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Abstract: Helium speech, the language spoken by divers in the deep sea who breathe a high-pressure
helium–oxygen mixture, is almost unintelligible. To accurately unscramble helium speech, a neural
network based on deep learning is proposed. First, an isolated helium speech corpus and a continuous
helium speech corpus in a normal atmosphere are constructed, and an algorithm to automatically
generate label files is proposed. Then, a convolution neural network (CNN), connectionist temporal
classification (CTC) and a transformer are combined into a speech recognition network. Finally, an
optimization algorithm is proposed to improve the recognition of continuous helium speech, which
combines depth-wise separable convolution (DSC), a gated linear unit (GLU) and a feedforward
neural network (FNN). The experimental results show that the accuracy of the algorithm, upon
combining the CNN, CTC and the transformer, is 91.38%, and the optimization algorithm improves
the accuracy of continuous helium speech recognition by 9.26%.
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1. Introduction

Human beings have always explored the ocean, and this exploration has impacted the
fields of commerce, the military and scientific research. With the developments brought
about by this exploration, about half of the world’s energy and means of production are
obtained from the ocean, on which human beings are becoming increasingly dependent.
The initiatives of the “Maritime Silk Road” and “the Belt and Road” in the twenty-first
century greatly promoted the development of marine transportation, marine industry
and marine energy worldwide [1]. Therefore, deep-sea diving has been widely used in
navigation, ocean development, military navigation, ocean rescue and other fields [2]. In
addition, more and more people are taking up deep-sea diving.

In common diving activities, also known as “scuba diving”, divers rely on gas that
is contained in a cylinder and composed of about 20% oxygen and 80% nitrogen to dive.
Nitrogen does not affect the human body at normal air pressure. However, as the diving
depth increases, nitrogen molecules fuse with nerve cells under increasingly high pressure,
causing varying degrees of anesthesia. At depths of up to 30 m, a paralyzing phenomenon
known as nitrogen anesthesia can occur in divers. In addition, high-pressure oxygen
might cause brain poisoning, which can seriously threaten divers’ lives [3]. Research has
shown that divers can avoid this physiological reaction when they breathe a mixture of
helium and oxygen (helium–oxygen) instead of air at high pressure [4]. Therefore, helium–
oxygen mixtures have been widely used in deep-sea saturation diving. Since the physical
properties of helium–oxygen (He-O2) at high pressure are very different from those of
atmospheric air at normal pressure, the acoustics of speech produced at great depths are
very different from that produced at normal pressure. Speech produced in a high-pressure
helium–oxygen environment, which is called “helium speech”, sounds like “Donald Duck”
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and is difficult to understand. This could affect divers’ work, and even threaten their lives
if not properly handled.

It is well known that breathing gases lighter than air will cause speech distortions.
However, the study of helium speech did not begin until the 1960s. In 1962, the United
States Navy biologists carried out the first saturated diving experiment using helium–
oxygen at normal pressure. The experiment was a biological success, but due to the
low intelligibility of helium speech, it was difficult for volunteers to communicate [5].
Subsequent experiments also showed that helium speech distortion interferes with smooth
communication. In the same year, Beil mixed air and helium gas in certain proportions,
and then, breathed through a mask and analyzed the sound spectrum of the speech. He
pointed out that the formant frequency and pitch of the speech roughly increased at a
certain proportion [6].

In 1967, Sergeant first gave a report on helium speech acoustics, and determined
the intelligibility of syllabic words in helium–oxygen under normal pressure [7]. In 1968,
Hollien and Thompson studied the intelligibility of monosyllabic English words in a variety
of gases and the relationship between pressure and intelligibility [8,9]. They pointed out
that communication is impossible if depth increases. Many attempts have been made to
improve the intelligibility of helium speech [10–13]. Copel first split the sound spectrum
into two bandwidths, and each moved independently toward lower frequencies through a
beat. In the late 1960s, there were many studies on helium speech under high pressure, and
many methods of unscrambling helium speech were proposed. Among them, Fant and
Sonesson first explained the formant frequency variation of speech in high-pressure gas
based on the speech generation model and acoustic theory.

There are various helium speech unscrambling methods. However, they are divided
into time-domain processing technology and frequency-domain processing technology,
mainly from the perspective of signal processing methods. In time-domain segmentation
processing, the helium speech signal is divided into several segments [14]. Each segment
is stretched, and then, connected to form an enhanced helium speech signal. This can
correct formant frequency distortion and even pitch distortion. Linear prediction and
homomorphic filtering are also used to estimate and correct the channel impulse response
in helium speech. They can achieve more accurate correction of the spectral envelope [15]
or reduce the impact of noise on helium speech interpretation using autocorrelation be-
tween helium speech segments [16]. In the frequency subtraction method, the heterodyne
technique is used to subtract some frequencies from the original helium speech signal
spectrum to reduce the resonance peak frequency [17]. In fact, the main cause of helium
speech distortion is the diver’s voice cavity, rather than the helium–oxygen environment
itself. Using vocoder to compress the spectrum envelope of the helium speech signal not
only restores the position of the vowel formant, but also preserves the resonance structure
of the helium speech [18]. Richards proposed a short-time Fourier transform enhancement
algorithm based on helium speech [19]. Like the segmented processing in the time domain,
this follows the segmented modification cascade method, but is processed in the Fourier
transform of signal segmentation. This can arbitrarily map the spectrum envelope of he-
lium speech without changing the pitch information of helium speech. Duncan and Jack
proposed a helium speech interpretation system consisting of a residual excitation linear
prediction encoder [20]. They used a joint processing method in the time and frequency
domains to improve the clarity and naturalness of the decoded speech output.

As saturation diving operations deepen, existing helium speech unscrambling tech-
nology, which is based on traditional time-domain or frequency-domain signal processing
technology, struggles to clearly unscramble helium speech and is unable to adapt to the
dynamic changes at the depths of such diving operations. The research on helium speech
has met a bottleneck problem. There have been few breakthroughs in helium speech un-
scrambling, and few results have been published on this topic [21–23]. Machine learning
has been widely used in speech recognition in recent years [24,25]. Many companies have
their own products, based on their technologies, such as Apple’s Siri, and have achieved
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great success [26]. Speech recognition based on machine learning opens up a new way to
unscramble helium speech.

Deep learning is a complex machine learning algorithm that tries to learn the internal
rules and representation levels of sample data [27,28]. It has been widely used in image
processing [29,30], speech recognition [31,32], natural language processing [33,34], etc.
There are three typical deep learning neural network models: convolution neural networks
(CNNs) [35,36], recurrent neural networks (RNNs) and deep belief networks (DBNs). A
CNN is usually used for visual frame processing and the automatic extraction of visual
features [37]. They are also used for acoustic signals to process spectrograms [38] or raw
waveforms [39]. The authors of [40] developed a deep learning model to predict emotion
from speech. A speech enhancement method based on deep learning is analyzed in [41].
The authors of [42] proposed a speech signal processing mobile application based on deep
learning, which can perform three functions: speech enhancement, model adaptation and
background noise conversion. The information obtained in the learning process is very
useful in the interpretation of data such as text, image and speech. Deep learning has
enabled many more achievements to be made in speech and image recognition.

To date, most speech recognition technologies based on deep learning have been used
to recognize normal Mandarin, and there are also some speech recognition technologies
for dialects. However, there has been little work on helium speech recognition technology
based on deep learning, except reference [43], due to the lack of a large corpus. However,
the authors only present their initial work on isolated helium speech recognition, and not
on continuous helium speech recognition.

The main contributions of this paper are as follows:

1. Chinese helium speech corpora are built. When building the corpora, we design
one algorithm to automatically generate label files and one algorithm to select the
continuous helium speech corpus, which reduces the scale of the training set without
changing the corpus size.

2. A helium speech recognition algorithm combining a CNN, connectionist temporal
classification (CTC) and a transformer model is proposed to improve the intelligibility
of helium speech. Furthermore, the influence of the complexity of the algorithm and
language model on the recognition rate is analyzed.

3. To improve the recognition rate of the helium speech recognition algorithm for contin-
uous helium speech, an optimization algorithm is proposed. The algorithm combines
depth-wise separable convolution (DSC), a gated linear unit (GLU) and a feedforward
neural network (FNN) to improve the recognition rate of continuous helium speech.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
features of helium speech and existing helium speech unscramblers. Section 3 designs
speech recognition networks to unscramble helium speech. Section 4 describes the process
of constructing the helium speech corpora. The experimental results are shown and
discussed in Section 5. Finally, the conclusions are provided in Section 6.

2. Nature of Helium Speech

Speech produced under a high-pressure helium–oxygen environment has distortions,
which reduce the intelligibility of the speech compared with speech under normal pressure.
In fact, high-pressure helium–oxygen affects speech in many ways. Some of these are small
and not obvious. However, six factors lead to distortions in helium speech: the increase in
formant frequency [44], the increase in formant bandwidth [45], the attenuation of higher
formant amplitudes [46], variations in pitch [47,48], high noise levels and psychological
factors [49]. The formant information, including formant frequency, formant bandwidth
and formant amplitude, is the main reason for the low intelligibility of helium speech [19].

At present, there are many methods that can improve the intelligibility of helium
speech, and all of them can be divided into two types: time-domain processing and
frequency-domain processing. Usually, time-domain processing includes a tape recorder,
segment processing, digital coding, convolution processing and analytic signal rooting.
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Frequency-domain processing includes frequency subtraction, a vocoder and segment
processing. Time-domain processing is only suitable for moderate depths. It is simple and
cheap to implement, but only corrects the formant frequency shift linearly and does not
perform well in high-noise environments. Frequency-domain processing is suitable for all
depths. It can compensate the nonlinear formant shift and has good robustness to high
noise, but its time resolution is relatively low and its complexity is far higher.

To the best of our knowledge, neither time-domain processing nor frequency-domain
processing can cope with all the distortions in helium speech. The existing unscram-
blers of helium speech are not satisfactory regarding dynamic changes in the depth of
diving operations.

3. Helium Speech Recognition Algorithm

Deep learning is a specific kind of machine learning. It has been widely used in
image processing, speech recognition, natural language processing, etc. Deep learning has
attracted wide attention in the industry. Many Internet companies have launched products
based on deep learning.

3.1. Helium Speech Recognition Model

To realize the adaptive unscrambling of helium regarding the depth of diving op-
erations, we propose an intelligent helium speech unscrambler, which mainly includes
preprocessing, feature extraction, an acoustic model and a language model, as shown in
Figure 1.
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Figure 1. The helium speech recognition model.

Firstly, the helium speech signal is preprocessed to reduce the influence of background
noise on the system, and the helium speech signal is converted from the time domain to
the frequency domain. Then, appropriate representative features are extracted from the
helium speech signals, which are used as the input of the acoustic model. The output
consists of all possible pinyin sequences corresponding to the features and acoustic model
scores. Here, all pinyin sequences refer to pinyin sequences with the same pronunciation
but different text. Finally, the dictionary maps the pinyin sequence to the word sequence,
and the language model estimates the probability of these sequences and generates a
corresponding language model score, taking the word sequence with the highest score as
the final recognition result.

3.2. Preprocessing

Since the process of phonation in human beings are affected by physiological factors
such as the mouth and nose, the high-frequency part of human speech signals will be
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attenuated to a certain extent. Therefore, to obtain a more complete speech signal, it is
necessary to compensate the high-frequency part of the speech signal before the next
step [50]. The implementation method is used to pass the speech signal through a high-pass
filter, the system function of which can be written as:

H(z) = 1− µz−1 (1)

where µ is the pre-emphasis coefficient, which is generally between 0.94 and 0.97; 0.94 was
used in this paper.

A speech signal is a constantly changing signal, which obviously does not meet the
periodicity requirements. Therefore, it is not feasible to directly perform Fourier transform
on a speech signal. However, the speech signal has the characteristics of “short-time
stationary”; that is, the characteristics of the speech signal will maintain a stable state
within a short time. During this time, the speech signal can be regarded as periodic, and
Fourier transform can be performed. Therefore, we can divide a long speech signal into
small segments for analysis. Each small speech signal segment is called a “frame” [51].
After the speech signal is divided into frames, windows need to be added. The purpose
of adding windows is to enhance the speech waveform near the sample and weaken the
rest of the speech waveform. This can reduce the spectrum leakage of the speech signal
and smooth both ends of the signal. The most commonly used window functions include
the rectangular window, the Hamming window and the Hanning window. The window
function used in this paper is the Hamming window:

ω(n) =
{

0.54− 0.46cos
[ 2πn

N−1
]
, 0 ≤ n ≤ N − 1

0, else
(2)

where N is the length of the Hamming window.

3.3. Feature Extraction

Speech feature extraction is an important aspect of speech recognition. The extracted
features will eventually be used as the inputs of the acoustic model. The purpose of feature
extraction is to transform each frame into several representative feature values. Then, a
feature vector is formed with these feature values. Mel-scale frequency cepstral coefficients
(MFCC) [52] and Fbank [53] are commonly used in speech recognition. The steps used to
extract these two features are described below.

Firstly, fast Fourier transform (FFT) is performed on the preprocessed speech signal to
obtain the frequency spectrum.

X(n) = ∑N−1
n=0 x(n)e−j 2π

N kn, (k = 0, 1, 2, · · · , N − 1) (3)

where N is the number of Fourier transform points. The spectrum is then passed through a
set of Mel-scale triangular filters. There are M filters in total and the center frequency of
each filter is f (m), m = 1, 2, . . . , M. The frequency response of the filter is as follows:

Hm(k) =


0, k < f (m− 1), k ≥ f (m + 1)

2(k− f (m−1))
( f (m+1)− f (m−1))( f (m)− f (m−1)) , f (m− 1) ≤ k ≤ f (m)

2( f (m+1)−k)
( f (m+1)− f (m−1))( f (m)− f (m−1)) , f (m) ≤ k ≤ f (m + 1)

(4)

Then, the logarithmic energy output of each filter s(m) = ln(∑N−1
k=0 |Xa(k)|2Hm(k)),

0 ≤ m ≤ M is caluculated, which are the Fbank features. Finally, MFCC features are
obtained via discrete cosine transform (DCT).

C(n) = ∑N−1
m=0 s(m) cos(

πn(m− 0.5)
M

), n = 1, 2, · · · , L (5)
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where L represents the dimension of MFCC features.

3.4. Acoustic Model

The main acoustic processing networks are a CNN and CTC. A CNN is a classical
deep learning network. It is a feedforward neural network, and its emergence is inspired by
the biological receptive field. A convolutional neural network is essentially a mathematical
model based on supervised learning.

A typical CNN network includes an input layer, a two-dimensional convolution
layer (Conv2d), a pooling layer and a full connection layer [54]. The convolution layer
and pooling layer can extract features from the input data, and the full connection layer
can nonlinearly combine the extracted features. The number of layers determines the
complexity and effectiveness of the CNN. The details of the CNN structure used in this
paper are shown in Table 1.

Table 1. The structure of the CNN.

Network Layer Specific Parameters

Conv2d Convolution kernel size 3 × 3, number 32, activation function relu
batch normalization

Conv2d Convolution kernel size 3 × 3, number 32, activation function relu
batch normalization

Pooling layer Maximum pooling, pooling area 2 × 2
Conv2d Convolution kernel size 3 × 3, number 64, activation function relu

batch normalization
Conv2d Convolution kernel size 3 × 3, number 64, activation function relu

batch normalization
Pool Maximum pooling, pooling area 2 × 2

Conv2d Convolution kernel size 3 × 3, number 128, activation function relu
batch normalization

Conv2d Convolution kernel size 3 × 3, number 128, activation function relu
batch normalization

Pooling layer Maximum pooling, pooling area 2 × 2
Conv2d Convolution kernel size 3 × 3, number 128, activation function relu

batch normalization
Reshape
Dropout

In order to align the speech segment with the corresponding text, we can formulate
a rule, such as one character for ten inputs. However, different people speak at different
speeds, making it difficult to formulate a rule. Manual alignment is another effective
solution, but it is very time-consuming. CTC can solve the mapping problem of input and
output [52]. Let x be a certain frame in the input sequence, t be time and l be a mapping
path between the input and output. Then, the output probability is the multiplication of
the transition probability of each frame on the path, which can be expressed as:

p(l|x) = ∏T
t=1 p(lt|x) (6)

Since a large amount of information is contained in speech signals, the length of feature
sequences in speech is far longer than that of text sequences. CTC can effectively solve
this problem.

Given an input sequence X = [x1, x2, . . . , xT ] and a corresponding output text se-
quence Y = [y1, y2, . . . , yU ], where T and U are the lengths of the input and output, respec-
tively, CTC provides all possible distributions of Y, and then, outputs the sequence with
the maximum probability P(Y|X) . We used loss function to evaluate the performance of
CTC, which is the negative logarithmic likelihood of the output text sequence Y, as follows:

CTC(x) = − ln p(y∗|x) (7)
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3.5. Language Model

The language model estimates the corresponding probability of word sequences by
learning the words that appear in the text sentences, and then, generates the scores for
corresponding sequences. Finally, the word sequences are sorted according to the scores
generated by the acoustic model and the language model, and the word sequence with the
highest score is taken as the final unscrambling result.

In our helium speech unscrambling algorithm, we use the transformer model as the
language model. The transformer is mainly divided into four parts: input, encoders,
decoders and output [55]. The input first enters the encoder through a multi-head attention
layer. The output of the attention layer is passed to the feedforward neural network. The
decoder also contains the attention layer and the feedforward layer. In addition, there is a
masked multi-head attention layer [56].

The transformer adopts scaled dot-product attention to map a query and a set of
key-value pairs to an output, as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

dm
)V (8)

where the matrices Q ∈ Rn×dm , K ∈ Rm×dm and V ∈ Rm×dm represent queries, keys and
values; n and m denote the number of queries and keys (or values), and dm denotes the
representation dimension. Multi-head attention projects Q, K, V through h different linear
transformations and splices different attention results, as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (9)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (10)

where h is the head number, and the matrices WO ∈ Rdm×dm and WQ,K,V
i ∈ Rdm×dk are

trainable parameters.

3.6. Optimization of Unscrambling Algorithm

In real scenarios, communication between divers and people on land contains many
rounds of conversation, and the last sentence can provide useful information for the current
sentence. In speech recognition, this information is called context sensitivity. In a model
comprised of a CNN, CTC and a transformer, there are a total of 1.7 million parameters.
The number of training and testing parameters and the time costs of the network are huge.
To reduce the number of parameters, the proposed unscrambling algorithm should be
optimized. The proposed optimization algorithm combines DSC, a GLU and an FNN to
model context sensitivity, as shown in Figure 2.

DSC uses one convolution kernel for each channel, and then, splices the outputs of
all convolution kernels to obtain the final output. Compared with standard convolution
operation, DSC has fewer parameters and a lower cost. Additionally, the CNN in Section 3.4
uses a relu function as the activation function, and its function expression is as follows:

relu(x) =
{

0 x < 0
x x ≥ 0

(11)

The sparse processing forced by the relu function will reduce the effective capacity
of the model, leading to the model failing to learn effective features. In the optimization
algorithm, the swish activation function is used to replace relu function. The expression of
the swish function is as follows:

swish(x) = x · 1
1 + e−βx (12)
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Figure 2. The optimization algorithm.

The images of the two functions are shown in Figure 3. Both functions have lower
bounds but no upper bounds. Several experimental results show that the swish function
has better performance than the relu function, because the swish function makes up for the
shortcomings of relu and can alleviate the problem of gradient explosion.
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A GLU can be regarded as a CNN network that can process sequential data in parallel.
It only has output gates, which can control the output based on the sequential information’s
location. The architecture of the GLU is shown in Figure 4, and the expression is as follows:

H = (X×W + b)⊗ σ(X×V + c) (13)

where X×W + b and X×V + c contain the information that is passed to the next layer, H
represents the final output, σ is the sigmoid activation function and ⊗ is a product of the
matrix elements.

Information 2023, 14, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 3. The images of relu and swish. 

A GLU can be regarded as a CNN network that can process sequential data in paral-

lel. It only has output gates, which can control the output based on the sequential infor-

mation’s location. The architecture of the GLU is shown in Figure 4, and the expression is 

as follows: 

( ) ( )H X W b X V c=  +   +  (13) 

where X W b + and X V c + contain the information that is passed to the next layer, H

represents the final output,   is the sigmoid activation function and   is a product of 

the matrix elements. 

Output

Ew=X   W+b Ev=X   V+c

input



 

Conv Conv

 

Figure 4. The GLU architecture. 

In order to improve its ability to model context sensitivity, a feedforward neural net-

work is added to the GLU, which can transform the output space (H) of the GLU, enhance 

the effective capacity of the GLU network and improve the performance of the model. The 

feedforward neural network is a linear change layer and consists of an activation function. 

The activation function also uses swish. The FNN takes the output of Figure 4, H, as the 

input, and can be expressed as follows: 

Figure 4. The GLU architecture.

In order to improve its ability to model context sensitivity, a feedforward neural
network is added to the GLU, which can transform the output space (H) of the GLU,
enhance the effective capacity of the GLU network and improve the performance of the
model. The feedforward neural network is a linear change layer and consists of an activation
function. The activation function also uses swish. The FNN takes the output of Figure 4, H,
as the input, and can be expressed as follows:

FNN(H) = swish(H ×W + b)
= (H ×W + b) · 1

1+e−β(H×W+b)

= (H ×W + b) · sigmoid[β(H ×W + b)]
(14)

Thus, we can obtain the helium speech unscrambling algorithm, which is based on
deep learning, as follows:

• Construct a helium speech corpus.
• Successively construct two corpora: an isolated Chinese helium speech corpus and a

continuous Chinese helium speech corpus.
• Perform preprocessing and feature extraction (we extracted Fbank features as the

input of the acoustic model).
• Train the model.
• Input the extracted features to the CNN to reduce the feature dimension, and then,

input the features to CTC to obtain the pinyin sequence with the maximum probability.
Input the pinyin output of the acoustic model to the transformer model to obtain the
output of Chinese words.

• Test the model.
• Input the test set into the model to obtain the word error rate (WER) of the model.
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Generally, traditional helium speech unscramblers require operators to judge whether
the corrected helium speech is clear, which is subjective. Our proposed helium speech un-
scrambling method can objectively judge the effectiveness of the algorithm using the WER.

4. Construction of Helium Speech Corpus

Helium speech is a term used to describe the voice of divers speaking in high-pressure
helium–oxygen environments. There are two necessary conditions for its formation: high
pressure and a helium–oxygen environment. Moreover, deep-sea saturation diving is a
highly specialized field. Divers need to acclimatize to the underwater environment in a
living chamber filled with a mixture of helium–oxygen gas before working. After diving,
they need to decompress; otherwise, they will suffer from the bends, which can threaten
their lives. In the course of their work, a diver’s daily life is very inconvenient. In sum,
deep-sea saturation diving is not only time-consuming, but also dangerous, which makes
helium speech a low-resource speech.

A corpus is a structured dataset of language instances that forms the heart of many
natural language processing (NLP) tools. In recent years, numerous corpora of various
scales have been established [57]. However, there is no corpus of helium speech available
in China. In order to combine speech recognition technology with helium speech, a helium
speech corpus is necessary. Due to the particularity of helium speech and the limitation of
experimental conditions, a corpus of helium speech under normal pressure was constructed
for preliminary study. We successively constructed two corpora: an isolated helium speech
corpus and a continuous helium speech corpus. The steps that we followed to build the
helium speech corpus are as follows:

(1) Selecting text content:

The first task when building a corpus is to collect corpus texts. With the popularization
of the Internet in daily life, there were many text materials available for us to choose from.

For the isolated helium speech corpus, text selection was relatively simple. We selected
10 professional Chinese words in the field of communication. For the continuous helium
speech corpus, we chose press releases and Mandarin exams.

(2) Collecting raw speech:

Once the text is prepared, the next task is to collect raw speech via recording. We
bought dozens of tanks of 99.99% helium, and we simulated a normal-pressure helium–
oxygen environment by pumping helium into balloons and inhaling it. Phones (iPhone
11) were used as recording devices, and the recording environment was a quiet office
measuring 20 square meters. In order to eliminate the effect of ambient noise on text
recording, we recorded the text at night when noise at its lowest. To obtain an isolated
corpus, the recording was carried out by two men and one woman. Each person read an
isolated word about 70 times and recorded each instance. There were 2106 recordings in
total. For the continuous corpus, we made full use of the text data in the network and
selected 11,890 sentences to construct a continuous corpus. These sentences were read by
14 men and 12 women and recorded. The length of all recordings was approximately 25 h.
We converted the format of all audio files to WAV files and set the sampling frequency to
16 kHz.

Further, we recorded the vowel "a" in the same way and compared the formant
frequency of this with that in normal environments, as shown in Figures 5 and 6. The
formant information was obtained using a cepstrum [58]. The first four formant frequencies
of normal speech were 941 Hz, 2603 Hz, 4231 Hz and 6064 Hz, as shown in Figure 5,
and the first four formant frequencies of helium speech were 1271 Hz, 4242 Hz, 5324 Hz
and 6942 Hz, as shown in Figure 6. The speech following the inhalation of helium gas
showed an increase in formant frequency and variation in bandwidth compared with
normal speech. This is consistent with typical features of helium speech. Therefore, it is
feasible to use helium speech at atmospheric pressure instead of helium speech at high
pressure for preliminary research.
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(3) Converting the file format:

The files recorded using phones were MP4 files, which needed to be converted into
WAV files. To achieve this, we directly used the existing software. The sampling rate of the
converted files was set to 16 KHz.

(4) Labeling the corpus:

To save time spend on manual labeling, an algorithm was designed to automatically
generate label files. For the convenience of explanation, the following parameters were
introduced into the algorithm:

Namei: the file name of the i-th file.
Seni: the text content corresponding to the i-th recording.
Loci: the location of the i-th file.
Pini: the pinyin sequence of Seni.
Comi: the entire label of the i-th recording.
N: the number of sentences in the corpus.
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Lab: the content of the label files.
The process that the algorithm used to generate label files is shown in Figure 7.
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(5) Grouping recordings:

The available corpora generally contain training sets and test sets, and contain vali-
dation sets. In this paper, all the recordings were split into a training set, a test set and a
validation set, with a ratio of 8:1:1.

5. Experimental Results and Analysis
5.1. Setup

We used the constructed helium speech corpus to evaluate the performance of our
model. The CNN used in our model contained seven two-dimensional convolution layers,
and the pooling layer was a maximum pool. The transformer model contained six decoders
and encoders.

5.2. Isolated Helium Speech Recognition

We first carried out several experiments on the helium speech isolated word corpus.
In order to evaluate the influence of the transformer model on the recognition accuracy,
we trained and tested the isolated word model, using the CNN, CTC and the transformer
(model 1), and the isolated model without a transformer (model 2). The features extracted
were Fbank features. The performance of model 1 is shown with the error rate of Chinese
words, while the performance of model 2 is shown with the error rate of pinyin sentences.
The error rate of Chinese words is 8.62%, which is 0.32% lower than that of pinyin sentences,
as shown in Table 2.
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Table 2. WER of models with/without transformer.

WER on Validation Set (%) WER on Test Set (%)

model 1 0.09 8.62
model 2 0.09 8.94

Then, we placed the recordings of the same isolated words in one group and divided
the recordings into 10 groups. We tested these 10 groups on model 1 and model 2. Table 3
shows the error rate of these ten isolated words in model 1 and model 2, respectively. The
recognition accuracy of model 1 for each isolated word is higher than that of model 2.

Table 3. The error rate of 10 isolated words.

Model 1 Model 2

word 1 3.20 4.50
word 2 3.10 5.08
word 3 0.84 0.84
word 4 1.93 1.93
word 5 10.43 17.53
word 6 3.39 3.39
word 7 2.41 2.42
word 8 1.51 1.51
word 9 3.94 3.95
word 10 1.07 1.66

In Tables 2 and 3, the accuracy of the two models is shown to be good, and the model
with a transformer is better. This is because the transformer model can correct the errors in
the word sequence when converting the output pinyin sequence of the acoustic model into
the word sequence, and then, further reduce the error rate of the algorithm.

Finally, we tested the influence of model complexity on accuracy, and analyzed the
effects of the complexity of both the CNN and the transformer.

(1) The complexity of the CNN

First, we changed the CNN complexity by changing the number of convolution layers.
As mentioned above, the CNN in model 2 contained 10 convolution layers. We changed this
number and trained and tested all the models. Table 4 shows the error rate of model 2 when
the number of convolution layers changed. The data show that the number of convolution
layers has a great impact on the accuracy. When the number of convolution layers increases,
the accuracy of the model increases, but when the number of convolution layers continues
to increase, the accuracy regresses. Moreover, it was found that the model training time
also becomes longer with an increasing number of convolution layers. Therefore, the best
result can be obtained by setting the convolution layer to seven layers.

Table 4. WER of model 2 with different numbers of convolution layers.

The Number of Convolution Layers WER (%)

5 13.82
6 10.34
7 8.29
8 9.25
9 12.42
10 14.94

(2) The complexity of the transformer

We changed the transformer complexity by changing the number of encoder and
decoder blocks. In the transformer in model 1, there were six encoder and decoder blocks.
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Then, we tested the model with the number of blocks ranging from one to six, as shown in
Table 5.

Table 5. WER of model 1 with different numbers of blocks.

The Number of Blocks WER (%)

1 8.46
2 8.46
3 8.46
4 8.46
5 9.11
6 8.29

As the number of blocks changed, the error rate of model 1 changed little. The highest
and lowest values differed by only 0.65%. The results show that the number of blocks has
little effect on the error rate of the model.

5.3. Continuous Helium Speech Recognition

We carried out several experiments on the continuous helium speech corpus, and the
results are shown in Table 6.

Table 6. WER of continuous helium speech recognition model.

WER on Validation Set (%) WER on Test Set (%)

model 1 38.31 42.24
model 2 45.40 45.73

Table 6 shows the WER in the validation set and test set with/without a transformer
in the model. Table 6 illustrates that the transformer model can improve the model per-
formance. Table 6 also shows that the WER of the continuous helium speech recognition
model is not ideal. The most likely reason for the high WER may be the small size of the
continuous helium speech corpus. At present, most available corpora contain thousands
of hours of speech, while the continuous helium speech corpus contains only about 25 h.
Using a small number of data leads to model overfitting.

5.4. The Performance of DSCNN-GFNN

We tested the error rate of the optimization algorithm DSCNN-GFNN on the continu-
ous helium speech corpus, as shown in Table 7.

Table 7. WER of different algorithms in continuous helium speech.

WER of Validation Set (%) WER of Test Set (%)

1© CNN + CTC 45.40 45.73
2© CNN + CTC + transformer 38.31 42.24

3© DSCNN + CTC 35.94 37.29
4© DSCNN-GFNN + CTC 33.82 36.75

5© DSCNN-GFNN + CTC + transformer 29.64 32.98

Table 7 shows the WERs of different algorithms in continuous helium speech. The
WER of 5© in the test set was 12.75%, 9.26%, 4.31% and 3.77% lower than that of 1©, 2©,

3© and 4©. By comparing 1© and 3©, it can be concluded that the performance of the
depth-wise separable convolution is better than that of the standard convolution, and
the swish activation function is also better than the relu activation function, because both
the depth-wise separable convolution and swish can improve the effective capacity of
the model. By comparing 3© and 4©, it can be concluded that the GLU has the ability to
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model context sensitivity and eliminate useless information. The FNN can increase the
GLU’s capacity to store information, thus increasing the effective capacity of the GLU and
improving the algorithm performance. By comparing 1© and 2©, and 4© and 5©, it can be
concluded that the transformer can correct errors in word sequences, thus reducing the
algorithm’s error rate.

Line spectrum frequency (LSF) is one of the expressions of speech signals in the
frequency domain, and contains information on the formant frequency, formant bandwidth,
formant amplitude and pitch [59]. We used LSF to evaluate the effectiveness of our
algorithm 5© and compared this with the speech correction method based on the generalized
regression neural network (CM-GRNN) [59] and the enhanced linear prediction coding
algorithm (ELPCA) [22]. We used the letter “a”, with a 30 ms frame-length and 10 ms
frame-shift voice signal, as the test signal. The sampling frequency was 8000 Hz.

Figure 8 provides a comparison of the LSF performance of different algorithms. We
plotted 10 LSF values. These show that the LSF of speech corrected by algorithm 5© is
almost the same as that of raw speech. There are some errors between the raw speech
and speech corrected by the CM-GRNN algorithm or the ELPCA algorithm. This suggests
that algorithm 5© can correct the distortions of helium speech more effectively than the
CM-GRNN and ELPCA algorithms.
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6. Conclusions

To ensure that the unscrambler can clearly unscramble helium speech and adapt to
the dynamic changes that occur in diving operations, this paper proposed a new helium
speech unscrambling model based on deep learning, which combines preprocessing, feature
extraction, an acoustic model and a language model. During preprocessing, we used a high-
pass filter to pre-emphasize the helium speech signal and a Hamming window to reduce
the framing error; during feature extraction, we used FFT and Mel-scale triangular filters
to obtain the Fbank features; in the acoustic model, we used CTC to solve the alignment
of the helium speech feature sequence; and in the language model, we used scaled dot-
product attention to map a query and a set of key-value pairs in the transformer model.
Finally, we used DSC, GLU and FNN to reduce the complexity of the model’s helium
speech unscrambling. Since there is no helium speech corpus available at present and it
is very difficult to collect helium speech, we constructed normal-pressure helium speech
corpora for preliminary studies. We trained and tested the model on the corpora using
isolated words and continuous helium speech. The experimental results show that the
accuracy of isolated word recognition reaches up to 91.38%, and the optimized algorithm
can reduce the WER of continuous helium speech recognition by 9.26%. Further, the
transformer can improve the helium speech unscrambling performance. Compared with
existing unscrambling algorithms for helium speech, our proposed unscrambling algorithm
can more effectively correct the distortions of helium speech.
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In future work, we will collect helium speech during real diving scenarios to test the
effectiveness of our model and its algorithm.
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