Retrieval

The PDR module is in charge of extracting interesting posts shared by users on Twitter.
The module is hosted on an Apache server and implemented with the Python programming
language. An overview of the logical architecture of the PDR module is shown in Figure 3.

Figure 3. Logical architecture of the PDR module.

In order to analyze the images shared by users related to an emergency event, the
basic workflow of the PDR module can be thought of as follows: a pattern P is a vector
containing the GPS coordinate of the center of a geographical circular area Ci (where the
event occurs) and radius Ri, and a set of specific keywords related to the emergency event
(e.g., the keywords flood, inundation, river, alert, etc. can be considered as representative
for the type of event [16]) is given in input to the system by the operator.

P = {[GPS([longitude, latitude], Ri)], [ f lood, inundation, . . . . . .]} (1)

A set of significant keywords for specific emergency events has been created consid-
ering other works in this research field; for example, during the emergency event that
occurred in Florida due to the “Irma” Hurricane, the most popular keywords used by users
on Twitter were “HurricaneIrma”, “IrmaHurricane”, Irma2017”, etc.

The crawler extracts from the social stream only the posts containing one of the
input keywords and geolocation information related to the geographical area Ci. Spider
software (i.e., an automatic software tool able to analyze the World Wide Web typically
for indexing purposes) [16] is configured in such a way that the input stream is filtered
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by taking into account only geo-located posts. By considering the Twitter social platform,
the spider software has been implemented by using Tweepy (Tweepy: http://tweepy.
readthedocs.io (accessed on 2 January 2023)), a Python library for accessing the Twitter
API. According to the Social APIs in use, the selection of a geographical area from which to
extract tweets can be achieved by considering the GPS coordinates of the interested area
where the event is occurring. For example, Twitter requires as input a bounding box of GPS
coordinates [longitude, latitude] corresponding to the bottom-left and the top-right corners
of a rectangular geographical region. Nevertheless, to make this operation easier and the
location of the interesting area more accurate, the PDR module considers a circular region
(with center and radius given by the operator, see Figure 4). All retrieved posts are then
analyzed by a post scanner algorithm which selects only those posts which contain at least
one keyword contained in P. However, the amount of data might be unmanageable. To
allow a quick analysis of the visual data and to avoid the consumption of large amount of
memory, all posts are stored into a graph database. The Neo4J graph database is used as it
is highly scalable and robust [41]. Each post includes all the information regarding the user
profile, the shared text message and all the multimedia content attached.

Figure 4. Example of a rectangular geographical region used by the Twitter social platform and the
proposed circular interesting region.

3.2. Image Data Analyzer

The IDA module is composed of two sub-modules: Image Classifier and Image
Geo-validation (Figure 5). The first one classifies the images retrieved from the PDR
module according to the class of the event they represent. For example, an image which
represents a swollen river should be classified as an image related to a flood event and not
to an earthquake or a fire event. All images, classified as belonging to the interesting class
of event, will be processed by the Image Geo-validation which is in charge of evaluating if
it is meaningful for the given event. An image matching procedure is exploited in order to
find valid matches between input images and images retrieved from Google Street View
or from available local datasets. The goal is to verify if it has really been taken from the
location it shares.

3.2.1. Image Classifier

The image classifier is in charge of selecting images according to the class of interesting
event (Figure 6).

To reach this goal, a SSD network has been used (Figure 7) [42]. The main characteristic
of the SSD network is that, once a model has been chosen, it is truncated before the classifica-
tion layers and additional convolutional feature layers are added at the end of the network.
The size of the additional layers decreases progressively allowing predictions at multiple
scales, and each of them can produce a fixed set of predictions by using convolutional
filters. The applied SSD uses a feed-forward convolutional neural network that produces
a collection of events and a score indicating the presence of event class instances in the

http://tweepy.readthedocs.io
http://tweepy.readthedocs.io
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input image. The shallow network layers are based on a standard deep architecture: the
VGG 31 [43]. In particular, according with the results shown in [44], a model characterized
by 31 layers, learning rate 0.001, max-epoch 400, validation frequency 400 and mini batch
size 256 has been applied to increase sensitivity and accuracy of classification.

Figure 5. Logical architecture of the IDA module with the two main sub-modules: the Image Classifier
and the Image Geo-validation.

Figure 6. The Single Shot Multibox Detector (SSD) network used for event class detection.

Figure 7. The Single-Shot Multibox Detector (SSD) network used for event type classification [37].

A dataset composed of about 4000 images belonging to four event classes (flooding,
earthquake, fire, terrorist attacks) has been created. The Multimodal Crisis Dataset (Crisis-
MMD) [40] has been considered for images belong to the classes of flooding, earthquake
and fire, while regarding the images referring to terrorist attacks these have been collected
from the web and from the Cross-View Time Dataset [45].
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3.2.2. Image Geo-Validation

Images shared by users during an event could be a useful resource for emergency
operators in order to get more detailed information of what is happening in a specific area.
Nevertheless, not all images shared by users are related to the event itself. For example,
Figure 8 shows three different images retrieved from Twitter during the earthquake that
occurred in 2016 in central Italy. These images were collected by the PDR module because
the text shared on the Twitter post included the hashtag #terremoto (#earthquake), which
was one of the keywords given in input to the system to detect images belonging to this
event class.

Figure 8. Three different images retrieved from Twitter during the Italian earthquake in 2016 (#terre-
moto means # earthquake).

It is worth noting that the left image is not related to an earthquake as it represents a
flooding. Instead, the image on the right has the meaning since it refers in some way to the
Italian earthquake although it is not useful for the goal we want to achieve as it does not
represent a public street (the matching with Street View is not possible). Finally, the middle
image is completely related to the event itself and fully reflects the type of images we want
to retrieve. The Image Geo-validation submodule is composed of two main components:
Sequence Image Generator (SIG) and Image Matching (IM) (Figure 9).

The SIG module (Figure 10) exploits geo-located information included in the user’s
post to create a sequence of images acquired with different field of views around the
interesting location. Each single frame—that composes the image sequence—is retrieved
from Google Street View servers (through HTTP GET requests) or from a local dataset.

The SIG module needs as input different parameters to regulate the “quality” of
the frame to retrieve, e.g., the size, the pitch, the zoom, the number of images as well
as the latitude and longitude coordinates. Moreover, the camera of the Google Street
View application is moved in the left or right direction along the vertical axis. In this
way, by moving the camera 40 degrees to the right (or to the left), it is possible to retrieve
respectively 9 images. As a result, the pairwise images are overlapped by about 40% thus
allowing the creation of an image sequence representing the interesting area (Figure 11).
Then, an image matching procedure is applied to compare the image posted by the users
with each single frame that composes the extracted image sequence. In this way, it is
possible to verify if posted images have been effectively taken in that place. At the same
time, it is possible to overcome problems related to the geo-location information attached to
each post. In fact, the position shared by users while posting some content may not always
be accurate due to the fact that the GPS signal is not always available and, in many cases,
the device in use could get the position through a Wi-Fi network or Cell-ID.
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Figure 9. Logical architecture of the Image Geo-validation submodule. It identifies if an image is
retrieved from a true location belongs to the monitored event.

Figure 10. The Sequence Image Generator creates a sequence of images acquired with different field
of views around the interesting location by extracting frames from Google Street View.

Figure 11. An example of the matching procedure between the image posted by the user and the
image sequence extracted from Street View.

The matching procedure extracts from the input image and from the image sequence
specific key points, and it searches for possible correspondences. The Euclidean distance
measure is computed between pairs of key points in order to detect the best candidate image
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among the image sequence extracted from Street View. Moreover, in order to overcome
the problem of outliers, the M-estimator SAmple Consensus (MSAC) [46] is applied to
estimate geometric transformation from matching point pairs. The MSAC is an iterative
method to estimate parameters of a mathematical model from a set of observed data
that contains outliers, when outliers are to be accorded no influence on the values of the
estimates. Among the most diffused techniques which allow local features to be identified
and extracted from an image, several tests have been performed by considering Scale
Invariant Features Transform (SIFT) [38], Speed-up Robust Feature (SURF) [38], Binary
Robust Invariant Scalable Key points (BRISK) [38] and Oriented FAST and Rotated BRIEF
(ORB) [40] descriptors. The goal is to select the best feature descriptor to find robust
matches between images. BRISK and ORB were the worst due to the lower number of
correct matches that could be found. SIFT was the best one considering the number of
features extracted and correctly matched, while SURF showed good results although in
some cases the matches were not very accurate (Figure 12).

Figure 12. Examples of SIFT and SURF keypoint matching on images posted by users. (a,b) SIFT
finds 26 correct matches and SURF finds 3 correct matches and one wrong, (c,d) SIFT finds 23 correct
matches and SURF finds 4 correct matches, (e,f) SIFT finds 27 correct matches and SURF finds
4 correct matches.

4. Experimental Results

Several experiments have been carried out to evaluate each single module which
composes the ASMIS system in the context of different emergency situations caused by
earthquakes, floods, hurricanes, clashes and terrorist attacks. Tests have been classified into
two main groups: (1) tests performed during the event and (2) tests performed after the
event. The proposed system was implemented by using the Python programming language
(3.9.5 version) and OpenCV 3.4.10 framework. The implementation of the SSD network is
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based on Keras, the Python Deep learning API. Finally, the running environment was Intel
Core i9-9900T, 16M cache, up to 4.40 GHz, 64 GB of RAM and a GPU NVIDIA GeForce
1070 Ti [47,48].

4.1. Data Acquisition and PDR Module Performance

We tested the system with about 60 different searches: on average, searches lasted
about 36 h each and were performed considering both disaster events (earthquakes,
floods, etc.) and common places (e.g., famous streets), in order to retrieve the highest
number of images coming from known places. Mainly, posts were retrieved using the
native language of the country where the event occurred although the collection of tweets
in many cases was obtained using the input set of keywords in the English language.

As shown in Table 1, searches allowed collection of about 1.135K tweets on different
types of events, out of which about 38.5% were geo-located. Moreover, the system retrieved
about 129,721 images. In this case, about 64.5% of them were geo-located. As explained
in Section 3.2.2 (Image Geo-validation), we considered both tweets which share GPS
information and tweets which contain the address of the position where the tweet was
shared, although in the latter case they were not always accurate. The matching procedure
is able to correct the location error by searching the best match into a set of contiguous
images extracted from Street View.

Table 1. General overview of results obtained by testing the system with 60 searches.

Total Number of Searches Total Number of Tweets Total Number of GL Tweets Total Number of Images Total Number of GL Images

60 1135K 437K 129K 83K

Table 2 shows the type, the location, the search duration, the number and the multi-
media content of tweets retrieved by the PDR module by analyzing four different events
occurring in 2015: the flooding in the French Riviera, the clashes in Milan during the
Expo, the terrorist attacks in Paris and Hurricane Patricia occurring in Mexico. The system
retrieved 10,135 images of which 4578 geo-located.

Table 2. Description of the considered events and the related parameters. First column indicates
the name of the event, the second and third columns indicate, respectively, the location and the
geographical areas, the fourth column the search time in hours, and the fifth and sixth columns
indicate, respectively, the number of collected tweets containing images and the number of geo-
located tweets with images.

Event Type Location Geographical Area Search Time (Hour) Number of Tweets Geolocated Tweets

Flood France Riviera France 36 25,225 5411

Clash Milan Italy 24 9635 8421

Terrorist
attack Paris France 36 99,932 91,526

Hurricane Mexico Mexico 24 32,456 3256

First, we can see how the total number of tweets retrieved does not depend on the
duration of the search. For example, comparing the terrorist attacks and the Riviera flood
events that occurred in France, we can see that the last one collected a lower number of
tweets although the duration of the search was the same. Another observation could be
related to the type of event: in fact, the number of shared tweets depends on the type and
the gravity of the event. In addition, the geographical area where the event occurs may
also affect the results. Twitter is one of the most popular and widespread social platforms
although there are some regions where it is not completely used. Finally, results depend
also on the set of keywords which are used as input to the search: if generic keywords are
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used, the retrieved tweets could be inaccurate. For example, if the keyword “earthquake”
is used as input to search for an earthquake event, it is almost certain that the search will
give as output a lot of tweets although they could include unnecessary information. In
order to face these problems, ASMIS is able to retrieve only tweets which describe the
event. For this purpose, the hashtag trend is considered in order to optimize the ongoing
searches. In order to compute the hashtag trend, the histogram of the most used hashtag
shared in posts associated with flooding events is considered. For example, in the case
of flooding events in Italy we used a set of hashtags opportunely selected by considering
the analysis performed on a dataset of about 300,000 tweets posted by users during past
flood events in Italy (i.e., the flood occurring in Sardinia in 2013, in Genoa in 2011 and
several others) and considered as representative for floods. The set was composed by
the following hashtags, namely #emergenza, #allertameteo and #maltempo (in English
#emergency, #weatheralert, #badweather).

4.2. IDA Module Performance

The evaluation of the IDA module was performed in three steps. In the first, the event
classification accuracy was computed by using random sets of images coming from the
four different events as in Table 2. In the second, all data of the considered emergency
situations (as exploited in Table 1) are analyzed to measure the effectiveness of the system.
Finally, the performances of the image matching procedure in terms of positive match, false
matches and negative matches are computed.

The following well-known metrics were computed to highlight the goodness of the
obtained results, i.e., Precision (P), Recall (R), F-measure (F1) and Accuracy (A):

P =
TP

(TP + FP)

R =
TP

(TP + FN)

F1 =
2RP

(P + R)

A =
TP + TN

(TP + TN + FP + FN)

where TP, TN, FP and FN represent true positive, true negative, false positive and false
negative, respectively. In this context, P points out the level of probabilistic proximity
between a recognized event and its membership class and R highlights the sensitivity level
of the event classification; finally, F1 and A measure, respectively, the effectiveness and the
accuracy of the event classifier.

By considering the images of all selected emergency situations as in Table 1, the
IDA module shows good classification performance (TP = 90,827, TN = 9657, FP = 16,345,
FN = 12,892): P = 0.84, R = 0.87 and F1 = 0.85. The system reaches an accuracy of A = 0.78.
By considering the images coming from the four different events as in Table 2, the IDA
module shows remarkable classification performance (TP = 7354, TN = 983, FP = 975,
FN = 823): P = 0.88, R = 0.90 and F1 = 0.89. The system reaches an accuracy of A = 0.82. In
particular, the following per-event classification results were obtained: (a) flood—P = 0.88,
R = 0.90 and F1 = 0.88; (b) clashes—P = 0.88, R = 0.90 and F1 = 0.89; (c) terrorist attack—
P = 0.89, R = 0.90 and F1 = 0.89; (d) hurricane—P = 0.87, R = 0.89 and F1 = 0.88.

Moreover, it is worth noting that about 40% of the collected tweets have been consid-
ered by the system as geo-located posts and only about 30% of them contains images.

The following keywords have been used during the experiments for the different
classes of events: (a) flooding (#flood, # floods, #flooding, #flashflood, #rain, #weather,
#disaster, #climatecrisis), (b) clashes in Milan (#clashes, #clashesexpo, #violence, #stone,
#protests), (c) terrorist attacks in Paris (#terrorism, #terrorist, #attacks, #paris, #parisat-
tacks, #bataclan, #police), (d) Hurricane Patricia in Mexico (#hurricane, #hurricanepatricia,
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#climatecrisis, #tropicalstorm, #storm, #wake, #disaster, #emergency). By considering the
4578 geo-located images, extracted from geo-located tweets coming from the four different
events as in Table 2, the IDA module shows remarkable image matching performance
(TP = 28,214, TN = 687, FP= 623, FN = 447): P = 0.81, R = 0.86 and F1 = 0.83. The system
reaches an accuracy of A = 0.77.

Considering the processing time required by the IDA module, it is worth noting
that the analysis of a single geo-located tweet containing images requires on the used
computational platform about 5 msec for the classification, and about 100 msec for the
feature extraction and matching process.

In order to show the results of the IDA module, we outline its functioning by analyzing
the tweets during the terrorist attacks in Paris in 2015 (Figure 13). On the evening of
13 November 2015 and precisely between 10.00 and 11.00 p.m., a series of terrorists’ attacks
occurred in the French capital. The attacks, claimed by the Islamic State of Iraq and Syria
terrorism group, was constituted of mass shootings, suicide bombings and hostage-taking
at four locations in Paris. About 130 people were killed by the attackers. The search on the
given event was started in the evening—about an hour after the first attacks—and it lasted
for 24 h. This example is the one that gave the most significant results in terms of number
of images (about 6258) retrieved in 24h.

Figure 13. Some examples of images retrieved on Twitter during terrorist attacks occurring in Paris
(2015) and the corresponding images retrieved from Google Street View. The red X indicates that the
ASMIS system was unable to find a correct match.

Nevertheless, the proposed SSD network classified 1246 images as belonging to the
given event, only 278 of which with GPS coordinates. Considering that the event oc-
curred between 10.00 PM and 11.00 PM, the retrieved images were taken during the night.
Nevertheless, results are very good. The IDA module shows remarkable classification
performance (TP = 985, TN = 145, FP= 63, FN = 53): P = 0.91, R = 0.94 and F1= 0.92 with an
accuracy of A = 0.89 and good image matching performances (TP = 177, TN = 41, FP = 36,
FN = 24): P = 0.81, R = 0.88 and F1= 0.84 with an accuracy of A = 0.78. Plots in Figure 14a,b



Information 2023, 14, 78 15 of 20

show the results obtained by analyzing the images through SIFT and SURF descriptors:
green bars represent true matches while red bars represent false matches (discharged im-
ages). It is worth noting that better results were obtained by using SIFT descriptor. The SIFT
descriptor is able to correctly match 177 images (about 63%). Of the remaining 101 images,
65 were not found even though they represented areas in the event territory and 36 were
correctly discarded as irrelevant to the event.

Figure 14. Results obtained by matching the images using (a) SIFT and (b) SURF descriptors. Green
bars represent true matches while red bars represent false matches (discharged images).

Moreover, analyzing the images that the system discarded, we can explain this behav-
ior due to three significant problems (see Figure 15): (i) many images were taken from the
top of a building thus there were not Street View images which could be used to perform
the matching procedures (left images), (ii) many images captured emergency operators’
cars with flashing lights thus reducing their quality (right image), and finally, (iii) many
images were taken in motion thus they were quite blurry (bottom image).

4.3. Running Example

In order to show the capability of the system to manage an earthquake event, a running
example is pointed out. Several posts from the Twitter platform recorded during the 2018
Italy earthquake (that hit the areas of south Italy) were used to test the ASMIS system by
classifying the disaster event and locating its consequences on a top view map of the area.
In Figure 16, some examples of the images shared by users are shown.

During the event, the PDR module extracted several posts containing images. The
input of the PDR module was an event pattern P composed of the GPS coordinates of a
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geographical area of interest (i.e., the area of Fleri, Zafferana Etnea, Catania) and a set of
keywords, e.g.,

P =
{[

GPS
([

37, 39′, 19N; 15, 5′, 52E
])

, 10 Km
]
, [#terremoto]

}

Figure 15. An example of images retrieved from Twitter during terrorists’ attacks which have not
been correctly matched by the ASMIS system due to low quality.

Figure 16. Some examples of images posted on the Twitter platform during the 2018 Italy earthquake
in Catania area, Sicily.

In particular, 2576 posts were collected by the system: 172 posts contained images
of which 56 with GPS info. All these images are processed in order to classify them and
evaluate if they are meaningful for the event of interest (earthquake). In this regard, each
input image is compared with the corresponding image sequence retrieved from Google
Street View to verify if it has been really taken from the location it shares. The matching
procedure has been able to correctly validate 43 images (about 76%). Of the remaining
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13 images, 7 were not found even though they represented areas in the event territory and
6 were correctly discarded as irrelevant to the event.

Figure 17 presents an example of an image collected from the posts (the Church of
Fleri, Zafferana Etnea, Catania) and the match with the image sequence of the same location.

Figure 17. Result of the matching procedure applied to the image posted by the user and the image
sequence extracted from Street View.

4.4. Discussion

Results obtained by testing the system are very promising. A total number of 60 searches
were conducted with a total of about 1.135K tweets retrieved. Despite only 38.5% of them
being geo-located, the system was able to correctly identify the specific area where a given
event is occurring by analyzing only tweets achieved during the first twenty time windows.
The time window depends on the type of event and is defined by the operator. Moreover,
this behavior can be strictly connected to the type of event analyzed. For example, an
earthquake or a terrorist attack could produce a large number of tweets in a reduced interval
of time. Conversely, a flood or a hurricane event could spread the tweets over a broader
timeframe. An accuracy of about 89% was achieved by analyzing the posts during the
terrorist attacks in Paris in 2015, while an accuracy of about 82% was achieved by analyzing
the images retrieved on four different emergency situations. This means that about eight
images of ten are evaluated as meaningful by the system for each type of event analyzed.

Nevertheless, the system also showed some limitations. The first one is given by
the geo-location information (in particular, addresses) attached to each tweet: in many
cases they were inaccurate thus not allowing the retrieval of the Google Street View image
sequence. In this regard, the retrieved Twitter images were discarded although they could
be significant for the given event. These images are maintained in a local database for
further inspection by operators. Another limitation is related to the characteristics of the
images themselves: the proposed system shows good results when the matching process
occurs with images rich in details and with good resolution [49,50]. On the contrary,
low-quality images are often discarded. Other constraints are related to the perspective of
the images retrieved. For example, if an image is taken from the top of a building, it is very
difficult to find similar Street View images with true matches. Another limitation is related
to the performance of the image analysis procedure. For each image retrieved from Twitter
and the corresponding view retrieved from Street View, the matching procedure provides
a feature extraction and a matching process. As previously explained, we performed
tests using SIFT and SURF descriptors, while ORB and FAST were discarded since they
produce results less accurate. Considering the processing time which includes the features
extraction and matching process, SURF performed better than SIFT [38]. On average, SURF
allowed the processing of an image in just 100 msec, while SIFT descriptor took about
80% more time [39]. Nevertheless, SIFT performed better in terms of number of matches
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finding an average of about 50 matches per image. The number decreased to 15 with the
SURF descriptor.

5. Conclusions

The outcomes emerging from our test scenario highlight the effectiveness of the ASMIS
system and the great opportunities derived from the analysis of the tweets published online
by city dwellers during and in the immediate aftermath of extraordinary events, such as
earthquakes, floods, terrorist attacks, etc. The results are very promising and demonstrate
not only the value of bottom-up communication practices and UGC production, but also
the capability of the system of verifying their trust by matching the visual content shared
within the tweets with the corresponding images retrieved from Google Street View.

In contrast to other emergency management platforms, ASMIS allows potentially
relevant images to be identified and their geo-location validated, if they were taken in a
public space, thus enabling citizens involved in the event to play an active role in all phases
of the emergency. The data extracted from the Twitter platform and matched with the
Google Street View images in fact provide geo-verified information and can be used to
coordinate on-site relief and volunteer activities.

ASMIS tries to overcome some of the main barriers (i.e., inaccuracy and unreliability)
connected to the use of citizen-generated content for gathering information, enhancing
in this way situational awareness and supporting decision-making. In the future, ASMIS
could be further developed with the implementation of other kinds of visual data coming
from different social platforms and messaging applications in order to allow the entire
system to achieve best efficiency. Another possible future improvement of the system could
be to try to match the visual content of discharged tweets with pre-defined labeled data
sets of the same event class in order to acquire additional info. Then, the classification
network can be trained with few-shot learning algorithms able to reduce the complexity of
the training process. Furthermore, it is reasonable to suppose that, as people will acquire
greater digital skills, they will be able to provide more accurate and detailed content and
information, which in turn will ensure greater system reliability and guarantee a more
precise intervention.
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