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Abstract: Road Traffic Accidents (RTA) cause human losses and irreparable physical and psycho-
logical damage to many of the victims. They also involve a very relevant economic dimension.
It is urgent to improve the management of human and material resources for more effective pre-
vention. This work makes an important contribution by presenting a methodology that allowed
for achieving a predictive model for the occurrence of RTA on a road with a high RTA rate. The
prediction is obtained for each road segment for a given time and day and combines results from
statistical methods, spatial analysis, and artificial intelligence models. The performance of three
Machine Learning (ML) models (Random Forest, C5.0 and Logistic Regression) is compared using
different approaches for imbalanced data (random sampling, directional sampling, and Random
Over-Sampling Examples (ROSE)) and using different segment lengths (500 m and 2000 m). This
study used RTA data from 2016–2019 (training) and from May 2021–June 2022 (test). The most
effective model was an ML logistic regression with the ROSE approach, using segments length
500 m (sensitivity = 87%, specificity = 60%, AUC = 0.82). The model was implemented in a digital
application, and a Portuguese security force is already using it.

Keywords: imbalance data; machine learning algorithms; negative sampling; road traffic accidents;
ROSE

1. Introduction

According to the World Health Organization, approximately 1.3 million people around
the world die each year as a result of RTA (leaving between 20 and 50 million people with
non-fatal injuries). It is the leading cause of death for children, and young adults aged
5–29 [1]. Despite having registered a downward trend compared to previous years, in 2020
Portugal registered 27,725 accidents with victims, resulting in 536 deaths. These values
place Portugal as the ninth-highest country in the European Union with the most fatalities
per million inhabitants (52, i.e., 10 more than the European Union average) [2]. On the
other hand, in Portugal, the economic impact caused by RTA is equivalent to 1.2% of the
Gross Domestic Product (GDP), i.e., 2.3 billion euros [3].

It is urgent to take measures for effective prevention that lead to a very relevant
reduction of human losses and irreparable physical and psychological damage that they
cause too many of the victims. Identifying factors responsible for the occurrence of RTA
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and their severity, as well as building predictive models for the occurrence and severity,
make these measures efficient and effective.

The project Modelling and Prediction of Road Traffic Accidents in the District of
Setúbal (MOPREVIS) was conceived to respond to a need felt by a Security Force, the Por-
tuguese Gendarmerie (Guarda Nacional Republicana–GNR). It has the purpose of reducing
fatalities and serious injuries in the district of Setúbal, in Portugal. Although Setúbal is not
one of the districts with the highest RTA number, serious RTAs are a relevant concern.

The main goal of MOPREVIS was achieved, by providing the GNR of Setúbal with
a decision-making framework, that is based on scientific support. It gives a relevant
contribution to optimizing the management of human and material resources for the
prevention of RTA. The application allows visualization and analysis of data about RTA
that occurred in the action area of GNR of Setúbal (approximately 5000 km2) [4]. It has
a Geographic Information System (GIS) atlas [5], based on a new severity indicator and
on the identification of accident clusters with fatalities. Its greatest added value is the
incorporation of a predictive part that combines results from the application of the statistical
methodology, spatial analysis, and Artificial Intelligence models. The tool predicts RTA
hotspots [6] and, for some selected roads, it predicts the occurrence of RTA on a given
road segment at a given time of a given day. The results are displayed on a map with
information by segment.

The principal objective of this study is to present the methodology that allowed to
build of a prediction model for the occurrence of RTA on the road EN10 (Estrada Nacional
no. 10). It is one of the main roads that cover rural areas with low population density and
urban areas with high population density. Moreover, the characteristics of this road are
very varied, e.g., the number of lanes is not constant, the presence of verges is not constant
along the whole road, among others. The RTA under study are collisions, crashes, and
pedestrian running over and not just crashes as is often considered in the literature [7,8].

As far as we know, this is the first time that a predictive model has been applied to a
road with such heterogeneous characteristics. On the other hand, there is no monitoring of
daily traffic, which is common on most roads in Portugal. Therefore, there are no predictive
variables that have proven to be important in predictive models, such as traffic density,
average speed, or a congestion index [9–11] or data collected in real-time [8].

The other objective of this work is to compare the performance of three Machine
Learning (ML) models (Random Forest (RF), C5.0 and Logistic Regression (LR)), using
different approaches for imbalanced data (random sampling, directional sampling, and
Random Over-Sampling Examples (ROSE)) when using different segment lengths (500 m
and 2000 m).

This paper is organized as follows. Section 2 presents a review of the literature on road
accident prediction models. Section 3 presents the study area, data description, models,
and methodology used in a very detailed way. Section 4 presents the results obtained and
compares the different approaches. Section 5 presents a brief discussion and some final
remarks in Section 6.

2. Literature Review

Several predictive models have been presented in the literature. An overview of data
analysis techniques and various algorithms used to build predictions and to identify many
risk factors is available in Chand et al. [12]. The systematic literature review presented
in Silva et al. [13] describes various papers that used ML techniques to develop crash
prediction models. A review of the state-of-the-art in the prediction of road accidents, com-
prising data mining and ML techniques, can be found in Gutierrez-Osorio and Pedraza [14].
Hossain et al. [15] provides a systematic review of the state-of-the-art of real-time crash
prediction. In this last work, the authors concluded that despite the substantial progress
predicting crash risk in real-time is still limited to an idea that is not ready for deployment.
Mohammed et al. [16] presents predictive models based on geometric and traffic features,
road access and segment length, speed, heavy vehicles, and econometric and social vari-
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ables. In Abdulhafedh [17] is presented an overview of road crash prediction models for
crash frequency, crash classification by severity, and crash frequency and severity. After
these reviews, other works have emerged focusing on three types: severity of accidents
and severity of victims (e.g., [18–30]), frequency of accidents (e.g., [31–34]), and occurrence
of accidents (e.g., [7–11,35]), the category in which our study fits.

Ma et al. [9] applied the genetic programming (GP) approach with an elite gene bank
to predict the occurrence of road accidents. An explicit traffic flow crash risk function LR
and a backwards-propagation neural network, combined with a partial dependency plot,
were used as baseline methods to examine the interpretability and accuracy of GP. An 8 km
Shanghai Expressway was divided into 36 segments and was considered the congestion
index, the average speed of the section and standard deviation, and traffic volume. This
study concludes that the GP can select important variables and avoid over-fitting. Also,
it concludes that the crash risk mainly comes from the traffic volume, the speed of the
upstream segment, and the speed of the current segment. In this case, the accuracy of the
GP method is greatly affected by data quality and variables in the model.

To predict real-time crashes by segment type (merge, diverge, weaving, and basic
segments) on expressways in Florida, Wang et al. [8] used a nested logit model. Previously,
an RF model is used to order the significant variables by importance in the accident
occurrence. Data have information about crash information (crash time, coordinates,
severity, type, and the number of vehicles involved); geometry of the road; weather; and
traffic (0–10 min before a crash, at 1-min intervals, and from five detectors in the upstream
and downstream). The weather parameter, indicating the pavement’s wet condition, had a
similar effect on the crash risk between different segment types. The geometry and traffic
parameters had significantly different impacts between different segment types. On the
other hand, the study revealed that when the number of upstream ramps increases or when
the distance between them and the target segment decreases, the crash risk will increase.

Man et al. [7] presents a combining Generative Adversarial Network (GAN) and
transfer learning to examine the transferability of real-time crash prediction models under
an extremely imbalanced data setting. A real-time crash prediction model is calibrated
under an extremely imbalanced data setting with RTA from a Motorway in the UK. Then,
the model is applied to predict traffic crashes for five other datasets by using transfer
learning. A Wasserstein GAN (WGAN) was applied to generate synthetic crash data, and
non-crash data were randomly under-sampled.

Guo et al. [10] established a traffic crash risk prediction model using LR with SMOTE.
This model uses real-time traffic flow data and risky driving behaviour data to explore the
traffic crash risk on freeways. The author concludes that the main variables that affect the
risk of a crash accident are volume, average speed, the quotient between free flow speed
and current average road speed, the coefficient of variation of speed, sharp acceleration
and deceleration.

The prediction of accident occurrence by segment type is considered in Zheng et al. [11],
with data from a highway in California, USA. From 35 detectors located an average of about
0.5 miles apart, data were collected every 30 s about traffic volume, vehicle speed and road
occupancy, 5–10 min before the accident and over periods of 5 min without accidents as
case-control samples in a 1:4 ratio (1 accident to 4 non-accidents), controlled for the types
of segments (basic sections, weaving areas, merging areas and diverging areas), day of the
week and time of day. The accident occurrence prediction is made separately by segment
type, considering Bayesian Logistic Regression (BLR).

A Deep Spatio-Temporal Graph Convolutional Network (DSTGCN) is proposed in
Yu et al. [35] to predict road accidents, considering records of Beijing, China. The proposed
model is composed of three components: a spatial learning layer, a spatio-temporal learning
layer and an embedding layer. Based on the accident records, citywide vehicle speeds, road
networks and meteorological conditions, it was concluded that DSTGCN outperforms both
classical and state-of-the-art methods.
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3. Materials and Methods
3.1. Study Area

The district of Setúbal is situated near Lisbon and spans an area of 5064 km2, divided
into 13 municipalities that comprise both urban and rural areas. The district is accessible
by important access roads to Lisbon and has many tourist spots that increase traffic flow
during peak periods.

The EN10 is a public road that is 85.66 km long with 17.90 km running through towns.
It belongs to the national road network of Portugal and is one of the ring roads in the
Lisbon Metropolitan Area.

In the Setúbal district, the EN10 crosses important locations from East to West and
North to South, and crosses the main highways and access to city high-traffic roads,
providing access to most locations on the Setúbal Peninsula. This study divides the EN10
into three primary sections according to their general direction and importance for traffic
flow in the district: a Northwest-Southeast section (A), a West-East section (B), and a
South-North section (C), which extends beyond the district boundaries (Figure 1).

Figure 1. EN10 divided by sections, and RTA between 2016 and 2019 categorized by severity. Top:
Complete EN10; Middle-left: Section A; Middle-right: Section C; Bottom: Section B.

3.1.1. Section A: Northwest-Southeast

This section has the greatest flow of traffic, due to the daily commute to Lisbon. It
has the most significant variation of the public road, with the addition of carriageways in
both directions. Three areas stand out in this section based on their interaction with other
influential roads, their complexity, or the number of RTA found in the area (Figure 2).
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Figure 2. Section A and its main areas (A.1–A.3); RTA between 2016 and 2019 according to their
severity. Note: sep = separator, i.e., protective border.

A.1: is a subsection where the carriageway of the EN10 separates, allowing interaction
with two of the main roadways in the district, a highway and a national road. The separation
occurs gradually to a progressively wider pavement. At the convergence with a national
road, the north-south direction has three lanes, with the outer one acting as a deceleration
ramp for the highway and and exit for the continuation of the EN10. This subsection has a
high traffic volume, increasing the likelihood of RTA.

A.2: is a straight subsection where the carriage has two configurations: (i) two traffic
lanes in each direction, separated by a narrow pavement, and (ii) one lane in each direction
without a physical central divider.

A.3: there is a roundabout that connects this road with a densely populated village.
The carriageway has two lanes in each direction, where the external lanes connect to the
roundabout and the interior lanes carry through and underpass beneath the roundabout.
This area has no accidents with fatalities and only one with serious injuries. Most of
the accidents with damage are concentrated at intersections between the EN10 and other
roads and when approaching the roundabout (Figure 2). It should be noted that the RTA
represented in the figure correspond only to the fraction of RTA that were registered by the
GNR. This area is within the jurisdiction of the PSP security force and close to their police
station. Therefore, most of the RTA that occur here should be reported by the PSP, and not
by the GNR.

3.1.2. Section B: West-East

This section serves as an important alternative to the highway for those crossing the
Setúbal Peninsula, and is one of the few accesses to the city of Setúbal. It should be noted
that a significant portion of the city of Setúbal falls outside the GNR’s jurisdiction area,
and there is no available information on RTA that occurred within the urban area. Three
subsections in this section were selected based on their unique geometry, the concentration
of RTA, or interaction with other influential roads (Figure 3).
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Figure 3. Section B and its main areas (B.1–B.3); RTA between 2016 and 2019 according to
their severity.

B.1: here the EN10 follows an inclined curvilinear path. In the north-south direction,
there is only one lane of traffic, while in the opposite direction there are two lanes. The two
directions are separated by a set of flexible bollards. There is only one recorded RTA with
fatalities and four others with serious injuries. The most serious RTA occurred near a bend
in the middle of the slope, together with multiple RTA resulting in minor injuries or only
damage, emphasizing the hazardous nature of this location.

B.2: is located shortly after the city of Setúbal, where several RTA of varying severity
occur on a segment of the EN10. It displays straight and curvilinear lengths, with and
without a central separator, and an important roundabout. The carriageway has only one
lane per direction, which temporarily changes at intersections and accesses to local roads.
Most RTA that occur here result in minor injuries or damage, except for six severe RTA,
three of which are near the roundabout.

B.3: in this subsection, the EN10 turns north, and the complementary itinerary begins
towards the South of Portugal. A central divider is present just in this part. The carriageway
has one lane per direction. This area concentrates numerous RTA, many of them serious,
particularly in the first few meters of the itinerary route.

3.1.3. Section C: South-North

Despite its length, this segment lacks variation. The carriageway has one lane per
direction with no central divider, and at intersections it has two lanes. There is one area
that is worth highlighting (Figure 4).

C.1: it has the only roundabout in section C, which connects the EN10 to another
national road. The roundabout has two traffic lanes at the entrance and a central separator
dividing the directions. Both at the roundabout and its vicinity there is a concentration of
RTA resulting in minor injuries or damages.
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Figure 4. Section C and its main area (C.1); RTA between 2016 and 2019 according to their severity.

3.2. Segmentation of the EN10

The seed for the segmentation process of the EN10 was the roadway Shapefile ob-
tained from OpenStreetMap (OSM), after applying the filter to select the road under study.
Subsequently, and resorting to the QGIS platform (QGIS) [36], such Shapefile was extended
to incorporate sections that, albeit belonging to the EN10, did not appear in the filter above.
Therefore, obtaining a new file, containing the complete road.

Afterwards, a simplification was made by eliminating access roads to the carriageway,
and converting separate tracks into a single line. This way, results in a Shapefile with
182 lines, where each line represents a variable-sized section of the average line that crosses
the main road of the EN10. The aggregation of these lines into a single one is crucial to
guarantee the correct segmentation of the road; for this purpose, a script was created in R
that automates the process, and segments the route into specific lengths. The result was
then validated in the QGIS.

Following, these segments were combined with data from the road network, pavement
quality index, vertical signalling, number of trees and RTA. For vertical signs, each category
was broken down into different sets, and for accidents, subsets were created according to
their severity.

To unite the different data, it is necessary to find the centroid of each segment. Then
all objects are converted into simple features. This class transformation allows assigning
to each centroid the distance of the closest section of each information about the road,
which was used as a variable. This variable, unite the identifier of each section of each data
external to the centroid of the segment.

In the case of accidents, a buffer was used around the segmented road to describe
the accidents corresponding to each segment–in this case, 15 m–and then crossed with
on-site accidents. The total number of accidents was counted and how many victims of
each severity class occurred, how many signs there were in each vertical signalling category,
and, finally, how many trees there were per segment.

Establishing a relationship between the accident id and the respective segment identi-
fier was an important step. On the one hand, for the subsequent addition of complementary
information to the segments. On the other hand, since the severity index of each accident
allowed to calculate an average, median, and maximum severity index for each segment.
Lastly, this merged information about the roads, vertical signs and accidents was exported
into a Shapefile and a CSV.

The Shapefile was added to QGIS where a final verification of the segment lengths. A
quality test was carried out too, comparing the number of accidents with that indicated
in the road file, and some values obtained from the files received with all information
about the road. Given the irregular spatial distribution and small extension of bridges and
tunnels, the “bridge” and “tunnel” variables were corrected in this last step, ensuring the
correct identification of the sections with their presence. Finally, information on geometry
and coordinates was added.
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For the study case at hand, we explored two road segmentations: one with 500 m
segments and another with segments of 2000 m. Afterwards, accident information was
crossed-reference with each defined road segment, adding an extra buffer of 15 m.

3.3. Data

When an RTA occurs in Portugal, the security forces that take care of the occurrence
(in this case the GNR) fill out the Statistical Bulletin of Road Accidents (Boletim Estatístico
de Acidentes de Viação–BEAV). This instrument aims to characterize the circumstances in
which the road accidents occurred, as well as the individuals and vehicles involved in the
accident [37]. BEAV is divided into two distinct parts: (1) to be filled in all accidents; (2) to
be filled only in accidents with victims. The first part contains the essential elements for
identifying the accident, and general information about vehicles, drivers, and the number of
victims. When occurring a road accident with just property damage, only this information
is available. If a road accident with victims occurs, the second part is intended to describe
the accident, vehicles, drivers, and individuals involved.

The National Road Safety Authority (Autoridade Nacional de Segurança Rodoviária–
ANSR) updates the information about the injuries of the victims 30 days after the RTA.
The severity of injuries of the victims, within 30 days of the occurrence of the accident, are
classified as [37]:

• fatality: victim who dies;
• severe injury: victim whose bodily injury requires hospitalization for more than 24 h

and who does not die within 30 days of the accident;
• minor injury: victim whose bodily injury did not require hospitalization, or whose

hospitalization has been less than 24 h, and who does not die within 30 days of
the accident.

Meteorological information at the time and place of the accident was provided by the
Portuguese Institute of Sea and Atmosphere (Instituto Português do Mar e da Atmosfera–
IPMA) at the meteorological station closest to the accident. From Portuguese Infrastructures
(Infraestruturas de Portugal–IP) it was possible to obtain information about the characteris-
tics of the road where the RTA occurred.

It is important to reinforce that the objective of this work is to develop a predictive
model to be used in real-time by the security forces. For this reason, we should only
consider predictive variables that can be known prior to the occurrence of the RTA. Thus,
we will only use meteorological variables, temporal variables and variables related to the
road characteristics. The following predictive variables were used, in their original form:

• Road characteristics: segment id (factor variable with categories between 1 and 172
when segments of 500 m are considered, and between 1 and 45 when segments with
2000 m are considered); road layout (curve or straight road); type of road intersection
(an intersection, a junction, an entrance connecting branch, a roundabout or outside a
road intersection); the number of lanes (1 or 2); quality of pavement classification (cat-
egorical variable with 12 categories); type of roadside (segment with paved, unpaved
or non-existence roadside); the existence of a tunnel/bridge in the segment and the
number of trees in the segment;

• Atmospheric conditions: precipitation, temperature; wind speed; and if is sunny/rainy
at a given hour;

• Temporal characteristics: year, month, day of the week, hour, holiday, and if it is a
school day;

• Road signals: number of vertical signs; giving away priority signs, complementary
signs, confirmation signs, turn signs, information signs, proximity of a locality sign,
obligation signs, danger signs, pre-signalling signs, prohibition signs, some other kind
of signs, the lane selection and the route allocation signs;



Information 2023, 14, 238 9 of 18

• Velocity information: the speed limit on that segment, and the historical values of the
average speed on the segment, in Km/h (given by Waze–https://www.waze.com/pt-
PT/live-map/, (accessed on 30 January 2022).

Data validation involved the confirmation of the RTA location and therefore detailed
maps of the locations were spatially analysed to attest their position. Conflicting locations
or non-conformable sites were corrected, and when no definitive decision was possi-
ble, they were discarded. The total number of non-conformable positions on the EN10
was negligible.

This work analyses historical RTA that occurred on the EN10, between 1 January 2016
and 31 December 2019, and were reported in the BEAV. To validate the predictive models is
used RTA data on the EN10 between from 1 May 2021 to 5 July 2022. Therefore, data from
the period corresponding to the COVID-19 pandemic were not considered, since it was
very atypical and do not translate the reality.

3.4. Negative Samples Generation

After the segmentation process explained in Section 3.2, the road segments only have
the positive samples, i.e., the information referring to an RTA occurrence.

Therefore, there was no data regarding when accidents didn’t occur, i.e., the negative
samples. To create such samples, the process is started by generating all the dates, including
hours, from 1 January 2016, until 31 December 2019, and from 1 May 2021, until 5 July 2022
(excluding the cases when there were accidents).

Such dates were enriched with the following temporal dependent variables: seasonal
movement (yes, no); traffic peak (yes, no); day shifts (early/night, going to work, morning
or afternoon, leaving work); school period (yes, no); sunrise or sunset period (yes, no); and
holidays period (yes, no).

The generated temporal information was then cross-referenced with the road segments,
for the two segmentation cases mentioned above.

Finally, each pair date/hour and segment was enriched with meteorological in-
formation. For that, it is considered the weather stations closest to the segments, get-
ting hourly precipitation (mm), hourly wind direction (◦), hourly temperature (◦C) and
hourly wind speed (m/s). Such historical meteorological information was obtained from
https://snirh.apambiente.pt/ (accessed on 30 December 2022).

The outcome of this process is the negative samples of our dataset.

3.5. Machine Learning Models

To predict the occurrence of an RTA in a given segment, ML classification algorithms
were used. The response variable was defined as y = 1 if, for a segment of the road, in a
given period, an RTA has occurred, and y = 0 if in the same segment and period, there is
no RTA occurrence.

Following previous results [4], the best supervised ML algorithms for RTA data from
the same case study were the C5.0 and the RF. However, when only a small sample was
available to train the models, these algorithms do not perform better than a fitted statistical
LR model. For this predictive study, a statistical LR model with good performance could
not be obtained due to the high number of coefficients arising from the road segments (171
for the 500 m case). For that reason, we fitted an ML LR model, which is better suited for
predictions, and also enables to observe how an ML LR behaves when a statistical one
couldn’t be fitted.

RF is one of the most used classification ML algorithms, and it consists in building
decision trees on different samples, collecting the majority voting to provide the final
prediction for classification problems. C5.0 is a decision tree algorithm that uses an infor-
mation entropy to determine the best rule that splits the data at that node. The LR is, like
RF, one of the most used ML algorithms, and is useful when the main goal is to obtain
accurate predictions instead of inference. For that reason, an LR algorithm was considered.
A detailed description of each of the ML algorithms can be found in Gutierrez-Osorio and

https://www.waze.com/pt-PT/live-map/
https://www.waze.com/pt-PT/live-map/
https://snirh.apambiente.pt/
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Pedraza [14] and Jo [38]. Other supervised ML algorithms could be used, but we intended
to compare the most used ones.

The performance of each ML algorithm was compared for the two road segment sizes,
and using three approaches to deal with the imbalance of the data: a random negative
sampling approach (RNS), a directional negative sampling approach (DNS), and a ROSE
approach. Note that the negative sampling approach described in Section 3.4, creates a
severely imbalanced dataset, being the occurrence of the RTA the minority class.

In the RNS approach, is obtained a random sample from the negative cases (the
majority class), being four times the number of positive cases (the minority class), resulting
in a 4:1 relation between the negative and the positive cases.

In the DNS approach, for each RTA, the hour, the day of the week, the month, and
the number of the road segment is registered. For each of these variables, it is selected, at
random, another value from its possible range, maintaining all other explanatory variables
of the dataset. The result is also a 4:1 relation between the negative and the positive cases,
but with the difference that now the negative cases are very similar to the positive cases.

Finally, the ROSE approach [39] consists in obtaining a random sample from the
negative cases, also four times the positive cases, and then oversampling the negative
cases by replicating the minority class. It allows obtaining synthesized RTA from the
existing ones. Therefore, after sampling from the negative samples to have a 4:1 relation in
the dataset, the oversampling allows obtaining approximately a 1:1 relation between the
negative and the positive cases.

In accordance with a thoughtful and operational decision by the GNR, the ML models
are adjusted looking to get a cut-off point to maximize the sensitivity, while maintaining
the specificity, when possible, up to 60%. To evaluate the performance of the ML models,
the discrimination measures usually used are accuracy, sensitivity, specificity, positive
predictive values (PPV) and negative predictive values (NPV). For imbalanced data, the
sensitivity is a more interesting measure than the specificity, but both measures can be
combined into a single score balancing both measures, called the geometric mean or G-
Mean [40]. The F-score or the F-measure, combines into a single measure the balance
between positive predictive values and sensitivity, while Matthew’s correlation coefficient
(MCC) uses all the information of the confusion matrix in a single metric. The AUC, the
area under the ROC curve, is also obtained since it is a common performance measurement
for a classification problem at various threshold settings. It represents a measure of how
the model is capable of distinguishing between the positive and the negative classes.

All analyses were conducted using R version 4.0.4 [41].

3.6. Models Fitting

Data was pre-processed to be used in the ML algorithms, being deleted some observa-
tions due to missing values and no missing values’ imputation was made. The dataset was
also transformed using a design matrix, by expanding factors into dummy variables, into a
total of 84 predictors.

When the negative samples were added, the dataset had 1139 entries with RTA and
6,029,871 entries with no accidents when the EN10 road was segmented in 500 m. When
segments size 2000 m were considered, the dataset had 1139 entries with accidents, and
1,506,621 with no accidents.

The description of the training dataset, and how the parameters were tuned in each
ML algorithm for each sampling approach, are next described. When considering the EN10
road segmented in sections of 500 more 171 predictors (identifying the 172 segments) were
added in each ML, and the following steps were done:

• RNS approach: after the pre-processing phase, a random sample of the negative
samples is obtained such that the majority class has four times more cases than the
minority class. The training dataset has now 1114 entries with RTA and 4416 without
RTA. The LR uses a 10-fold cross-validation. The C5.0 uses 20 boosting iterations and
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a rules model. For the RF, the number of variables randomly collected to be sampled
at each split time was 255, with a 10-fold cross-validation.

• DNS approach: same procedure as in the random sampling approach, but in the RF
the number of variables randomly collected to be sampled at each split time was 128,
with a 10-fold cross-validation.

• ROSE approach: after the pre-processing phase and random sampling of the negative
samples such that the majority class has four times more cases than the minority class,
the minority class was oversampled using the ROSE technique. The training dataset
has now 4230 entries with RTA and 4270 without accidents. The LR uses a 10-fold
cross-validation, the C5.0 a 25 repetitions bootstrap with 20 trials and a rules model.
In the RF, the number of variables randomly collected to be sampled at each split time
was 128, with a 10-fold cross-validation.

When considering the EN10 road in segments of 2000 m length, it was applied the
same approach as the one used for the 500 m case and for each ML. In this case, more
44 predictors (identifying the 45 segments) were added in each ML, since we have fewer
segments, and in the:

• RNS approach: The number of variables randomly collected to be sampled at each
split time was 127;

• DNS approach: The RF the number of variables randomly collected to be sampled at
each split time was 64;

• ROSE approach: The RF used 64 for the number of variables randomly collected to be
sampled at each split time. After the oversampling approach, the training dataset has
4175 entries with RTA and 4325 without RTA.

The test dataset has 393 entries with RTA and 2,265,872 entries without RTA when
the EN10 road was segmented in 500 m and 568,253 entries without RTA when EN10 was
segmented in 2000 m. The same approach was applied to the test dataset regarding the
performance evaluation of the models and the sampling approaches.

When considering the EN10 road in segments 500 m lengths, after pre-processing the
data, we have for the

• RNS approach: the final test dataset had 393 entries with RTA and 1552 entries
without RTA.

• DNS approach: the final dataset had 393 entries with RTA and 1552 entries without RTA.
• ROSE approach: the final dataset had 1013 entries with RTA and 928 entries without RTA.

When considering the EN10 road splitted into segments of size 2000 m, after pre-
processing the data, we have for the

• RNS approach: the final test dataset had 372 entries with RTA and 959 entries
without RTA.

• DNS approach: the final dataset had 372 entries with RTA and 959 without RTA.
• ROSE approach: the final dataset had 972 entries with RTA and 175 entries without RTA.

4. Results

From the information about the RTA that occurred on the EN10 during the period
2016–2019 (train data), the following can be highlighted:

• 1139 total RTA (4% of the RTA recorded in the Setúbal district) of which 299 were with
minor injuries, 29 with serious injuries and 16 with deaths.

• 954 RTA were collisions, 165 were crashes and 20 were pedestrian running-over.
• The highest number of RTA was recorded in the municipalities of Setúbal (n = 467),

Seixal (n = 291) and Sesimbra (n = 126).
• The majority of RTA with victims occurred on level roads with a straight line; a

large part of the pavement was recorded with good quality and in places with a
paved roadside.

• About 10% of the RTA occurred at sunrise/sunset times.
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• The highest number of RTA was registered during working hours (59.2%, n = 674)
(i.e., between 07:00 and 20:00) and working days (72.1%, n = 821) (Monday to Friday).

• The majority of RTA involved light vehicles (833 out of 1261, 73.4%), 184 (16.2%)
involved motorcycles and 118 (10.4%) involved heavy vehicles.

• In 1059 RTA at least 1 driver was subjected to alcohol control. From a total of
2005 drivers who tested for alcohol, approximately 3% of them reported a rate above
the legal limits (i.e., rate above 0.5 g/L), resulting in RTA’s with 3 serious injuries
and 1 death.

From the information about the RTA that occurred on the EN10 between 1 May 2021
and 5 July 2022 (test data), the following can be highlighted:

• 293 RTA (4% of the RTA recorded in the Setúbal district) of which were registered 92
with minor injuries, 10 with serious injuries and 2 with deaths.

• 236 RTA were collisions, 51 were crashes and 6 were pedestrian running-over.
• The highest number of RTA was recorded in the municipalities of Setúbal (n = 102),

Seixal (n = 94) and Sesimbra (n = 45).
• The majority of RTA with victims occurred on level roads with a straight line; a large

part of the pavement had reasonable quality and in places with a paved roadside.
• Only 8% of the RTA not occurred at sunrise/sunset times.
• The highest number of RTA was registered during working hours (79.5%, n = 233)

(i.e., between 07:00 and 20:00) and working days (76.1%, n = 223) (Monday to Friday).
• The majority of RTA involved light vehicles (73.8%, n = 214), 58 (20%) involved

motorcycles and 18 (6.2%) involved heavy vehicles.
• In 95 RTA, at least 1 driver was subjected to alcohol control. From a total of 170 drivers

who tested for alcohol, approximately 2% of them reported a rate above the legal
limits (i.e., rate above 0.5 g/L), resulting in RTA’s with 3 minor injuries.

The results of the performance of LR, RF and C5.0 algorithms, for each of the sampling
methods, are presented in Tables 1–3.

With the RNS approach, when EN10 is divided into segments of 500 m in length, both
the LR and the C5.0 perform very closely to each other and are slightly better than the RF
(Table 1). It can be achieved 88.8% of correct predictions of RTA using the LR algorithm.
Mathew’s correlation coefficient is about 0.44 in the LR, which confers a high correlation
between the observed and predicted classifications. Moreover, the G-mean, which measures
the balance between classification performances on both the majority and minority classes,
is slightly higher as well for the LR, with a value equal to 0.73. Comparing the results when
the EN10 is divided into segments of 2000 m in length, is again the LR that presents better
performance than the two other algorithms. The sensibility, the G-mean and the MCC are
higher in the LR algorithm. The prediction performance of LR with the RNS approach is
slightly better when considering segments with 500 m instead of 2000 m.

Table 1. Performance measures for the Logistic Regression (LR), Random Forest (RF) and C5.0
algorithms, by road segments length (500 m and 2000 m), for the RNS approach.

Machine Learning Algorithms

Segment: 500 m Segment: 2000 m

Measure LR RF C5.0 LR RF C5.0

Accuracy 0.681 0.674 0.677 0.690 0.677 0.677
Sensibility 0.888 0.802 0.845 0.871 0.828 0.836
Specificity 0.597 0.622 0.609 0.620 0.618 0.615
PPV 0.472 0.462 0.467 0.471 0.457 0.457
NPV 0.929 0.885 0.906 0.925 0.903 0.906
G-mean 0.728 0.706 0.717 0.735 0.716 0.717
F-score 0.616 0.586 0.601 0.611 0.589 0.591
MCC 0.441 0.383 0.412 0.441 0.401 0.405
AUC 0.828 0.787 0.813 0.813 0.786 0.799
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With the DNS approach, when EN10 is divided into segments 500 m in length, LR
performs a little better than the RF and the C5.0 algorithms (Table 2). It can be achieved
67.9% of correct predictions of RTA. Mathew’s correlation coefficient is about 0.21 and
the G-mean of 0.63, which confers not a too high correlation between the observed and
predicted classifications, but a good balance between classification performances on both
the majority and minority classes. For 2000 m long segments, the C5.0 algorithm slightly
outperformed the other two algorithms. Overall, the predictive performance was better
when considering segments 500 m long.

Table 2. Performance measures for the Logistic Regression (LR), Random Forest (RF) and C5.0
algorithms, by road segments length (500 m and 2000 m), for the DNS approach.

Machine Learning Algorithms

Segment: 500 m Segment: 2000 m

Measure LR RF C5.0 LR RF C5.0

Accuracy 0.604 0.563 0.520 0.600 0.528 0.588
Sensibility 0.679 0.613 0.799 0.634 0.659 0.656
Specificity 0.584 0.551 0.449 0.591 0.495 0.571
PPV 0.293 0.257 0.269 0.282 0.248 0.279
NPV 0.878 0.849 0.898 0.865 0.852 0.868
G-mean 0.630 0.581 0.599 0.612 0.571 0.612
F-score 0.409 0.362 0.402 0.390 0.360 0.391
MCC 0.212 0.132 0.203 0.182 0.124 0.183
AUC 0.671 0.622 0.660 0.648 0.601 0.649

With the ROSE approach, when EN10 is divided into segments 500 m long, LR
performs a little better than the RF and the C5.0 algorithms (Table 3). It is possible to get
87.1% correct predictions of RTA. Mathew’s correlation coefficient is also high with a value
equal to 0.49 and the G-mean is equal to 0.72, which gives a high correlation between the
observed and predicted classifications. Moreover, the AUC value of nearly 0.82, allows
making an excellent distinction between RTA and no RTA occurrences. For segments of
2000 m in length, it is also the LR that presents better performance. This algorithm yields a
higher value of the G-mean and the MCC. With the ROSE approach using a segment length
of 500 m long slightly improves the prediction performance.

Table 3. Performance measures for the Logistic Regression (LR), Random Forest (RF) and C5.0
algorithms, by road segments length (500 m and 2000 m), for the ROSE approach.

Machine Learning Algorithms

Segment: 500 m Segment: 2000 m

Measure LR RF C5.0 LR RF C5.0

Accuracy 0.738 0.718 0.711 0.734 0.693 0.716
Sensibility 0.871 0.835 0.842 0.857 0.791 0.821
Specificity 0.602 0.616 0.596 0.606 0.591 0.607
PPV 0.691 0.656 0.646 0.695 0.669 0.686
NPV 0.821 0.810 0.812 0.802 0.730 0.764
G-mean 0.724 0.717 0.709 0.720 0.684 0.706
F-score 0.771 0.735 0.731 0.767 0.725 0.748
MCC 0.492 0.459 0.448 0.479 0.390 0.439
AUC 0.818 0.783 0.796 0.803 0.757 0.777

From the overall results, it is possible to conclude that:

• The EN10 road, with shorter segments, improves the discrimination measures. There-
fore, for this specific road with very heterogeneous characteristics, the usage of shorter
segments improves the prediction performance;



Information 2023, 14, 238 14 of 18

• When comparing the performance of the three approaches used to balance the RTA
data, the ROSE approach performs better. Sampling the majority class, followed by
an oversampling of the minority class (RTA), allowed us to obtain an approximately
balanced dataset for training and testing and resulted in better prediction performance.
It is noteworthy that DNS, by selecting negative cases similar to the positive cases,
presents always worst results than RNS.

• The LR algorithm presents a slightly better performance than C5.0, having both much
better results than the RF, either in the DNS and ROSE approaches and for both
segment lengths. For the DNS approach (the one with the worst performance) the
C5.0 presents better discrimination measures than the LR.

Finally, according to the LR model, adjusted for 500 m segments length, with ROSE,
the most important factors for the prediction are: the month of the year, the day of the
week, the time of the day, whether it is a holiday or a school day, temperature, precipitation,
wind speed, the historical average speed and the number of vertical traffic signs.

5. Discussion

RTA severity prediction generally explores the relationship between accident severity
or victim severity and relevant factors (such as driver behaviour, vehicle characteristics,
geometry, and road conditions). It provides critical information to emergency services and
traffic managers to implement measures to reduce the side effects of the accident, such
as providing faster medical assistance to people injured in the RTA, thus reducing the
fatalities [42]. The predictive models of the occurrence of RTA enable the possibility to act
in advance and take measures so that the accident can be avoided.

Predictive models for the occurrence of crash accidents have been used on
expressways [8,9], motorways [7], freeways [10] and highways [11]. Recently, a study
was published that considers a greater heterogeneity of roads and presented a proposal of
a prediction model for the occurrence of traffic accidents but only related to the urban road
network [35]. In our study, we considered RTA (crashes, collisions, or pedestrian running-
over) on a road, which makes prediction more difficult. On the other hand, the road
considered (EN10) has 85.66 km long, 17.90 km of which is within towns, and has various
heterogeneous characteristics, such as the type of surface, the existence of roadsides in some
sections and their suppression in other sections, among other aspects previously described.

Usually, there is accurate information about traffic volume, speed, and other traffic-
related parameters on the road for which the prediction model is being obtained [8–11]. In
some cases, the information is measured in short periods of time [8,11], or it may differ
depending on the driver and vehicle [11]. In our case, there is no monitoring of daily
traffic and, therefore, there are no such variables that have proved to be important in the
prediction models. We must point out that the lack of information about these variables is
common on most roads in Portugal, which reinforces the importance of implementing this
type of model presented in our work.

The roads considered are often segmented [8,9,11] to adjust the models and different
types of segments are considered [8,11], with cases in which a model is adjusted for each
segment type [11]. However, the segment length effect is not analysed. We have studied the
effect of road segment size on the predictive performance of the models. All segments were
constant, which reduced the complexity of the model. The choice of the segment length was
based on the existing literature, and the shortest length that allowed to have enough events
in each segment was 500 m. We wanted to evaluate the effect of the segment sizes, and we
considered segments with twice this length (1000 m–not presented in this study) and with
2000 m. We have concluded that for a road with such heterogeneity as EN10, a smaller
length segment captures best the road characteristics, improving the model’s performance.

The problem of extremely unbalanced data is not always explicitly addressed [8,9,35].
When considering some approaches, it was SMOTE [10] and Wasserstein GAN [7] that
performed best. In this paper, three approaches were considered to mitigate the issue of
imbalanced data (RNS, DNS and ROSE), having concluded that ROSE allows the models
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to perform better. It was interesting to note that RNS provides better results than DNS.
Maybe this is due to the similitude of positive and negative samples obtained in DNS and,
with this, the models have more difficulty in correctly predicting a positive/negative case.

Finally, as previously described, this work is a significant contribution to the area of
RTA prediction. It describes in detail, to our knowledge for the first time, the process of
creating a predictive model for a road with such heterogeneous characteristics. The model
that had better performance has already been implemented in an application (Figure 5)
that is being used by the GNR in Setúbal, contributing to making this security force more
effective and efficient in RTA prevention. It predicts the occurrence of an RTA on a given
road segment at a given time and day. With this information, in the digital tool developed,
all segments with a high probability of an RTA occurring are coloured red, those with an
intermediate probability are coloured yellow and those that the model does not predict RTA
are coloured green. With this information, the Setúbal GNR sends patrols to the segments
with a higher risk of RTA and their presence greatly reduces the likelihood of an occurrence
of an RTA in that location.

Since there is a limitation of resources for road surveillance in the district, this security
force can use this predictive tool (which integrates predictive models for other 3 roads)
to guide the available officers to where the probability of an accident is higher, making
prevention work more effective. A recent report received from the security force that is
testing this model (which is integrated into the digital tool), states that “. . . it’s possible
to realize that in supporting decision-making, the tool facilitates the decision of the main
highlights to broadcast to the patrols at the beginning of their shifts”.

Figure 5. Digital application to support decision: prediction probability of an RTA in EN10 on a given
time of the day by segments of 500 m. Red segments have a probability greater than 90%, yellow
segments have a probability greater than the cut-off point and lesser than 90% and green segments
have a probability lesser than the cut-off point.

6. Final Remarks

This paper describes the procedures for obtaining a model to predict the occurrence of
RTA on a Road (EN10) in Portugal.

The methodology used a mixture of knowledge between artificial intelligence, statis-
tics, and geographic information systems. It consists of four fundamental steps: (1) division
of the road into segments of two different lengths (500 m and 2000 m); (2) generation of
negative samples to get information about the periods and segments in which there were no
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accidents; (3) fitting 3 ML models (LR, RF and C 5.0) with 3 different approaches to mitigate
the large imbalance data (RNS, DNS, and ROSE); (4) comparison of models’ performance.

Following this methodology, it was concluded that the LR with the ROSE approach,
with segments of size 500 m, was the one with the best performance. This model and others,
obtained using an identical methodology for three other roads in the district of Setúbal,
were implemented in a digital application that supports the decision-making process of a
security force in Portugal, the GNR. In this way, it will be possible for the GNR to better
manage the human resources at its disposal, to effectively predict the occurrence of RTA on
that road.

These types of models have never been implemented in Portugal. At an international
level, there is no knowledge of the application of predictive models for the occurrence
of RTA in this context, i.e., with a lack of information on some variables of great interest
(such as specific information on vehicles and traffic intensity), as well in a road with
heterogeneous features as the one considered.

The next research step will be the design of a predictive model for the occurrence of
RTA with victims. In this case, the imbalance of the data will be even more pronounced.
Other ML models should be considered (such as XGBoost and AdaBoost) and/or other
approaches for data imbalance (such as extremely rare events).

Finally, it should be noted that this investigation was developed within a project
(MOPREVIS) that was a success in linking the academic environment and multidisci-
plinary applied science to a concrete social problem, involving state—from central to local
level—and private partners. It was a good networking practice.
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ANSR Autoridade Nacional de Segurança Rodoviária (National Road Safety Authority)
BEAV Statistical Bulletin of Road Traffic Accidents
DNS Directional Negative Sampling Approach
EN National Road
GNR Guarda Nacional Republicana (National Republican Guard)
IP Infraestruturas de Portugal (infrastructures of Portugal)
IPMA Instituto Português do Mar e da Atmosfera (Portuguese Institute for Sea
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LR Logistic Regression
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ML Machine Learning
MOPREVIS Modeling and Prediction of Road Traffic Accidents in the District of Setúbal
NPV Negative Predictive Values
PPV Positive Predictive Values
RF Random Forest
RNS Random Negative Sampling Approach
ROSE Random Over-Sampling Examples
RTA Road Traffic Accidents
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