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Abstract: Sign language is a natural, structured, and complete form of communication to exchange
information. Non-verbal communicators, also referred to as hearing impaired and hard of hearing
(HI&HH), consider sign language an elemental mode of communication to convey information. As
this language is less familiar among a large percentage of the human population, an automatic sign
language translator that can act as an interpreter and remove the language barrier is mandatory. The
advent of deep learning has resulted in the availability of several sign language translation (SLT)
models. However, SLT models are complex, resulting in increased latency in language translation.
Furthermore, SLT models consider only hand gestures for further processing, which might lead to the
misinterpretation of ambiguous sign language words. In this paper, we propose a lightweight SLT
framework, LiST (Lightweight Sign language Translation), that simultaneously considers multiple
modalities, such as hand gestures, facial expressions, and hand orientation, from an Indian sign
video. The Inception V3 architecture handles the features associated with different signer modalities,
resulting in the generation of a feature map, which is processed by a two-layered (long short-term
memory) (LSTM) architecture. This sequence helps in sentence-by-sentence recognition and in the
translation of sign language into text and audio. The model was tested with continuous Indian Sign
Language (ISL) sentences taken from the INCLUDE dataset. The experimental results show that the
LiST framework achieved a high translation accuracy of 91.2% and a prediction accuracy of 95.9%
while maintaining a low word-level translation error compared to other existing models.

Keywords: Indian Sign Language; Inception V3; INCLUDE dataset; LSTM; artificial intelligence;
human–computer interface; natural language processing

1. Introduction

Sign language has always been used by the hearing impaired and hard of hearing
(HI&HH), who form an integral part of society. Both verbal and non-verbal communicators
use signs and gestures at various levels. The difference between these two communicators
is that non-verbal is the only mode for the HI&HH, who use sign language through
combinations of finger movements, hand movements, facial expressions, and body postures.
These gestures are helpful, as they can convey information and express emotions every
day. The outstanding feature of sign language is that it has a dataset based on it, just
as each country has its national language. A few examples are Chinese Sign Language
(CSL), American Sign Language (ASL), and Arabian Sign Language (ArSL). Recently, the
government of India developed a structured and annotated sign language called Indian
Sign Language (ISL). Hence, the phonology of ISL is quite new. Phonology can be made
evident in spoken language, but hand movements and hand orientations [1] are more
subtle in sign language. Furthermore, the ambiguities in sign gestures can be recognised
only if the context is understood.

In [2], the authors mentioned the attitudes and responses of individuals to the HI&HH.
Earlier, the lack of cross-discipline education made it difficult for HI&HH society to improve
itself and become more independent. Based on the census taken in 2011 and updated in
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2016, 2.68 crore people out of a population of 121 crores were found to be disabled [3].
The census report revealed that disabilities are more prominent in rural areas and are
most prevalent in the age group of 10–19 years. Negligence and ignorance has resulted
in little or no effort being taken for the skill development and education of differently
abled populations.

Recently, India’s government has taken steps to enhance the skills of the HI&HH pop-
ulation. The Indian Sign Language Research and Training Centre (ISLRTC) [4] developed
a standard dictionary of 3000 sign words, which was later upgraded to 5000 words. The
dictionary acts as a base to form a nationalised syllabus that can be followed by schools
and educational institutes that train teachers for special education. Online platforms [5]
provide learning opportunities for speech and hearing-challenged students. Educational
institutes teach ISL from the basic to the professional level and educate the differently abled
students and their parents.

The standardised form and easy availability of ISL vastly increased the demand
for its usage. In addition, different training institutes promoted higher education and
employability among the HI&HH, which has necessitated their communication with verbal
communicators. Human translators are currently appointed to remove the language barrier
between the HI&HH and other people. Such dependence can be avoided by introducing
an automatic translator that can learn and understand the signs and then translate them
into a recognisable form. Automatic translators using deep sequential models are available,
but these have not performed outstandingly. As a result, an economical, user-friendly, and
simple translator model is lacking for ISL.

SLT can be modelled using various architectures. If the dataset is simple and small,
image processing methods such as skin segmentation and convex hull algorithm detect
and recognise the signs [6]. As the complexity increases, the SLT can be modelled using
AI models. Deep learning models can understand structured information from multiple
modalities and have been shown to outperform many state-of-the-art techniques [7,8].
Enormous sign language datasets such as the Phoenix RWTH dataset require much more
efficient and attention-based SLT models such as BERT to process them [9,10].

Several factors affect the performance of automatic translator models. As sign lan-
guage is a combination of hand gestures, orientation, facial expressions, and body pose,
overlooking any of these modalities might result in misinterpretation of gestures. Factors
such as lighting, speed, and the signer’s movements affect the translator’s performance.
Most Indian SLT models can only recognise gestures if the signer is static and directly
facing the camera. The distance between the signer and the camera greatly impacts perfor-
mance. An SLT framework addressing multiple modalities is either bulky or requires a long
learning time. Another parameter affecting model performance is sign language ambiguity,
which can be recognised through the previous or succeeding word. In sentences containing
“What time” and “How big”, the term “what” and “how” are represented by the same
hand gesture. The terms are distinguished based on the next word, “time”, which is shown
by tapping two fingers on your wrist, or “big”, which is shown by moving both hands in
opposite directions [1]. In [11], the authors mentioned the importance of mouth shape in
sign language. The tracking of mouth movements can help understand semantically similar
sentences. However, hardly any research has focused on mouth movements explicitly, as
they tend to disregard the face during model training.

Much research has been conducted on the translation of ISL into a different under-
standable form. However, works such as [12–14] show that more than 80% of research still
focuses only on isolated sign language translation. Furthermore, less than 10% of studies
have used commercially available datasets such as INCLUDE for analysis. In [15,16], the
authors proposed a different approach for sign language translation. The work involved
converting each signed sentence into separate units or subunits before processing. However,
this process increases the complexity, and the sentence may lose its contextual meaning.

This work aims to resolve the existing models’ shortcomings by proposing a fast and
lightweight deep learning SLT that can process a sign sentence as a whole. The proposed
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model uses the entire frame to simultaneously process manual and non-manual signs
simultaneously. This was achieved by integrating Inception V3 for feature extraction and
a two-layered LSTM architecture for classification and prediction. A set of five different
signers sitting facing the camera from the INCLUDE dataset was used to train the model.
Complexities such as moving signers and dynamic backgrounds were not taken into
consideration during model training.

The contributions of this paper are as follows.

• The dataset is a multi-signer corpus containing 101 ISL sentences and seven signers.
The majority of the research in ISL translation has been conducted using isolated or
dynamic ISL words.

• The proposed model considers the entire frame instead of cropping the hand area.
Hence, both manual and non-manual signs in ISL were considered for processing.
Overfitting of the model was avoided by using one of the best combinations of deep
learning models: InceptionV3 and LSTM.

• The videos in the INCLUDE dataset are taken in natural settings and consist of frames
with blurred images and frames with little or no movements. These frames can be
removed, as training the model with these may increase the learning time and also
lead to overfitting of the model.

• The smaller convolutions and the asymmetric convolutions of the Inception V3 archi-
tecture helped extract the maximum features in a relatively short amount of time and
with fewer parameters.

• ISL sentences were classified and predicted using a two-layered LSTM architecture.
The apt size of the classifier helped reduce the translation time without compromis-
ing accuracy.

The rest of the paper is organised as follows. First, a review of related studies and
sign language translator modelling is presented, followed by the introduction of the pro-
posed sign language translation (SLT) model, presentation and analysis of results, and
our conclusions.

2. Related Study

In [17], the authors proposed an ANN-DP algorithmic model to recognise invariant
signs of the signer’s position. Dynamic programming (DP) helps to remove the movement
epenthesis and automatically groups words from continuous sign sentences. The model
was tested on a large vocabulary CSL dataset. The model was constructed in such a way that
the current word was dependent only on the immediate next word. This language model is
also known as the bigram model and achieved an improvement of 17% in the recognition
rate and translation speed compared to other existing models. In [18], the authors proposed
3D-based sign detection models using graph matching (GM). The proposed model uses the
interframe GM method to process both spatial and temporal information. The model was
tested using the HDM05 dataset.

In [16], while training a large dataset, the authors introduced the need for subunit
modelling to remove existing issues, such as movement epenthesis and performance decline.
The model was evaluated using different sign language corpora. The model proved to be
efficient even when the dataset size was increased. In [19], the authors introduced 3D-based
large SLT systems. The benchmark dataset ChaLearn was used to test the proposed model,
which achieved an accuracy of 88.7%.

In [20], the authors proposed a recurrent neural network (RNN) model that processes
skeletal features extracted using an external device called LeapMotion. The model was
tested using both ASL and SHREC datasets, outperforming existing models by achieving an
accuracy of 85.13% and 96%, respectively. In [21], the author proposed a bidirectional long
short-term memory (BiLSTM) model with spatiotemporal fusion. Single-word processing,
alignment issues, and manual ground truth labelling can be avoided through this method.
The model performance was tested using large datasets, i.e., CSL and RWTH-PHOENIX-
Weather-2014T, to obtain an accuracy of 81.22% and 75.32%, respectively.
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In [22], the authors proposed a hybrid model combining 3D ResNet and the encoder–
decoder classification model. The model was trained with the massive RWTH-PHOENIX
and CSL benchmark datasets and obtained a precision of 93.9%. In [23], the authors
introduced a model that can capture spatial values and temporal information with the
help of a graph convolutional network (GCN) and Bidirectional Encoder Representations
from Transformers (BERT), respectively. In [24], the authors introduced a rapid method for
sign language translation using wearable inertial measurement unit (IMU) sensors on both
hands. The model works with the help of two BiLSTM layers and connectionist temporal
classification (CTC). CTC helps to understand the difference between each word without
knowing sign boundaries. The proposed model reduced the training error by 11%.

In [20], the authors introduced a model that can translate a huge dataset by correctly
interpreting each sign’s content. The proposed model consists of a generator that identifies
the gloss from the sign video based on spatial and temporal information. A discriminator
constantly checks the predictions of the generator at both the gloss and sentence levels

As ISL is relatively new, few experiments have been conducted, and an adequate
number of models is not available for comparative studies. Vision-based ISL recognition
models have shown more economical and real-time application value than sensor-based
models. In [25], the authors proposed an ML-based continuous ISL recognition system.
This background-invariant model extracts frames with maximum information from video.
The features are extracted using discrete wavelet transform (DWT). Finally, the features are
processed using HMM [26]. In [27], the authors introduced a selfie-based ISL translation
model that uses minimum distance and an artificial neural network (ANN) to classify sign
language. Sobel edge detector helped to increase the word-matching score (WMS) to 85%.

A study showed that much work had been done in the fields of isolated ISL and
dynamic ISL. In [28], the authors introduced a recognition system that translates emergency
sign words. The model extracts hand sign gestures (HSGs) and classifies them using the
support vector machine (SVM) model. In [29], the author proposed a 3D convolutional neu-
ral network (CNN) model that extracts 3D features from images that are then classified by a
multilayer perceptron. The dataset consists of 20 different signs with varying backgrounds
and signer speeds. The proposed model achieved an average accuracy of 88.24%.

3. Sign Language Translator Modelling

The proposed model works in three basic steps. The first step is the preprocessing step.
The raw data need to be cleaned and manipulated to extract maximum features from each
frame. The second step is feature extraction, in which convolution filters move along with
each frame to create a feature map. The third step is the recognition and translation step,
in which the model, when trained with the data and the ground truth, predicts the best
possible output during validation. Several methods of SLT are available. In isolated SLT, the
model recognises several independent words that are immediately translated. In dynamic
sign word translation, words are individually translated to form a logical construct. The
proposed method—Lightweight Sign language Translator (LiST)—takes the input sentence
and translates it in the same order. This helps maintain the contextual meaning of the sign
language and increases the translator’s robustness. Figure 1 shows the overall flow of the
translation process, and in the following section, we describe each step in detail.

3.1. Data Preprocessing

The raw data are analysed in data preprocessing to understand the most appropriate
information and irrelevant information. The INCLUDE dataset consists of multiple signers
with different signing speeds. Accordingly, several frames provide considerably less
information due to one or all of the following reasons.

The probability of duplicate frames is higher during the conversion of high-resolution
videos. Each signer has a different signing style, which may create motion and out-of-focus
blur. The first and last few frames may not contain much information in a sign language
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video, and these frames can be excluded before feeding the video to the feature extractor.
The following section reviews different approaches for cleaning up the raw sign dataset.
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3.1.1. Keyframe Extraction

Keyframes provide a maximum amount of information. In a continuous sign language
dataset, duplicate frames can be identified by comparison. A unique number can be created
for each video frame, forming a signature. Such signatures can be compared to identify and
understand whether two frames share a common value, and such frames can be identified
as duplicates. The unique value for each frame can be calculated using the MD5 hashing
technique [30]. The hash function learns the contents of each image and constructs a unique
value for it. The hash values are stored in a hash base, and the hash value of a new entry is
compared with the rest of the stack to identify any similar values. If the values are similar,
then that frame is considered a duplicate. The frame is labelled with its sequence number
and can be easily identified and removed.

The hashed values or the fingerprints are 64 hexadecimal values created for each frame.
The hamming distance between the two frames is matched for similarities. The probability
of the two compared frames being similar is high if the hamming distance between them is
lower than the threshold value. On the contrary, the images are different if the hamming
distance between the frames is higher than the threshold value. The hamming distance is
not zero in most cases, although the frames appear similar. Hence, a lower threshold value
can be set during comparison. The proposed model considers five as the lower threshold
value. The hamming distance between two frames is calculated using the XOR function
(1). The unique frames are then stored in the vector (v). Algorithm 1 explains the various
steps involved.

f ′n−2 ⊕ f ′n−3 ≈ 1 (1)

where fn−2 and fn−3 are two consecutive frames.
Initially, the input, i.e., ISL videos from the dataset (V), is split into frames, i.e.

f0, f1, f3 . . . . . . fn−1 ⊆ o f V, and a vector hash function is performed on each frame, which
helps to compute the hamming distance.
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Algorithm 1: Detection and Removal of Duplicate Frames

Input: Sign language sentence videos V \\ISL videos from the INCLUDE dataset
Output: v \\ set of unique frames for each sign sentence

1 Extract frames from the sign language videos f0, f1, f3 . . . . . . fn−1 ⊆ o f V
2 f or( f0 = 0; f0 ≤ fn−1; fi ++)
3 v← f ′0, f ′1, . . . . . . f ′n−1 : compute framewise_vectored_hashed_function
4 ∀v compute f ′n−2 ⊕ f ′n−3 ≈ 1 \\ hamming distance between the consecutive frames
5 If f ′n−2 ⊕ f ′n−3 ≈ 1
6 delete( f ′n−3)
7 v← unique frames // after the removal of duplicate frames
8 end if
9 end for

3.1.2. Blur Detection

Motion blur and out-of-focus blur are the two most common issues in moving object
videos. These two problems reduce the clarity of the image, thereby affecting the amount
of information provided by each frame. Blur detection in each frame can be carried out
using the fast Fourier transformation (FFT) function. FFT converts images from the spatial
domain to the frequency domain. This is possible by breaking the image into its sine
and cosine transforms. The image clarity in the spatial domain determines the number of
frequencies in the frequency domain. A sudden change in frequency highlights the area in
which blurriness is affected. Once the FFT is calculated, the image can be converted back to
the spatial domain using inverse Fourier transformation (FFT)−1. FFT and (FFT)−1 are
computed for a 2D square image using Equations (2) and (3), respectively:

F(x, y) =
N−1

∑
a=0

N−1

∑
b=0

f (a, b)e−i2π( xa
N +

yb
N ) (2)

where, for each image in the special domain, the exponential function corresponds to each
point in the Fourier space- f (x, y). Therefore, the sum of the product between the image in
the special domain and the base functions yields the image representation in the Fourier
space. The N − 1 function represents the highest frequency.

f (a, b) =
1

N2

N−1

∑
x=0

N−1

∑
y=0

f (x, y)ei2π( xa
N +b yb

N ) (3)

Similarly, in Equation (3), the image is retransformed to the spatial domain using the
normalisation function 1

N2 .
A kernel in image processing is a small matrix that can change the appearance of

the original image. It can create effects such as blurring, sharpening, or embossing. Deep
learning models such as CNN extract the required features using these kernels. The
proposed model uses a 3 × 3 sharpening kernel that can remove blur detected using FFT. 0 −1 0

−1 4 −1
0 −1 0


The kernel passes through the entire image expansion, each pixel value is multiplied

by the corresponding kernel entry, and the sum is calculated. The sharpening kernel
compares the adjacent pixels and enhances the image. Algorithm 2 represents the process
conducted using FFT and a Laplacian filter. The deblurred and sharpened images are then
stored in v.
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Algorithm 2: Removal Of Blurred Frames And Sharpening

Input: v \\ Collection of unique frames for each sign sentence
Output: v \\ Collection of deblurred frames for each sign sentence

1 ∀(v) \\ on all the frames in v
2 Compute FFT \\ detect blurriness using FFT
3 If

(
f ′n−2 > 5)

4 delete f ′n−2 \\ if the blurriness is greater than five, then discard
5 Else
6 Apply Laplacian filter(v) \\3 × 3 filter
7 End if
8 v← deblurred frames

3.1.3. Fusing of Frames

The frame representation of the same sentence by different signers showed consider-
able changes. The speed variations among the signers created a few frames without motion,
which can be fused to form a single frame. The frame fusion method must be lossless, i.e.,
little or no information is lost during the process [31]. The authors of [32] introduced a
method for detecting motion in videos with a constant background. This motion detection
algorithm is used on the proposed dataset. The absolute difference between the neighbour-
ing cells is calculated to understand whether any objects have moved. The changes are
measured using the frame differencing method at the pixel level. The frame difference can
be represented by formula (4).

∆n = |Fn − Fn−1| (4)

where ∆n is the difference between the frames in the nth position and the n− 1th position. A
threshold value determines the presence or absence of a motion. Here, the threshold is set
as 15% of the pixel intensity of the image, as the slightest movement needs to be detected.
The background subtraction process can further increase the accuracy. Once identified,
frames with less or no movements can be fused to form a single frame. This process helps
to reduce the number of unwanted frames fed into the Inception V3 architecture for feature
extraction. Each frame’s rapid and subtle motion is detected with the help of the absolute
frame differencing function. The processed frames are then temporarily stored (v̂) for
further analysis. Algorithm 3 represents the steps in the frame-fusing process.

Algorithm 3: Identification Of The First Frame With Motion

Input: v \\ deblurred frames
Output: v̂ \\ frames with motions

1 ∀(v) \\ for every frame in v
2 compute

∣∣∣ f ′′n−1 − f ′′n−2

∣∣∣ \\ absolute frame difference between adjacent frames

3 if
∣∣∣ f ′′n−1 − f ′′n−2

∣∣∣= 0

4
no movement \\no new information when compared to the previous discard
current frame

5 else
6 movement detected

end if
7 v̂← frames with motions

3.2. Feature Extraction
Inception Architecture and Specialities

Convolutional neural networks (CNNs) are very popular in computer vision and in
other fields and tasks. The model was created to learn complex images by convolving them
into smaller portions. The size of the filters present in the network decides the information
to be processed and discarded. Another important feature of the CNN model is the stride,
which is the number of pixels covered during each iteration. However, if the model is very
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large, then the extracted features are not always sufficient. The key solution for feature
extraction was perceived to increase the depth of the models until the Inception models
were introduced. Added features can improve the model’s performance and efficiency at
a low cost [33]. Different coevolution models competed in the annual ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) to facilitate the comprehension of their
performance [34]. All models were made to train with the ImageNet dataset [35], and
the model had to classify the images and scenes. A few CNN-based feature extraction
models that gained popularity during the ImageNet Challenge are described below. In
most scenarios, CNN was considered one of the best methods for feature extraction. The
authors of [36] utilised the CNN architecture to identify and track the movement of the
human body. The authors of [37] used the CNN model to identify small objects from an
aerial view.

In [38,39], the authors introduced a stacked 3× 3 convolution architecture, i.e., VGG16
and VGG19, where the values 16 and 19 represent the number of weight layers in the
network. This deep architecture can capture many features and easily classify them. The
model consists of two fully connected layers, each with 4096 nodes connected to a SoftMax
classifier. However, the model has two major disadvantages: it takes a lot of time to train,
and its size is large in terms of disc space and bandwidth. Both models, VGG16 and VGG19,
are deep and have a size of more than 500 MB.

In [40], the authors introduced a ‘Network in Network’ architecture called ResNet.
The network is a combination of many pooling and convolutional layers. The authors
demonstrated that extremely deep networks, such as ResNet, can be trained using residual
modules with standard stochastic gradient descent (SGD).

In [40], the authors mentioned the need for better filters to learn complex image
features. A model in which all linear filters are replaced with 1× 1 non-linear convolutional
filters was proposed. The authors mentioned that a fully connected layer was not required at
the end of the CNN model because the same functionality could be achieved through global
average pooling. In [41], the authors introduced a more robust and accurate state-of-the-art
model called Inception V2. This model, which is pretrained with the large-scale ImageNet
dataset, can detect and classify objects better than classic CNN architecture. With this
model, the performance of the sparse network increased in image-processing-related tasks.
Combining the additional losses with the classification layer reduced convergence during
training. In [33], the authors showed how large convolution filters could be separated into
smaller convolutions, such as 1 × 7 and 7 × 1. Improved normalisation and factorisation
of convolutions helped the Inception V2 model to perform better than its predecessors.

Figure 2 represents the classic form of the Inception model, which was created to form
a single vector of the extracted features. Filters with different shapes analyse a region and
learn different patterns. Later on, it was realised that creating a pooling layer in parallel
would create a greater impact and increase the model’s performance [41]. Another major
issue with the classic model is that the 5 × 5 convolutions cost the top layers a huge
amount of processing time. Hence, the authors suggested a better-performing model with
dimensionality reduction. The modified architecture is depicted in Figure 3.

Inception V3 is a CNN with more feed-forward, convolution, and pooling layers [42].
The convolutions between the first layer (L1) and the last layer (Ln) with an input of size
(H ×W), x,y iterators, as well as a kernel (κ) of size Kn × Km with m,n iterators and bias b
in the first layer, can be expressed as (5) and (6), respectively.

Ix,y = ∑
m

∑
n

Kl
m,nOl

i+m,j+n + bl (5)

Ol
x,y = pool( f ∑

m
∑
n

Kl
m,nOl

x+m,y+n + bl)) (6)
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Here, the weight of iterators m and n connects the nodes from the layer L− 1 to the
first layer. The dimensionality reduction and the feed-forward connection of the Inception
V3 architecture resulted in high performance with a smaller number of parameters. Table 1
compares different filter-based feature extraction models with Inception V3.

Table 1. Different convolution filter-based feature extractors and classification models.

Sl. No. Model Size Top-1
Accuracy

Top-5
Accuracy

No. of Parameters
Considered During

Processing

Topological
Depth

CPU
Time/Inference

Step

1 VGG16 528 0.713 0.901 13,83,57,544 23 69.5
2 VGG19 549 0.713 0.9 14,36,67,280 26 84.75
3 ResNet50 98 0.749 0.921 2,56,36,712 - 58.2
4 InceptionV3 92 0.779 0.937 2,38,51,784 159 42.25

3.3. Long Short-Term Memory(LSTM)

LSTM is an architecture that can retain the information passed to it. The memory cells
present in the model can decide which information is to be retained and which is to be
discarded. Therefore, the cell can help to form an output that depends on the historical
input rather than the immediate past. The forget gate constantly modifies the cell state
placed directly below. The forget gate multiplies the zero value by all the information
that is to be removed. As a result, the relationship can be maintained among words in a
long sequence.
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The cell state consists of a sigmoid activation function that can shrink the values
between 0 and 1. The input gate, also known as the save vector, includes tanh activation,
which can regulate the value between −1 and 1. The output gate decides which memory
should be fed to the next layer. This gate is also controlled using sigmoid activation. A
significant hidden layer is placed between the input and output layers. The classic LSTM
model consists of a single hidden layer before the feed-forward output layer.

At each timestamp (t̂), the information update in each cell can be expressed as
Equations (7)–(12) [43].

Input gate : It̂ = σ(WiXt̂ + Uiht̂−1 + bi) (7)

Output gate : Ot̂ = σ(WoXt̂ + Uo Ht̂−1 + bo) (8)

Forget gate : f t̂ = σ(W f Xt̂ + U f Ht̂−1 + b f ) (9)

Memory Cell : Ct̂ = f t̂ � Ct̂−1 + It̂ � tanh(WcXt̂ + Uc Ht̂−1 + bc) (10)

The activation function of the entire model is calculated using

Ht̂ = Ot̂ � tanh(Ct̂) (11)

where Wi, Wo, W f , and Wc are the weights in the input, output, forget gate, and memory
cell, respectively. σ represents the activation function sigmoid, and � represents the
element-wise product between the terms.

The loss function is computed during model training using cross entropy between the
ground truth G(X) and the model-predicted values (P(X)).

LossH(GxP) = −∑
X

G(X) log P(X) (12)

The standard LSTM model uses sigmoid and tanh as gating and output activation func-
tions, respectively [44]. The rectified linear unit (ReLU) activator of the LSTM contributes
to fast convergence and the creation of a non-linear output by learning the non-linear
dependencies. Furthermore, the activator plays a key role in creating a sparse network that
can process the parameters in a faster mode [45]. The performance of the model can be
improved by modifying the activation function. The authors of [34], introduced parame-
terised exponential linear units (PELUs), which rectify the disadvantages of LeakyReLU.
The minimum values are multiplied by a small value, which does not allow the values to
go below zero. The authors of [46] introduced yet another version of ReLU, Exponential
ReLU. The non-linear exponential curve can reduce the vanishing gradient problems. The
right activation function can reduce the limitations (vanishing and exploding gradients) of
classic RNN models. Figure 4 shows a pictorial representation of the model fitting.
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structure of the data cannot be captured, i.e., overfitting, where the points are covered but not in the
correct shape.
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The ReLU activation function can be represented mathematically as follows [39]. The
activation function of ReLU is considered as σx,y and is expressed as (13):

σx,y(z) = Max(0, z) (13)

In addition, for the ith unit of the hidden layer, n hidden layers and m samples are
positioned such that in ∈ {1, 2, 3, . . . , m}, with the hidden layers v ∈ {h1, h2, h3 . . . , hm}.

The matrix with diagonal values that correlate with the hidden layers can be ex-
pressed as:

Ψ1,v
in = 1i f (MWi)i,v > 0&0, OW (14)

where the M input matrix and Wi are the weights of the input matrix.

3.3.1. Vanishing and Exploding Gradients

The loss function is calculated in each epoch during model training based on a par-
ticular weight. The weights are adjusted slowly until the required accuracy is obtained.
This process is also known as backtracking. The gradients of each layer are multiplied by
the weights; if the weights are low, the product is too small, and the model cannot learn
anything. This effect is called the vanishing gradient.

On the contrary, if the gradient values are too high, the product is very high, and
the model skips a few essential features. This effect is known as the exploding gradient.
The LSTM model does not suffer from either of these two effects. The gradients in LSTM
have activators from the forget gate. Hence, the weights at each time step are modified
accordingly [43]. Figure 5 represents a single cell of the LSTM model.
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3.3.2. Depth of the Model

The best way to control the operation of a deep learning model is to adjust its number
of layers and nodes. This also determines the model’s learning capacity. The classic LSTM
model consists of one hidden layer and input and output layers. This vanilla model has
less learning capacity and a high probability of the model becoming underfit. Ideally, a
single hidden layer and many nodes can learn information from the dataset, but it entirely
depends on the type of dataset used. The best solution is to gradually increase the number
of layers so that the model understands that it has a high capacity to learn the dataset [47].
Increasing the hidden layer more than required would decrease accuracy during the testing
phase. The model can learn information provided in the training data, but it cannot use
those data when two similar but unknown types of errors are encountered during learning.
Training errors can be reduced by cleaning the data.
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Similarly, testing error is another predominant issue. When new information is fed
into the system, it cannot understand it. Measures should be taken to decrease both training
and testing errors.

4. Sign Language Translation
4.1. Dataset Description

ISL is a rich, complete language that follows a particular grammar and word sequence.
The authors of [48] described an ISL dataset that consists of 0.27 million frames with
more than 4000 videos and approximately 200 sign words. Experienced signers provide a
real-time scenario, as the dataset has includes multiple signers. The model can learn the
subtle changes in signers’ manual and non-manual gestures. The dataset was collected
with the help of seven senior students, who covered almost all real-life sentences. The
signers stood approximately five to seven feet from the camera and were made to sign
facing it. The dataset includes videos in which all manual and non-manual modalities
are incorporated [48]. English annotations were available for each video and the isolated
words. The seven signers were in both sitting and standing positions.

Each sentence is a combination of a minimum of two words with varying complexities.
All signers were right-hand dominant and represented signs using both manual and non-
manual gestures in each sentence. Figure 6 shows a snippet of the dataset that explains
the diversity and complexity. The significant difference between a verbal sentence and a
sign sentence is that sign sentences are devoid of connectives and sign only the important
terms, and the sentence format may not be grammatically correct when translated into text
or audio. This scenario occurs especially when signing information that consists of tense
and plural values. The dataset also includes annotations known as glosses that help avoid
such ambiguities. When classifying and predicting the sentence, the classifier is mapped
to the complete English sentence or ground truth to create the exact text. Table 2 shows
the gloss representation of the signs, along with the ground truth. These annotations were
created with the help of senior ISL experts.
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Table 2. Ground truth with sign gloss representation.

Sentence Sign Gloss

Are you free today YOU FREE TODAY
Are you hiding something YOU HIDE SOMETHING

Bring water for me BRING WATER ME
Can I help you I HELP YOU

Can you repeat that, please YOU REPEAT PLEASE
Comb your hair COMB YOUR HAIR
Congratulations CONGRATULATIONS

Could you please talk slower YOU PLEASE TALK SLOWER
Please do me a favour DO ME FAVOUR

Do not abuse him DO NOT ABUSE HIM
Do not be stubborn DO NOT BE STUBBORN

4.2. Feature Extraction

The Inception network takes in the image and collects its features using the kernels.
Parallelly, the dimension of the image is reduced. The first convolution filter of size
1 × 1 performs a point-wise product of every pixel in an image. The resulting output is a
3D vector with dimensions of 1 × 1 × K, where the number of filters is the third dimension.
This filter learns more details related to the depth of the image rather than any patterns. In
addition, the 1 × 1 filter reduces the number of channels in the input image and creates a
bottleneck. The pooling layers placed along with these filters downsample the image. A
network with more depth can perform better downsampling. Here, the 3D (RGB) frames
are fed with slight illumination variations. Figure 7 explains the different modules present
in the Inception V3 architecture that help extract maximum features.
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The model’s 3 × 3 and 5 × 5 filters learn the spatial patterns and features of varying
shapes and sizes. Both filters are fed 3D values containing height, width, and depth
(H ×W × D). The filters have an added padding feature, which helps the image to remain
the same size throughout processing. The padded values are masked before feeding into
the sequential classifier. A normal Inception architecture consists of 1283 × 3 filters and
325 × 5 filters. The ISL dataset consists of both manual movements (hand gestures) and
non-manual movements (facial expression, head movements, shoulder movements, and
body pose). These filters must detect and learn manual and non-manual movements to
translate the sign sentence precisely. The availability of multiple signers helps the model
learn the features in different ways. The average pooling and the max-pooling layers after
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a set of convolutions always help maintain a balance between the size of the feature map
and the frame size. This feature map achieved satisfactory results during translation. The
steps involved in feature extraction are explained in Algorithm 4.

Algorithm 4: Extracting Feature From The Frames

Input: v̂ \\ cleaned frames of sign sentences
Output: Extracted features

1 Inception V3← ∀(v̂) \\ feed the frames
2 tf. Keras. applications. Inception V3(

include_top = false,
weights = “imagenet”,
input_shape = (IMG_SIZE, IMG_SIZE, 3), \\ (299,299,3)
pooling = avg,
)

3 Extract general features

The model weights are set to the pretrained ImageNet weights to extract the feature
from each frame. The input image shape is 299× 299× 3, where 3 represents the number of
channels. Average pooling is applied to the last convolution layer to convert the extracted
features into a 2D tensor.

4.3. Proposed Lightweight Classifier

The Inception architecture passes 2048 features to the classifier. The bulky dataset
provides more features and more information. The hidden layers in the network study the
feature map and the ground truth of each video. The features and the ground truth are
fed into the model, which learns and predicts the translated audio after validation. The
performance of the model was tested using metrices like Accuracy, Learning speed and the
translation rate.

The step-by-step operation of the proposed model is depicted in Figure 8.
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The model weights are set to the pretrained ImageNet weights to extract the features
from each frame. The input image shape is 299× 299× 3, where 3 represents the number of
channels. Average pooling is applied on the last convolution layer to convert the extracted
features into a 2D tensor. The final classification and prediction of the sign sentences are
explained in Algorithm 5.

Algorithm 5: Classification Of The Sign Sentences Using LiST

Input: Feature vectors extracted from the Inception V3 architecture
Output: Translation accuracy, loss function, translated text and translated audio

1 ∀ extracted features using LSTM
2 tf.keras.layers.LSTM(

dropout = 0.5
activation = “relu”
optimizer = “adam”
loss = “sparse_categorical_crossentropy”
metrics = [“accuracy”])
execute for 500 epochs \\ until maximum accuracy is achieved
compute loss function and translation accuracy

5. Results and Analysis

The model recognises gestures and translates signs into audio based on the features
present in each video. Maximum features from the dominant hand, non-dominant hand,
and face are extracted from each frame using the Inception V3 architecture. These features
are then converted to a 2D vector known as the vector map and fed into the classifier. The
LSTM classifier model learns these features during training epochs and translates them
into corresponding text. The experiment included 2048 parameters for classification.

In the parameter map, let α1, α2, . . . αn be the set of parameters for a sign sentence (S1).
Then, α1, α2, . . . αn is a combination of dominant hand features and non-dominant hand
features, along with facial features. The LSTM predicts the sign based on the presence or
absence of these features using (15).

K

∑
1

P(S1|αn1 . . . . . . . . . αnk) (15)

The model was fed small batches of 10 with 0.5 dropouts in the dense layer. The
Adam optimiser with a 0.001 learning rate and ReLU activation layer helped increase the
translation accuracy. The cross-entropy method calculated the loss during each epoch and
reduced it to 0.2129.

The INCLUDE dataset was tested against other benchmark models, i.e., CNN, RNN,
and LSTM. Primary performance evaluation metrics such as translation accuracy, learning
time, memory usage, and prediction probability helped with model evaluation. The feature
extraction and the classification method are different for each model. The proposed model’s
analysis is summarised in the following section. Finally, the model’s performance in
word-by-word translation was also analysed using WER (word error rate) metrics

The first sequential translation model tested was the CNN-RNN model. The CNN-
RNN module extracted spatial and temporal information from the sign video. However,
the model performance was not efficient in identifying the sign sentences. In addition, the
training time exceeded the acceptable duration.

Secondly, a pose-based feature extractor was used to reduce the limitations of the CNN-
RNN translator model. MediaPipe, an open-source library provided by TensorFlow, can
detect human movements with the help of predetermined key points. The pose- estimator
tracked the signer’s hand movements and facial expressions. As a result, the feature map
was easily created and fed into the LSTM classifier. The LSTM classifier captured the
temporal information from the sign videos. However, the model misinterpreted gestures
as the movements of the key points, and the video speed was not synchronised. The model
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captured only major hand movements and failed to capture the different signer speeds.
Hence, the pose-based feature extractor model was also considered incompetent for the
INCLUDE dataset.

Next, Inception architecture was chosen to extract the features from the video. The
Inception architecture is smaller and more efficient compared with VGG16 and VGG19. A
three-layered LSTM model was employed for classification. The model performed better
than its predecessors, but its accuracy was not satisfactory, and the training time was longer
than the acceptable period. CPU usage also increased considerably.

The proposed model showed improved performance for all the parameters, such as
accuracy, learning time, conversion speed, and CPU usage. Table 3 shows a comparison of
the experimental results.

Table 3. Performance comparison of different models trained using the INCLUDE dataset.

Model Type No. of
Signers Epochs

Modalities Considered Accuracy % Loss % Prediction
Probability %

Conversion
Rate

Full Frame Face Hands

CNN + RNN 5 425

1 
 

 

1 
 

 3 65.1 0.287 60.00 High
PoseEstimation +

LSTM 5 500

1 
 

 3 3 66.7 0.389 70.00 Low

Incepton V3 +
LSTM (3 layers) 5 530 3 3 3 75 0.354 85.00 High

LiST (Proposed
Model) 5 500 3 3 3 92.5 0.212 95.90 Medium

The proposed model was also compared with other deep learning SLT models, which
obtained considerably high accuracy and prediction probability. A different dataset was
also used depending on the type of ISL; instead of using complete ISL sentences, the authors
attempted to form a sentence using dynamic sign words. Table 4 compares the proposed
model with other deep learning frameworks used to convert ISL words and sentences.
Given the modalities considered and the size of the dataset used to train the model, the
proposed framework outperformed the other models in terms of accuracy.

Table 4. Accuracy comparison between LiST and other benchmark models.

Authors Year Model Accuracy Dataset
External

Components
Modalities Considered

Full Frame Face Hands

G. Ananth Rao
and PVV Kishore 2017 Minimum

Distance + ANN 85.58
Collection of

words from ISL
dictionary

1 
 

 

1 
 

 

1 
 

 3

Anshul Mittal
et al. 2019 LeapMotion +

Modified LSTM 72.3 ISL sentences 3 3 3 3

S. Sharma et al. 2021 IMU + CNN +
LSTM 89.9

Isolated words
from ISL

dictionary
3

1 
 

 3 3

LiST 91.2 ISL sentences

1 
 

 3 3 3

Performance evaluation metrics such as accuracy and loss function were computed
and are compared in Figure 9a,b. The loss functions were calculated using the sparse
categorical cross-entropy function. Because the classification predicts a sign sentence based
on the maximum probability function computed based on the features present in the video,
an accurate loss function can be calculated using the sparse function. The loss function was
calculated during each epoch, and a final value 0.2129 was recorded when the maximum
accuracy was achieved. Similarly, other sequential models were computed, and the analysis
shows that the proposed model achieved the lowest loss function. Figure 9b represents
the performance evaluation of the proposed model compared to other existing sequential
models. The proposed model achieved outstanding performance with respect to prediction
probability, and the model’s training time was relatively short, making it more efficient.
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The proposed model was also tested for word-by-word accuracy using the WER
(word error rate) ratio [49,50]. The WER metrics help to calculate the similarity between
the predicted sign and the ground truth. Operations such as substitution, deletion, and
insertion are used to align the output sequence with the input sequence.

WER =
∑ IDS
Num

(16)

Here, in Equation (16), I represents the total number of insertions, D represents the total
number of deletions, S represents the total number of substitutions, and Num represents the
number of words in the ground truth [51]. The WER was also calculated and compared with
the SLT models, such as CNN-RNN and PoseEstimation with LSTM, using the same dataset.
The experimental results show that the proposed model performed better by lowering
the error rate during translation. Table 5 and Figure 10 compare the WER between the
proposed model and existing models. During the training time, the WER of the proposed
model was 15.1%, which is 9.6% less than the three-layered LSTM architecture. During
testing, the model’s error rate was reduced to 13.5%, which is 8.37% less than three-layered
LSTM. The proposed model showed less accuracy in complex sentences such as “I am in
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a dilemma, what to do?” and in sentences that included highly complex and fast hand
movements.

Table 5. WER comparison of different sign language translators using the INCLUDE dataset.

Model Name Training Data WER% Testing Data WER %

CNN + RNN 34.1 31.25
PoseEstimation + LSTM 32.9 25.7

Inception V3 + 3layer LSTM 28.7 21.87
LiST(Proposed) 15.1 13.5
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The experimental analysis of accuracy, learning rate, loss function, and prediction
probability shows that the proposed model is comparatively better than other sequential
SLT models.

6. Conclusions

A lightweight computer-vision-based deep learning framework is proposed to detect
and translate Indian Sign Language sentences. The model’s efficacy was evaluated using
translation accuracy, prediction probability, and word error rate (WER). Hyperparameters
such as the size of the model, the speed of execution, and memory usage were also com-
pared. Analysis was performed using a dynamic and multi-signer dataset called INCLUDE,
which consists of more than 100 sign language sentences of varying complexity. The experi-
mental study showed that the proposed model achieved an average translation accuracy
of 91.2% and an average prediction probability of 95.9%, and the WER was reduced to
13.5%. The model is also faster and more memory-efficient than other models. Comparative
analysis revealed that the proposed framework is more robust than most of existing models.

In future iterations, the proposed translation framework can be further trained by
having signers use different poses and orientations, such as standing or being mobile.
Furthermore, the model can also be modified to recognise and translate regional Indian
sign languages.
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