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Abstract: Computation-intensive vehicle tasks sharply increase with the rapid growth of intelligent
vehicles. The technology of Mobile Edge Computing (MEC) has the possibility of assisting vehicles
with computation offloading. To solve the problem of computation resource management and guar-
antee the security of resource transaction, we jointly combine the MEC network and the blockchain
networks to build a blockchain based MEC offloading model. The non-cooperative interactions
between MEC server and vehicles formulate a two-stage Stackelberg game in an aim to maximize
their benefits and information security. We theoretically demonstrate the unique existence of Nash
equilibrium, which enables participants to decide their optimal strategies. Finally, the performance
of the proposed model is analyzed by conducting simulation experiments. Our proposed model
optimizes resource allocation and also improves the security of the whole network.

Keywords: mobile edge computing; blockchain; stackelberg game; resource allocation

1. Introduction

The development of urban intelligent transportation incurs people’s convenient travel.
Many innovative vehicle applications have emerged, such as intelligent driving control, on-
board online multimedia, image assisted navigation, and so on. Related researchers have
conducted a lot of studies and experiments on its main techniques (e.g., gait recognition,
Spatial-temporal prediction, and pedestrian flow prediction) [1–5]. The implementation
of these technologies not only requires significant computing and caching resources, but
also presents the serious challenge on limited energy a vehicle can carry. It is difficult for a
vehicle to support such a huge computational workload and energy consumption during
driving [6]. For good Quality of Service (QoS), relevant researchers have conducted more
detailed and in-depth studies [7–11], which to some extent alleviate the computational
workload and energy consumption of vehicles. However, these studies focused on optimiz-
ing the models and algorithms for vehicle applications instead of offloading the overloaded
computational tasks of vehicles. The development of mobile edge computing (MEC) has
led to a significant role in urban smart mobility [12]. It is a promising technology that
allows vehicles to offload their local computing tasks to nearby MEC servers. So, the vehi-
cle’s own computational workload and energy consumption can be sharply reduced [13].
However, in order to maximize its revenue, the MEC server prefer to price the computing
resources it provides to vehicles. According to MEC server’s pricing, the vehicles next
decide the number of its offloading computation tasks for their cost minization. So, The
MEC server and vehicles interact with each other to determine an optimal resource pricing
and management for their interest maximization. Zeng et al. [14] analyzed the conflict
of interest between MEC servers and vehicles using the Stackelberg game to cooperate
MEC servers and vehicles. This approach effectively alleviates the problem of limited
computing resources for vehicles, however, it fails to take security issues into account.
There is a large amount of data exchange and transaction records in the MEC network. The
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entire network is likely to be vulnerable, which even leads to unacceptable errors. The
authors in [15,16] introduced an economic computing resource management based on the
Stackelberg game model, which also took into account blockchain for network security.
However, these works employ proof-of-work (PoW) protocols to achieve consensus in
the blockchain. Block mining and synchronization can lead to high energy costs and long
latency, making it unsuitable for vehicles with limited computational resources. To address
the above challenges, we utilize Stackelberg game to optimal the resource allocation and
pricing model in an attempt to maximize each participant’s revenue. Moreover, we imple-
ment the blockchain by a POS mechanism to guarantee offloading safety, which consumes
less energy in comparison with the POW mechanism [17]. Our main contributions are
enumerated as follows.

• We introduce MEC to offload the computational tasks of vehicles for alleviating their
computational and energy burdens. The security risks are also considered in the
computational offloading process by integrating the blockchain network into the MEC
network.

• In the blockchain network, the POS mechanism is used instead of the POW mechanism,
avoiding the problem that POW will generate huge energy consumption.

• We analyze interactions between participants through the Stackelberg game and prove
theoretically to achieve a unique Nash equilibrium. Conflicts of interest of participants
are resolved by rationally allocating resource and pricing in the network.

2. Blockchain-Based MEC Network Architecture

In blockchain-based MEC network architecture, both MEC networks and blockchain
are built based on computation resources and wireless communication [18]. The com-
bination of blockchain technology into MEC networks can fully utilize their respective
advantages. On the one hand, blockchain protects the accuracy, consistency and validity of
data in a transparent way [19]. In the MEC network, the data generated by the vehicles
and the MEC server during the computational offloading process are encrypted and stored
on blocks of the blockchain. It is feasible for privacy protection and security without
any third-party control mitigation. Blockchain technology has the practical availability in
transaction market across different infrastructures and operators under insecure network
conditions. On the other hand, the nodes in the blockchain need to have sufficient comput-
ing resources for generating blocks, broadcasting and verifing them through the network.
The complete blockchain needs to be stored in all the blockchain nodes for ensuring the
accuracy, consistency, and validity of their data. The servers deployed in the MEC network
have enough computing and storage resources to meet these computation and caching
demands of the blockchain [20,21].

Participants in the Blockchain-Based MEC Network Architecture

In this paper, the blockchain network is used as the backbone of the decentralized
computing resource allocation network [22]. Each participant (the MEC server equipped in
the base station, the requesting vehicle on the road) maps itself as a node in the blockchain
network, as shown in Figure 1. The MEC server deployed in the base station has sufficient
computing resources to offload their computing tasks of the nearby requesting vehicles.
Meanwhile, the MEC servers are considered consensus nodes equipped with roughly
synchronized clocks to perform the consensus process in the blockchain network. All recent
transaction data are written into a block and stored, broadcast, and verified by the consensus
node. Each block stores a certain number of transaction records generated at fixed intervals
and connects to the previous block in the block list for forming an ordered blockchain.
Due to the requesting vehicles are constrained by energy and computing resources [6],
their computing tasks are offloaded to a nearby MEC server for task execution. In return,
the MEC server obtains proper economic compensation from requesting vehicles. All
requesting vehicles participate in the blockchain network as light nodes and only perform
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actions, such as requesting task offloading, transmitting computation tasks, and receiving
computation results, as opposed to consensus nodes mapped by the MEC server.

Figure 1. Blockchain-based MEC Network. The requesting vehicles and MEC servers in the MEC
network are mapped as different nodes in the blockchain, where the MEC servers are mapped as
nodes of performing block generation and validation, and the requesting vehicles are mapped as
light nodes of only performing actions.

3. System Model

This section presents the blockchain-based MEC model shown in Figure 1. The
notations of frequently used symbols are explained in Table 1.

Table 1. The main notation used in this paper.

Parameter Meaning

cj The MEC server indexed by j in the proposed model
vi, i ∈ Nj The requesting vehicle vi connected to MEC server cj

bi,j The bandwidth between vehicle vi and MEC server cj
hi,j The channel gain vehicle between vehicle vi and MEC server cj
σij The noise variances of vehicle vi to MEC server cj
wi The total computational workload required for the task of vehicle vi
ti The uplink transmission time of the task submitted by vehicle vi
Xi The computational workload required per unit of task data
pi,j The transmit power between vehicle vi and MEC server cj
sj The computation resource pricing of MEC server cj
Pj The probability of selecting server cj as a block producer

ki, Kj The energy coefficient of vehicle vi and MEC server cj
fi, Fj The CPU computing capability of of vehicle vi and MEC server cj
Ri,j The transmission rate between vehicle vi and MEC server cj

Rv, Rc The block generation reward and block consensus reward
Ei,j The total energy consumed by vehicle vi, i ∈ Nj
Ej The total energy consumed by MEC server cj

It is assumed that in this model, there are a total of m MEC servers in the MEC
network, and each server is deployed at the appropriate location. The collection of MEC
servers is denoted as

{
c1, c2, . . . , cj, . . . , cm

}
. Each MEC server connects different number of

requesting vehicles within its communication range. We use Nj =
{

v1, v2, . . . , vi, . . . , vnj

}
to denote the set of requesting vehicles, connecting to MEC server cj. Assume that the
computing task Ai : (wi, Ti, Xi) is generated by the requesting vehicle vi, i ∈ Nj, where wi
is the total workload to finish the task Ai, Ti is the time delay that vehicle vi can tolerate,
and Xi is the computational workload required for per unit of task data.
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3.1. Requesting Vehicle Model
3.1.1. Communication Model

Requesting vehicles and MEC server communicate via a wireless channel. Assume
that pi,j is the transmit power of requesting vehicle vi on a subchannel of MEC server cj. So,
the wireless channel rate Ri,j is defined as [23].

Ri,j = bi,j log2

(
1 +

pi,jhi,j

σ2
i,j

)
(1)

where bi,j is the bandwidth of the subchannel between the requesting vehicle vi and MEC
server cj, hi,j and σi,j represent the channel gain on the subchannel and the additional white
Gaussian noise power, respectively [17].

3.1.2. Energy Consumption Model

We here neglect the downlink transmission time of a task since the the data size of
task result is small. Assume that the uplink transmission time of task Ai is ti. It is easily
seen that ti < Ti. So, the size of the task Ai is offloaded to MEC server cj for execution
as Ri,jti [24]. The energy cost of requesting vehicle vi to complete a computing task Ai
mainly consists of local computing energy consumption and uplink transmission energy
consumption. Thus, the total energy consumption Ei,j is

Ei,j = Elocal
i,j + Etrans

i,j = ki f 2
i
(
w− Ri,jtiXi

)
+ pi,jti (2)

where ki is the energy coefficient that is dependent on the chip architecture of vehicle vi, fi
is the CPU computing capability of the vehicle vi, and pi,j is the transmit power from the
vehicle vi to the MEC server cj [25]. Elocal

i,j represents the energy consumption generated
by the local computation of the requesting vehicle vi, and Etrans

i,j represents the energy
consumption generated by uplink data transmission from vehicle vi to MEC server cj.

3.1.3. Payment Model

The requesting vehicle needs to pay the MEC server for the corresponding computa-
tional resources while submitting computational task to the MEC server for execution. It is
supposed that sj is the unit cost of the resource in MEC server cj, and pi,j can represent the
processing power allocated by MEC server cj to the requesting vehicle vi. Then, the Mi,j is
defined to represent the payment paid by requesting vehicle vi to MEC server cj [14],

Mi,j = sj pi,j (3)

3.1.4. Cost Function

The cost function of the requesting vehicle vi can be is denoted as

Ui
(

pi,j
)
= λiEi,j + ϕi Mi,j (4)

The total cost of the requesting vehicle vi consists of two terms in Equation (4). The
first term is the energy consumption of requesting vehicle vi and the second term is the
fee paid to the MEC server cj. The parameter sj is the resource pricing of MEC server cj.
The parameters λi and ϕi are the energy consumption decision weight and the payment
cost decision weight, constrained by λi + ϕi = 1 [14]. When the requesting vehicle is
concerned with its own energy consumption, the parameter λi is set to a larger value and
the parameter ϕi is set to a smaller value. Conversely, when the vehicle is concerned with
the computation offloading, ϕi will set to a larger value and λi is set to a smaller value.
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To facilitate the subsequent work, we insert Equations (2) and (3) into Equation (4)
and expand them to obtain a more detailed description of the cost function, which is

Ui
(

pi,j
)
= λi

(
ki f 2

i
(
wi − Ri,jtiXi

)
+ pi,jti

)
+ ϕisj pi,j (5)

3.2. MEC Server Model
3.2.1. Consensus Model

Considering the fact of the POW mechanism that nodes operates an irreversible hash
function to derive the solution of the hash value of a particular block by a large number
of calculations, it incurs excessive waste of resources in the blockchain network [26]. We
thus choose the PoS consensus mechanism with low energy consumption to implement the
blockchain network [27]. Without loss of generality, the choice of a block producer (MEC
server) for a new block depends on the number of its “shares”. If the block is successfully
added to the blockchain, the selected MEC server will be rewarded. Conversely, if the
block producer has fraudulent transactions or blocking, it will lose future equity and rights
to participate in the consensus process. To motivate MEC servers to provide computing
services with the requesting vehicles, we calculate the “shares” of each MEC server by the
service benefit it received in the most recent period. Thus, the probability of selecting a
server as a block producer in the next period is determined by the ratio of its service reward
to the total service reward of other servers in the current period, denoted as

Pj =
Sj

∑m
k=1,k 6=j Sk

(6)

3.2.2. Block Reward Model

The blockchain nodes involved in block generation and consensus can all obtain
certain rewards from the blockchain, which are the rewards Rv for generating blocks and
the rewards Rc for verifying blocks, respectively. Since only one blockchain node can be
elected as the block generator for each block, we are able to estimate the block generation
probability of each blockchain node according to Equation (6). Accordingly, the reward
expectation of MEC server cj as a blockchain node is denoted,

PjRv +
(
1− Pj

)
Rc (7)

where
(
1− Pj

)
Rc indicates that nodes fails to elect as the generator, and instead act as the

block validator.

3.2.3. Energy Consumption Model

The total energy consumption generated by the MEC server cj in the process of
providing computing services to the requesting vehicles in its communication range can be
expressed as

Ej = ξKjF2
j

nj

∑
i=1

Ri,jtiXi (8)

where ξ is the weight to balance the energy consumption and the service benefit, Kj
is the energy coefficient, and Fj is the CPU computing capability of the MEC server cj.

∑
nj
i=1 Ri,jtiXi represents the total workloads from all requesting vehicles.

3.2.4. Utility Function

The utility function of the MEC server cj can be expressed as

Uj
(
sj
)
=

nj

∑
i=1

sj pi,j + PjRv +
(
1− Pj

)
Rc − ξKjF2

j

nj

∑
i=1

Ri,jtiXi (9)
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∑
nj
i=1 sj pi,j is the service benefit of providing computing resources to all of requesting

vehicles.

4. Stackelberg Game Analysis
4.1. Description of the Problem

In the system model, a conflict of interest exists between the MEC server and the
requesting vehicles. Participants will choose their own best strategies to maximize their
interests. The details are described in the following two subsections.

4.1.1. Cost Minimization for Requesting Vehicles

The cost of requesting vehicles is shown in Equation (5). Each requesting vehicle
decides an offloading strategy based on the resource pricing of the MEC server to minimize
its cost while satisfying its requirements for QoS. So, the optimal problem of a requesting
vehicle is described as

p∗i,j = arg min
pi,j>0

Ui
(

pi,j
)

(10)

4.1.2. Utility Maximization of MEC Servers

Since the offloading strategies of each requesting vehicle is determined on the basis of
the MEC server’s resource pricing, the MEC server needs to set a reasonable resource price
to increase its revenue and improve its competitiveness in block generation. Correspond-
ingly, the optimal problem of the MEC server is described as

s∗j = argmax
sj>0

Uj
(
sj
)

(11)

4.2. Formulation of Two-Stage Stackelberg Game

Stackelberg game divides the players into leader and follower to model behaviors of
the two types of players. Both sides make their decisions in stages. The leader first acts
in a stage and then the followers should respond to the leader’s action in the other stage.
Specially, the leader initiates a pricing strategy, on which the followers choose their response
strategies and then submit their response strategies to the leader. Such strategy-making
processes of both sides repeat until achieving Nash equilibrium.

We here build a two-stage Stackelberg game for describing the interactions of resource
allocation and pricing among requesting vehicles and its connected MEC server. Equations
(10) and (11) jointly formulate such game G =

{
Nj,
{

pi,j
}

i∈Nj
,
{

Ui
(

pi,j
)}

i∈Nj

}
. The MEC

server acts as the leader of requesting vehicles to decide the resource pricing. Requesting
vehicles act as the followers to determine their resource allocation strategies. The backward
induction is used to analyze such a Stackelberg game. While the requesting vehicle requests
computing resources from the MEC server, the MEC server first announces its resource
pricing. The requesting vehicle then decides the size of the task to be offloaded to MEC’s
server. This process continues until Nash equilibrium reaches. The optimal strategies of
leader and followers accord to the Nash equilibrium point [28,29].

Definition 1. Nash equilibrium in G: Suppose that the optimal strategies of the requesting vehicle
vi and the MEC server cj are denoted as

{
p∗i,j, s∗j

}
. Let p∗j =

(
p∗1,j, . . . , p∗i,j, . . . , p∗nj ,j

)
represent

the optimal strategy vector of requesting vehicles connecting to MEC server cj. Nash equilibrium
implies that neither the leader nor the follower can further increase their gains by unilaterally
changing the strategy. Therefore, requesting vehicle and MEC server’s strategies always satisfy

Ui

(
p∗i,j, p∗−i,j, s∗j

)
≤ Ui

(
pi,j, p∗−i,j, s∗j

)
(12)

Uj

(
p∗i,j, s∗j

)
≥ Uj

(
p∗i,j, sj

)
(13)
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where p∗−i, j =
(

p∗1, j, . . . , p∗i−1, j, p∗i+1, j, . . . , p∗nj , j

)
is the optimal strategy vector of request-

ing vehicles except vehicle vi.

4.2.1. Vehicle-Level Game Analysis

To efficiently complete the local computing tasks and minimize its energy consumption,
the requesting vehicle decides how many computing tasks are offloaded to the MEC server
based on its energy reserves and the MEC server’s resource pricing. In this section, we
explore the optimal strategy for a requesting vehicle vi. Substituting (1) into (5), the cost
function is rewritten as

Ui
(

pi,j
)
= λi

(
ki f 2

i

(
wi − bi,j log2

(
1 +

pi,jhi,j

σ2
i,j

)
tiXi

)
+ pi,jti

)
+ ϕisj pi,j (14)

Ultimately, the cost function Ui
(

pi,j
)

of the requesting vehicle vi with respect to pi,j
can be obtained,

Ui
(

pi,j
)
= λiki f 2

i wi − λiki f 2
i bi,j log2

(
1 +

pi,jhi,j

σ2
i,j

)
tiXi + λi pi,jti + ϕisj pi,j (15)

Then, we calculate the first derivative of Ui
(

pi,j
)

with respect to pi,j,

∂Ui
(

pi,j
)

∂pi,j
= −

λiki f 2
i bi,jtiXihi,j(

σ2
i,j + pi,jhi,j

)
ln 2

+ λiti + ϕisj (16)

Based on (16), the second derivative of Ui
(

pi,j
)

is obtained,

∂2Ui
(

pi,j
)

∂p2
i,j

=
λiki f 2

i bi,jtiXih2
i,j(

σ2
i,j + pi,jhi,j

)2
ln 2

(17)

It is obviously find that
∂2Ui(pi,j)

∂p2
i,j

is always positive. Thus the cost function Ui is strictly

convex, which implies the uniqueness of optimal solution p∗i,j. Let Equation (16) be equal to 0,

∂Ui
(

pi,j
)

∂pi,j
= −

λiki f 2
i bi,jtiXihi,j(

σ2
i,j + pi,jhi,j

)
ln 2

+ λiti + ϕisj = 0 (18)

By solving (18), we obtain the optimal strategy of requesting vehicle vi as

p∗i,j =
λiki f 2

i bi,jtiXi(
λiti + ϕisj

)
ln 2
−

σ2
i,j

hi,j
(19)

4.2.2. Server-Level Game Analysis

In order to rationally allocate the computational resources it holds and maximize its
service revenue, the MEC server needs to adjust its resource pricing based on the amount
of computational resources requested by the current requesting vehicle. In this subsection,
we will explore the optimal strategy of the MEC server.

Based on the service benefit ∑
nj
i=1 sj pi,j of the MEC server cj, the probability of success-

fully selecting cj as a block generator is rewritten as

Pj =
∑

nj
i=1 sj pi,j

∑m
k=1,k 6=j ∑nk

i=1 sk pi,k
(20)
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Therefore, the utility function of the MEC server cj with POS mechanism is denoted as

Uj
(
sj
)
=

nj

∑
i=1

sj pi,j +
∑

nj
i=1 sj pi,j

∑m
k=1,k 6=j ∑

nk
i=1 sk pi,k

Rv +

(
1− ∑

nj
i=1 sj pi,j

∑m
k=1,k 6=j ∑

nk
i=1 sk pi,k

)
Rc

−ξKjF2
j

nj

∑
i=1

bi,j log2

(
1 +

pi,jhi,j

σ2
i,j

)
tiXi

(21)

Substituting p∗i,j into Equation (21), the utility function in (21) is rewritten as

Uj
(
sj
)
=

(
1 + (Rv−Rc)

∑m
k=1,k 6=j ∑

nk
i=1 sk pi,k

) nj

∑
i=1

sj

(
λiki f 2

i bi,jtiXi

(λiti+ϕisj) ln 2
−

σ2
i,j

hi,j

)
+ Rc

−ξKjF2
j

nj

∑
i=1

bi,j log2

(
1 +

λiki f 2
i bi,jtiXihi,j

(λiti+ϕisj)σ2
i,j ln 2

)
tiXi

(22)

We calculate the first derivative of Uj
(
sj
)

on sj,

∂Uj(sj)
∂sj

=

(
1 + (Rv−Rc)

∑m
k=1,k 6=j ∑

nk
i=1 sk pi,k

) nj

∑
i=1

(
λiki f 2

i bi,jtiXi

(λiti+ϕisj) ln 2
−

σ2
i,j

hi,j
− sj

λiki f 2
i bi,jtiXi ϕi

(λiti+ϕisj)
2

ln 2

)
+ξKjF2

j

nj

∑
i=1

bi,jtiXi ϕi

(λiti+ϕisj) ln 2

(23)

Moreover, the second derivative of Uj
(
sj
)

on sj is calculated as,

∂2Uj
(
sj
)

∂s2
j

= −
(

1 +
(Rv − Rc)

∑m
k=1,k 6=j ∑nk

i=1 sk pi,k

) nj

∑
i=1

(
2λ2

i ki f 2
i bi,jt2

i Xi ϕi(
λiti + ϕisj

)3 ln 2

)
− ξKjF2

j

nj

∑
i=1

bi,jtiXi ϕ
2
i(

λiti + ϕisj
)2 ln 2

(24)

Based on Equation (24), the second derivative of Uj
(
sj
)

is obviously negative. So,
the utility function Uj is strictly concave. Since the concave function has a unique global
optimal solution, the equilibrium point of the game is s∗j . In order to obtain the optimal
strategy for the MEC server cj, it is necessary to find the solution of the following equation,

∂Uj(sj)
∂sj

=

(
1 + (Rv−Rc)

∑m
k=1,k 6=j ∑

nk
i=1 sk pi,k

) nj

∑
i=1

(
λiki f 2

i bi,jtiXi

(λiti+ϕisj) ln 2
−

σ2
i,j

hi,j
− sj

λiki f 2
i bi,jtiXi ϕi

(λiti+ϕisj)
2

ln 2

)
+ξKjF2

j

nk
∑

i=1

bi,jtiXi ϕi

(λiti+ϕisj) ln 2
= 0

(25)

We see that s∗j and p∗i,j are the optimal strategies of the MEC server and the requesting
vehicle, respectively. The Equations (16) and (23) guarantee the unique Nash equilibrium.
It is feasible for each requesting vehicle to obtain its optimal strategy according to (19).
However, because of the non-linearity of (25), it is difficult to directly obtain the optimal
solution s∗j . Instead, we employ the gradient descent method to iteratively approximate the
optimal solution s∗j [30–33].

5. Simulation Experiments

In this paper, simulation experiments are conducted using python to evaluate our
proposed scheme. We begin with the parameter setting and then display the numerical
simulation results for illustration.

5.1. Parameter Setting

In this simulation scenario, 10 MEC servers are deployed in the system. Each server
covers 60–100 requesting vehicles, and the delay tolerance interval for offloading tasks is
0.7–0.9 ms. The bandwidth of each subchannel is 5 MHz, the noise power of the subchannel
is 60 dB, and the channel gain on the subchannel is 54–57 dBm. The resource pricing of the
server is subject to 0.4–1.0. The weights λi and ϕi are randomly generated, respectively,
and their sum is 1. The main parameters we used in the simulation are shown in Table 2.



Information 2023, 14, 206 9 of 11

Table 2. The simulation parameters. m is the number of MEC servers, nj is the number of requesting
vehicles covered by the jth server, bi,j, hi,j and σij are used to describe the current wireless channel
environment, ti is the time delay tolerated by the vehicle vi, λi and ϕi are the weight parameters used
to balance the energy consumption and resource cost of the requesting vehicles, and ξ is the weight
parameter for the energy consumption of the MEC servers.

Parameter Value Parameter Value

m 10 ti 0.7–0.9 ms
nj 60–100 λi 0.5–0.65
bi,j 5 MHz ϕi 0.35–0.5
hi,j 54–57 dBm ξ 0.02
σij 60 dB

5.2. Analysis of Results

We use the gradient descent method to find the optimal strategy for the MEC servers.
Figure 2a shows how to find the optimal resource pricing in the algorithm. Each MEC
server decides the resource pricing based on its current network environment and the
number of requesting vehicles. As the number of iterations increases, the prices set by MEC
servers gradually approximate their own optimal strategies. It is seen from Figure 2a that
the proposed algorithm converges to the optimal value. It indicates that each MEC server
is able to find its optimal resource pricing for maximizing its revenue.

Figure 2. (a) is an iterative process of finding the optimal strategy using the gradient descent method
for 10 MEC servers, (b) is the effect of the number of vehicles and the computational cost of vehicles
on the MEC server utility, (c) is the impact of resource pricing and channel conditions on MEC server
utility and (d) is the impact of resource pricing and energy consumption on transmit power.

We next observe the effect of the number of requesting vehicles on the server’s utility.
Figure 2b shows that the average effect of all servers increases with the increase in requests
for vehicles. Besides, with the increasing energy consumption of requesting vehicles, it has
more significant influence on the MEC server utility becomes more pronounced.
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We are also exploring the effect of the MEC server’s resource price on its utility.
Figure 2c shows the simulation results. It is found that the utility of the MEC server starts
increasing while the resource price improves. However, its benefit then decrease as the
resource price increases, exceeding the optimal strategy point of the Stackelberg game.

Lastly, we investigate the effect of the MEC server’s resource pricing on the transmit
power of the requesting vehicle. The results are shown in Figure 2d. While the resource
price gradually increases, the requested transmit power decreases. It indicates that a high
resource price incurs a low computing resource allocation. As users attach importance to
energy consumption, more computing tasks would be offloaded to the MEC server. Such
behavior is aimed to reduce its own energy consumption.

6. Conclusions

To improve the resource utilization and security of the MEC network, this paper
combines the MEC network with the blockchain network to propose a task offloading
system. Especially, the PoS mechanism in the blockchain network is employed to ensure
the data’s safety in the MEC network. The offloading interactions between MEC servers
and requesting vehicles formulate a two-stage Stackelberg game to find their optimal
strategies for revenue maximization. We also prove to achieve Nash equilibrium, which
indicates the uniqueness of optimal strategies for MEC servers and requesting vehicles.
The performance of our proposed system model is discussed by analyzing the variable
factors in simulation experiments. Such system is built to assist MEC servers with their
computation resource management. In the future work, we will furthermore explore the
dynamic the computation offloading in the blockchain-based MEC network.
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