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Abstract: Currently, machine learning (ML) technologies are widely employed in the automotive field
for determining physical quantities thanks to their ability to ensure lower computational costs and
faster operations than traditional methods. Within this context, the present work shows the outcomes
of forecasting activities on the prediction of pollutant emissions from engines using an artificial neural
network technique. Tests on an optical access engine were conducted under lean mixture conditions,
which is the direction in which automotive research is developing to meet the ever-stricter regulations
on pollutant emissions. A NARX architecture was utilized to estimate the engine’s nitrogen oxide
emissions starting from in-cylinder pressure data and images of the flame front evolution recorded
by a high-speed camera and elaborated through a Mask R-CNN technique. Based on the obtained
results, the methodology’s applicability to real situations, such as metal engines, was assessed using
a sensitivity analysis presented in the second part of the work, which helped identify and quantify
the most important input parameters for the nitrogen oxide forecast.
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1. Introduction

Increasingly stringent pollutant emission standards and the fuel economy require-
ments put high demands on research into the efficiency of internal combustion engines
(ICEs) [1,2]. OEMs are currently developing innovative strategies for future high-efficiency
engines able to address this challenge, such as engine boosting and downsizing [3], low-
temperature combustions (LTCs) [4], water injection [5,6] and lean [7,8] and/or EGR-
diluted mixtures [9]. However, during the engine calibration process, the optimization of
the efficiency and emissions requires engine parameters to be adjusted through extensive
activities [10]. Moreover, the fine control of important operation variables can sometimes
be hard to reach due to the inherent limitations of the measuring instruments [11,12].

Currently, machine learning (ML) approaches are widely used to solve problems in
the automotive field, thanks to their ability to identify the intrinsic relationship between the
input parameters and the engine response [13,14], with lower computational costs and faster
operations than traditional methods [15,16]. ML algorithms demonstrated excellent results
in predicting engine parameters such as pressure [17], fuel consumption [18], exhaust gas
temperature [19], power [20] and emissions [21].

Considering the latter, Yaopeng Li et al. [21] employed an artificial neural network
(ANN) with a genetic algorithm (GA) to optimize a direct dual fuel stratification (DDFS)
strategy, starting from a numerical model of a light-duty diesel engine based on the General
Motors 1.9 L platform. The optimized parameters (i.e., in-cylinder pressure and tempera-
ture, EGR rate, injection timing of fuels) were validated across a wide operating range. The
performance was compared to that of a GA-CFD (computational fluid dynamics) approach.
The ANN–GA method allowed improved fuel efficiency and lower nitrogen oxide (NOx)
emissions to be obtained with lower computational time (over 75% of computational time
saving). Samrendra K. Singh et al. [22] combined a genetic algorithm with a machine
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learning technique called support vector regression (SVR) on a database of computational
fluid dynamics simulations to develop a next-generation exhaust after-treatment system
for diesel engines. The novel mixer design’s main goal was to speed up the overall evap-
oration of the diesel emission fluid (DEF). While it was discovered that the evaporation
rate predicted by the SVR and CFD (baseline) was within 7.5%, the suggested technique
(CFD + SVR + GA) demonstrated an overall gain of 13.1%. Ruomiao Yang et al. [23] com-
pared the performance of a random forest (RF) model and artificial neural network (ANN)
in predicting the fuel consumption and emissions of a one-dimensional (1D) computational
fluid dynamics (CFD) spark-ignition (SI) engine. To assess the performance of the established
machine models, the engine performance in 2000 steady-state conditions was collected using
a validated model at various spark timings (from −40 to 0 CA aTDC), engine speeds (from
1000 to 4000 rpm) and loads (from low- to high-level by adjusting the intake pressure from 0.5
to 1 bar). Both approaches were evaluated as able to assist the engine combustion analysis;
however, ANN performed best, perhaps because the responses linked to engine combustion
were better characterized by several interrelated mathematical functions.

Within this context, this work evaluates the possibility of applying the artificial neural
network (ANN) technique to predict the pollutant emissions, i.e., nitrogen oxides (NOx),
of an internal combustion engine (ICE). Tests were carried out on a single-cylinder spark-
ignition (SI) engine with optical access at 1000 rpm and conditions of lean mixture, towards
which automotive research is moving [24]. Starting from the internal in-cylinder pressure
signals and the images of the flame front evolution captured using a high-speed camera, the
aim is to compare the performance of the tested ANN architecture in predicting the NOx
emission trend with the experimental data recorded using a fast NOx-λ probe. In contrast
to other methods, an artificial neural network that has been fine-tuned using experimental
data may allow for the real-time evaluation of vehicle performance during running tests
while also guaranteeing a greater level of input data reliability. Due to their close links to the
investigated pollutant, both aforementioned variables were used to predict NOx [25]. The
nitrogen oxide formation mechanism is a well-known mechanism that depends on three
main factors, namely in-cylinder temperature, oxygen availability and residence time [25].
Unfortunately, the in-cylinder temperature of the burned zone cannot be experimentally
estimated; however, the combustion speed and phasing suggest that the faster or the more
advanced the combustion, the higher the peak in-cylinder pressure and temperature, which
would augment the NOx rate of production. Through optical analysis, it is possible to
gather extensive information on temperature and pressure rises and, consequently, on the
synthesis of NOx by observing the formation and evolution of the flame front during the
first stage of kernel formation.

The analysis of the flame front evolution was obtained by post-processing the grey-
level images coming from a high-speed camera, whereas the in-cylinder pressure signal,
coming from a piezoelectric transducer placed inside the engine chamber, was acquired
using a fast combustion analysis system. The post-processing analysis was performed by
using a Mask R-CNN (region-based convolutional neural network) approach [26,27], i.e.,
a convolutional neural network based on Faster R-CNN capable of detecting targets and
performing semantic segmentation at the same time [28,29].

In a prior work of the same research group [30], the Mask R-CNN algorithm proved
to be capable of detecting the kernel formation in advance and identifying combustions as
regular rather than as anomalies, as in the case of other conventional approaches [31].

The NOx prediction was performed by a NARX (nonlinear autoregressive with ex-
ternal input) approach [32,33], i.e., a recurrent dynamic neural network used to model
nonlinear dynamic systems and applied in time series [15,34].

In a previous work of the same research group [15], the forecasting performance of
NARX was compared to that of FFANN [35,36]. In that work, the networks predicted the
flow rate of GDI pumps intended for automotive applications. The results showed that the
FFANN networks were not able to offer good predictions when the input data were closely
related to the time component, while NARX was able to predict the time course of the
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flow with greater precision. By reducing the input parameters to the model, i.e., excluding
the less influential ones from the analysis, the predictive capabilities of NARX are also
increased, thus leading to a significant reduction in the data that can be processed. Based on
these considerations, NARX has been chosen as the method for the prediction of time series,
i.e., NOx, in the present work. The results of this work showed the proposed model’s ability
to reproduce the experimental trend of the analyzed pollutant emissions. In particular,
the prediction showed percentual errors always lower than 2%, with a maximum peak at
about 1.6. The outcomes made it possible to thoroughly examine how the input factors
affected the NOx forecast. For this reason, in the second part of the work, a sensitivity
analysis using the Shapley value [37–39] was performed in order to explain the results,
identify the most important input factors for the NOx prediction and assess the viability of
using this methodology in practical settings.

2. Experimental Setup and Methods
2.1. Optical Access Engine

The single-cylinder research engine used to carry out the experimental campaign
(Table 1) is a 500-cc with four valves, a pent-roof combustion chamber and port fuel
injection system (PFI) [30]. It features optical access composed of a 45-degree mirror and a
Bowditch piston with a 60 mm quartz crown (Figure 1), which allow light transmission
in the visible range. The pressure levels inside the intake port and combustion chamber
are recorded by a piezoresistive transducer (Kistler 4075A5) and a piezoelectric transducer
(Kistler 6061 B, accuracy 0.5%), respectively. Both the corresponding signals, together
with λ and NOx measured by a fast lambda probe Horiba MEXA-720 at the exhaust pipe
(accuracy of ±2.5%), are acquired by a Kistler Kibox combustion analysis system (temporal
resolution of 0.1 CAD), which allows performing indicating analysis of the combustion
processes. For each operating point tested, a total of 103 consecutive combustion events
were recorded.

Table 1. Main features of the optical access engine.

Displaced Volume 500 cc

Stroke 88 mm

Bore 85 mm

Connecting Rod 139 mm

Compression Ratio 8.8:1

Number of Valves 4

Exhaust Valve Open 13 CAD bBDC

Exhaust Valve Close 25 CAD aTDC

Inlet Valve Open 20 CAD bTDC

Intake Valve Close 24 CAD aBDC

The mixture ignition was ensured by a barrier discharge igniter provided by Federal
Mogul Powertrain—a Tenneco group company (Figure 2). Such an igniter was chosen to
ignite the mixture since it proved to be capable of guaranteeing stable combustion processes
in lean conditions with respect to a traditional spark [30].
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Figure 2. Tested igniter (left) (1 = inductor, 2 = connection, 3 = firing end) and corresponding firing
end detail (middle). Discharge event (right): ionization waves (i.e., streamers) propagated above the
igniter cupola.

2.2. Imaging System

The combustion process formation and evolution were captured using a Vision Re-
search Phantom V710 high-speed CMOS camera coupled with a Nikon 55 mm f/2.8 [30].
The synchronization between imaging data and indicating ones, which is performed thanks
to the signal (trigger) of an automotive camshaft position sensor (Bosch 0232103052), al-
lowed matching the in-cylinder pressure trace of each process with the flame development
2D information (on a swirl plane) (Figure 3).
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The technical features of the high-speed camera are reported in Table 2. For each
operating point tested, 63 consecutive combustions were recorded. Due to flame wrinkling,
distortion and convection, the flame average radius, which can be detected without reaching
the optical boundary, is about 20 mm, corresponding to about 5% of the mass fraction
burned (MFB), detected by the indicating system.
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Table 2. High-speed camera technical features.

Feature Value Unit

Image resolution 512 × 512 pixel

Sampling rate 20 kHz

Exposure time 49 µs

Bit depth 12 Bit

Spatial resolution 130 µm/pixel

Temporal resolution (@1000 rpm) 0.3 CAD/frame

2.3. Test Campaign

Tests were carried out on the optical access engine with the engine operating at
1000 rpm and low load (IMEP = 4.5 bar at λ = 1). The ignition timing was optimized
for each operating point tested to achieve the maximum brake torque (MBT) (reached
with the combustion center MFB50 around 9 CAD aTDC) [30]. For the sake of clarity,
each tested point, listed in Table 3, was considered stable when presenting a CoVIMEP less
than 4%. Three different kinds of λ were chosen since they present different in-cylinder
pressure levels, and, therefore, diverse NOx emissions, and different levels of luminosity
(decrease in brightness as the air/fuel ratio increases). This allowed for the evaluation of
the tested architecture’s predicting capabilities on a variety of NOx that are characteristic
of combustions operating under lean conditions [31].

Table 3. Main features of the test campaign used as reference.

λ, - Ignition Timing, CAD aTDC IMEP, Bar CoVIMEP, %

1.3 −22 3.42 1.32

1.4 −26 3.19 1.04

1.5 −38 2.95 1.95

3. Artificial Neural Network Setup and Methods
3.1. Detection of the Flame Front Evolution

The detection of the flame front evolution was performed by using a Mask R-CNN
method [28,29], based on the images extracted from the experimental campaign of Table 3.
Details on the neural network structure can be found in a previous work of the same
research group [30]. In that work, the neural structure was trained and tested on images
portraying the flame front evolution up to λ = 1.8. For this reason, the same weight found
in the previous work was utilized for the present investigation. The 5th epoch of 10 was
selected, and its weight was exported because it showed the best performance in terms of
loss and values loss [40]. The binarization process required to determine the flame front
evolution was directly realized on the obtained mask, as reported in Figure 4a–c. For each
analyzed λ of Table 3, n images of p combustion events (Figure 5) were extracted from the
high-speed camera and used to determine the Req. The images were selected starting from
the end of the discharge (aEoD) up to the achievement of Req equal to 30 mm. Without
setting any binarization threshold, the binarization process was directly realized on the
obtained mask, as mentioned before.
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The binarization process converts the grayscale images into black (unburned area with
pixel values equal to 0) and white (burned area with pixel values equal to 1) ones to extract
the equivalent flame area. The equivalent flame radius (Req) is defined as (Equation (1)):

Req =
√

nb ∗ sc2/π (1)

where nb is the number of white pixels and sc is the scaling factor (mm/pixel). Mask R-CNN
automatically estimates the binarized area, without setting a defined threshold, thus allowing
an analysis to be performed completely independently from the user interpretation.

3.2. Prediction of the NOx Emissions

The NOx prediction was performed using a NARX approach [32,33], i.e., a recurrent
dynamic neural network used to model nonlinear dynamic systems and applied in time
series modelling [15,34].

Such a network is composed of a series–parallel architecture (i.e., open-loop) or a
parallel one (i.e., closed-loop) (Figure 6).
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In the series–parallel architecture, the desired output value ŷ(t) is predicted from the
present and past values of the input x(t) and the true past value of the time series y(t).

In the parallel architecture, the prediction is performed from the present and past
values of x(t) and the predicted value of ŷ(t).

A series–parallel architecture is used during the training phase because of the avail-
ability of the true past value of the time series. Then, the architecture is converted into a
parallel one, useful for multi-step-ahead forecasting.

3.2.1. Time Series Analysis

First, Figure 7 reports the NOx emission trends, which have been continuously
recorded (for a total of 103 consecutive events) by the λ-NOx probe on the optical en-
gine, under the operating conditions shown in Table 3. NOxs show an increasing trend that
is the more marked the richer the mixture.
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value, the higher the error committed. At λ = 1.5, the curve hinders the measurement error.

The NOx growth rate is due to the progressive increase of the in-cylinder temperature.
Since such a quantity cannot be provided, Figure 8 displays the trends of the in-cylinder
pressure, the distribution of the maximum in-cylinder pressure and the corresponding
APmax (crank angle degrees at the maximum in-cylinder pressure). As can be observed,
combustion occurs progressively earlier and the maximum peak reached in the chamber
increases, thus leading to increments in the NOx. As mentioned, the richer the mixture,
the higher the internal cylinder temperatures and, therefore, the NOx production and the
corresponding growth rate. If there was the possibility to carry out tests of longer duration,
as happens, for example, with metal engines (i.e., engines featuring cast iron piston rings
instead of Teflon–graphite as in optical access engine), there would be a stabilization of the
emission around an average value. In the optical engine, the intrinsic characteristics of the
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system do not allow long-term tests to be performed. In any case, it is possible to observe
that at the end of the acquisition, the emissions tend to stabilize around an average value.
For this work, working areas (dashed boxes in Figure 7) far from the stabilization range
were chosen in order to test the algorithm with data featuring high variability.
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In the first part of the present work, the neural architecture used to predict the NOx
trend was composed of 2 hidden layers, each of which comprised 50 and 100 neurons,
respectively (Figure 9). For each operating point analyzed (Table 3), 3 input parameters
were chosen: equivalent flame radius (Equation (1)), in-cylinder pressure and NOx trend.
Figure 10 reports an example of the trends of such quantities. For each λ, each parameter
was characterized by the number of samples reported in Figure 4, corresponding to a
sampling frequency of 20 kHz (or 0.3 CAD/sample at 1000 rpm). The training session was
realized in the MATLAB environment on 28 consecutive combustion events, while the test
session regarding the NOx prediction in 3 cases was different from the ones used for the
training session. Figure 9 describes the neural network structure and the characteristics of
the training and test session used to perform the NOx prediction.

The performance of the tested algorithms was evaluated in terms of RMSE. The
root-mean-square error (RMSE) is frequently used to estimate the differences between the
values predicted by a model (target) and the observed values (output); it is an estimator of
the prediction quality [41]. The lower such a value, the better the estimation performed
by the algorithm.
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To sum up:

- The Kibox analysis system provides indicating data of 103 consecutive combustion events,
from −360 CAD aTDC to 359.9 CAD aTDC, with a temporal resolution of 0.1 CAD.

- The high-speed camera provides the images of the flame front evolution of 63 out of
103 events with a sampling frequency of 0.3 CAD/frame at 1000 rpm.

- According to the operator’s decision, the high-speed camera starts recording once the
trigger signal from the phase sensor is received.

- To match the indication and image data of each event, the data from the Kibox were
selected with the same sampling frequency as the high-speed camera, i.e., every 0.3
CAD starting from the end of discharge (EoD) to the achievement of the optical limit
(Req = 30 mm). This ensured that each image, i.e., Req, was matched to its own Pcyl
and NOx value.

- A total of 31 of 63 events, in the range shown in Figure 7, were selected and the
corresponding data (Figure 9) used as input for the neural architecture.

- A total of 28 of these 31 events were used for the training session and the other 3 for
the test.

3.2.2. Analysis of the Influence of the Input Parameters on the NOx Prediction

Based on the results obtained in the previous part of this work, a sensitivity analysis
was carried out by using the SHAP library developed in the Phyton environment, specif-
ically, the average absolute Shapley values (ABSV) [37,38]. The aim was to evaluate the
impact of the single measured quantities (Figure 11) on the objective function (i.e., the
average NOx emissions of the ith combustion event). The choice of the parameters of this
analysis is strictly related to the input parameters of the previous analysis. Quantities con-
nected to the in-cylinder pressure Pcyl, such as Pmax, APmax and IMEP and the equivalent
flame radius Req, such as CAD aEoDReq=9mm and CAD aEoDReq=20mm, were chosen. The
latter variables indicate the crank angle degrees where the equivalent flame radius is equal
to 9 and 20 mm, respectively. In particular, CAD aEoDReq=20mm can be associated with the
5% of mass fraction burned, as described in Section 2.1.
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4. Results and Discussions

Table 4 displays the quantities through which the forecasting performance of the
NARX structure was evaluated. The standard deviation σ of the observed series allows the
evaluation of the variability of the target data, and it is used to understand the RMSE of
the proposed neural architecture. Generally speaking, considering the specific λ value, the
lower the σ, the lower the RMSE. On average, for each λ, a higher RMSE value corresponds
to observed data characterized by higher variability. In any case, the RMSE value is always
lower than the acceptable threshold of 5 [15], thus highlighting the quality of the forecasting
performance. In particular, it is worth highlighting that at λ = 1.4, the RMSE of the analyzed
series is close to the unit despite the highest σ recorded. This occurrence could be related to
the nature of the input parameters, namely Pcyl and the Req.



Information 2023, 14, 224 11 of 16

Table 4. Prediction quality evaluation, through RMSE, at each λ value.

σ of the Observed Series RMSE

Series n.1 Series n.2 Series n.3 Series n.1 Series n.2 Series n.3

λ = 1.3 0.50 0.58 1.16 2.30 3.60 3.45

λ = 1.4 0.62 0.89 0.83 0.97 0.96 1.02

λ = 1.5 0.64 0.67 0.57 3.82 4.39 3.31

To correlate the quality of the NOx prediction with such quantities, Table 5 reports
the mean values of the 28 consecutive combustion processes used for the training sessions,
which are a function of Pcyl, namely CoVAPmax, COVPmax and CoVIMEP. Concerning the
CoVIMEP, since such a quantity is a function of the IMEP, expressed as

∮
Pcyl × dV, it could

be helpful to also consider such a parameter to analyze the nature of the analyzed data.
CoV is expressed by the following relation (Equation (2)):

CoV =
σ

µ
(2)

that is, equal to the standard deviation (σ) over the mean value (µ) of the analyzed quantities.
In addition to the CoV values, the standard deviations of the equivalent flame radius σReq
when Req is equal to 9 and 20 mm are also considered. For sake of completeness, Figure 12
reports the equivalent flame radius of the combustion events analyzed at each λ value.

Table 5. Evaluation of the prediction quality by considering quantities related to the input parameters
used for the training sessions.

CoVAPmax, [%] CoVPmax, [%] CoVIMEP, [%] σReq=9mm, [CAD aEoD] σReq=20mm, [CAD aEoD]

λ = 1.3 10.96 8.15 1.19 1.34 1.32
λ = 1.4 10.5 7.99 0.89 1.49 1.68
λ = 1.5 18.91 11.8 1.32 3.43 2.97
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From Table 5, it is possible to observe that the parameters connected to the in-cylinder
pressure may influence the NOx prediction more than the ones related to the equivalent
flame radius. In other words, the NOx prediction seems to be affected by the stability
(CoVAPmax, CoVPmax, CoVIMEP) of the process rather than the first part of the combustion
formation and evolution (σReq=9mm, σReq=20mm). As a matter of fact, even if the resulting
bundles are wider the leaner the mixture [30], the lowest RMSE recorded at λ = 1.4 could be
related to the lowest value of CoVPmax, CoVIMEP, while the highest RMSE at λ = 1.5 could
be related to the highest values of such quantities. The lower influence of the first part of
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the combustion can be expected, since the NOx production is more influenced by the part
of combustion between 50 and 5% of the mass fraction burned.

Figure 13 shows the experimental predicted trends of all the cases analyzed, and
Table 6 reports the deviation of the prediction from the target, namely the percentual
error (%Err = (|Target − Predicted|/Target) × 100). From a qualitative point of view, the
proposed model is able to reproduce the experimental trend. In particular, the prediction
always shows a %Err lower than 2%, with maximum peak at %Errmax = 1.61 (at λ = 1.5).
The tested model can be considered as a valid alternative for the NOx prediction since the
accuracy of the Horiba MEXA-720 used to record the NOx emissions is equal to 2.5%. In
other words, the prediction is always lower than 65% of the measurement error of the fast
NOx analyzer. The higher %Err shown at λ = 1.5 can be related to the higher variability of
the observed data used for the training session.
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Figure 13. Experimental predicted trends of the predicted cases against the target ones at each λ

value analyzed. The target curves have not been given with error bars because it would be difficult to
emphasize the predicted trend.

Table 6. Percentual errors of the predicted cases at each λ value analyzed.

%Errmax %Errmean

Series n.1 Series n.2 Series n.3 Series n.1 Series n.2 Series n.3

λ = 1.3 0.21 0.30 0.36 0.08 0.11 0.12

λ = 1.4 0.24 0.52 0.52 0.07 0.06 0.06

λ = 1.5 1.61 1.57 1.27 0.89 1.10 0.82

Based on the results of the previous analysis, Figure 14 shows the results of the
sensitivity analysis carried out by means of the average absolute Shapley values. As is
possible to observe, in all the λ cases analyzed, IMEP influences the NOx prediction more
than the other input parameters. Furthermore, the parameters CAD aEoDReq=9mm and
CAD aEoDReq=20mm are more influential than the ones related to the in-cylinder pressure,
such as APmax and Pmax. Such a result confirms the prediction shown in the previous
paragraph, thus testifying the greatest impact of IMEP on the NOx prediction and, at the
same time, the right choice of input parameters connected to the equivalent flame radius.
In any case, it is worth highlighting the impact of the other parameters related to Pcyl, i.e.,
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APmax and Pmax. As a consequence of this, the methodology proposed in the previous
paragraph could be exported to metal engines in which it is not possible to acquire images
relating to the flame front evolution.
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5. Conclusions

The present work investigates the possibility of implementing an artificial neural
network technique to predict pollutant emissions, i.e., nitrogen oxides (NOx), of an internal
combustion engine. Experimental activities were performed on a single-cylinder spark-
ignition (SI) engine with optical access at 1000 rpm and conditions of lean mixture. The
proposed approach was trained and tested on data coming from both indicating and
imaging. The newly suggested method for assessing NOx emissions demonstrated the
ability to replicate the experimental trend of the target variable, NOx concentration, while
consistently maintaining a percentual error below 2%. The method showed consistent
behavior in all engine operating situations, i.e., for the different values of the λ (excess air)
index. The RMSE and CoV coefficient were used to assess the NARX structure. The RMSE
value for each corresponds to observed data that are more variable, and in every instance,
the RMSE value is less than the acceptable threshold of 5. The average absolute Shapley
sensitivity study for all the operating conditions revealed that the IMEP quantity has the
greatest impact on the forecasting model. The positive outcomes allow for the model to be
tested and applied to a metal engine, allowing for a considerably wider variety of operating
conditions to be investigated.
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Nomenclature

%ERR Percentage errors
ABSV Absolute Shapley values
ACIS Advanced corona ignition system.
aEoD After end of discharge
ANN Artificial neural network
APmax Crank angle degrees at the maximum in-cylinder pressure
BDC Bottom dead center
BDI Barrier discharge igniter
CAD Crank angle degree
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CFD Computational fluid dynamics
CoV Coefficient of variation
CSI Corona streamer (type of igniter)
ECU Engine control unit
EGR Exhaust gas recirculation
FFANN Feed forward artificial neural network
GA Genetic algorithm
GDI Gasoline direct injection
ICE Internal combustion engine
LTC Low-temperature engine
IMEP Indicated mean effective pressure
ML Machine learning
IT Ignition timing
MBT Maximum brake torque
MFB Mass fraction burned
MON Motor octane number
NARX Nonlinear autoregressive network with exogenous inputs
NOx Nitrogen oxides
OEMs Original equipment manufacturer
PAI Plasma-assisted ignition
PCYL In-cylinder pressure
PFI Port Fuel Injection
R-CNN Region-based convolutional neural network
Req Equivalent flame radius
RF Radio frequency
RMSE Root-mean-square error
RON Research octane number
SI Spark ignition
SVR Support vector regression
TDC Top dead center
ton Activation time of the igniter
Vd Driving voltage of the igniter
Prefixes and suffixes
a after
b before
cyl cylinder
eq equivalent
Greek symbols
λ Excess air index
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