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Abstract: The frame field distributed inside the model region characterizes the singular structure
features inside the model. These singular structures can be used to decompose the model region
into multiple quadrilateral structures, thereby generating a block-structured quadrilateral mesh.
For the generation of block-structured quadrilateral mesh for two-dimensional geometric models, a
convolutional neural network model is proposed to identify the singular structure inside the model
contained in the frame field. By training the network model with a large number of model region
decomposition data obtained in advance, the model can identify the vectors of the frame field in the
region located in the segmentation field. Then, the segmentation streamline is constructed from the
annotation. Based on this, the geometric region is decomposed into several small regions, regions
which are then discretized with quadrilateral mesh elements. Finally, through two geometric models,
it is verified that the convolutional neural network model proposed in this study can effectively
identify the singular structure inside the model to realize the model region decomposition and
block-structured mesh generation.

Keywords: mesh generation; block-structured mesh; quadrilateral mesh; convolutional neural
network; domain decomposition

1. Introduction

Mesh generation is a preprocessing process in numerical simulation techniques, such
as the finite element method, the finite volume method, and the finite difference method.
This process decomposes a continuous geometric model into a combination of finite basic
elements, which are called mesh elements [1,2]. According to the topological connection of
mesh elements, meshes can be divided into structured meshes and unstructured meshes.
Compared with unstructured meshes, structured meshes have the characteristics of high
solution accuracy and fewer required elements [1]. However, due to the strong topological
constraints of structured meshes, generating high-quality structured meshes for complex
geometric models is nontrivial; it often requires a lot of manual work and high expertise
from users [3–9]. An alternative way is to decompose the domain covered by the geometric
model into several four-sided sub-domains and then generate structured meshes in each
sub-domain. As a result, a block-structured mesh can be obtained. Additionally, the
difficulty of structured mesh generation can be reduced to a certain extent [10].

However, for complex geometric models, the automation of domain decomposition
is not an easy task; it needs to analyze the geometric characteristics of the models. In
recent years, researchers have proposed methods to obtain the internal characteristics of
the geometric model from the perspective of the physical field and found that the domain
decomposition of the geometric model can be achieved by analyzing the singular structure
of the physical field [7–10]. For example, Kowalski et al. [8] generated a smooth frame field
inside the two-dimensional geometric model according to the principle of heat diffusion
and finally obtained the decomposition of the model based on extracting the singular
structures of the frame field. Xiao et al. [10] proposed to use the boundary element method
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to solve a vector Laplacian equation to obtain a smooth vector field inside the model and
then obtain a smooth frame field reflecting the geometric characteristics of the boundary
and finally achieve the decomposition of the model. In this type of method, the constructed
smooth frame field takes into account the characteristics of both the boundary and the
internal structure of the model. Therefore, the domain decomposition results can ensure
block-structured meshes with high quality. In addition, the mesh elements near boundaries
have good orthogonality as a result of the consideration of boundary characteristics in the
generation of the frame field.

The domain decomposition method based on the singular structure analysis of the
frame field greatly improves the automation of the process of generating high-quality block-
structured meshes for complex geometries. The two key steps in such kind of methods
are constructing a smooth frame field covering the geometric domain and extracting
streamlines that decompose the domain according to the singular structures of the frame
field. There are many ways to obtain a smooth frame field in the first step [7–10]. However,
the second step relies on numerical methods to generate streamlines on discrete mesh
elements. Normally, after the generation of initial streamlines, complex operations, such
as streamline simplification and merging, are often required [10], and the algorithm still
has robustness issues due to the adoption of the numerical method. In addition, for a
local modification of the geometric model that often occurs in the engineering design, in
order to obtain the block-structured mesh of the modified model, it is often necessary to
regenerate a new frame field and re-extract the streamlines based on the new frame field.
Undoubtedly, this increases the complexity of the mesh generation task. It is worth noting
that when the topology of the geometric model does not change, the singular structure of
the frame field inside the geometric model will not change, so the topology of the final
model domain decomposition remains consistent. Aiming at this problem, this study
presents an intelligent method for the identification of singular structures of a frame field
based on a convolutional neural network, which realizes the identification of internal
features of the geometric model and automatic domain decomposition, and finally realizes
the block-structured mesh generation of the internal region of the geometric model.

Artificial intelligence methods have achieved great success in engineering applications,
among which deep-learning methods are particularly popular [11,12]. For example, deep
learning has been successfully used to compute offloading in the applications of the Internet
of Things [13,14] and understand documents by analyzing page objects [15]. As a type
of method in deep learning, convolutional neural networks are widely used in image
and model processing [16–19]. A lot of work has also emerged in the feature recognition
of geometric models. Qi et al. [20] pioneered a convolutional neural network model
named PointNet in 2017, which directly acts on the point cloud model and uses the
permutation invariance of points to learn the distribution characteristics of the point
cloud of models. Additionally, in the PointNet++ [21] proposed in the same year, the
sampling layer and grouping layer are adopted to enhance the ability to detect local
features. Feng et al. [22] proposed the MeshNet, which uses mesh information as the
input of the convolutional neural network. Wang et al. [23] proposed a convolutional
neural network called dynamic graph convolutional neural network (DGCNN), which
constructs a local neighborhood graph with k-nearest neighbors and performs convolution
operations on the edges connecting neighboring pairs of points. It is reported that the
DGCNN strengthens the extraction of local features of the point cloud model and improves
the recognition ability. The artificial neural network has also been applied to the mesh
generation area. As early as 2005, Yao et al. [24] proposed to use a neural network to learn
the mesh generation characteristics of the two-dimensional advancing front method based
on conditional judgment. The network can predict the position of the next front point and
base on which a quadrilateral mesh element is generated. Recently, Wang et al. [25,26]
proposed an advancing front triangular generation method and a mesh size control method
based on neural networks; the effectiveness of the algorithm has been demonstrated with
several geometric models.
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The success of artificial intelligence methods in the processing of geometric models,
such as point clouds, has shed light on the problem of domain decomposition. The frame
field distributed inside the domain of a geometric model can be regarded as point cloud data.
It includes both boundary features and internal features of the model, which can be used as
the input data of a convolutional neural network. Inspired by this, a convolutional neural
network is proposed to identify the internal singular structure of a model by analyzing the
frame field inside the domain of this model. The neural network is trained through a large
number of domain decomposition data, which can make the neural network identify the
singular structure of the frame field. The trained neural network is then used to identify
the vectors of frame components near the streamlines, and based on that, the streamlines
are constructed to decompose the domain for block-structured mesh generation.

2. Model Data for Domain Decomposition
2.1. Domain Decomposition Based on the Frame Field

In Ref. [10], Xiao et al. proposed a block-structured quadrilateral mesh generation
method based on the frame field. For completeness, the basics of the method are reviewed
in this section.

The main idea is to generate a smooth frame field covering the model domain and
then analyze the singularity in the frame field structure and generate the streamlines
that partition the domain into four-sided sub-domains. Figure 1 shows the main steps of
domain decomposition of a semicircle model based on the method proposed in Ref. [10].
The method takes a background mesh as an input (see Figure 1a), and a frame field is
then computed on the background mesh nodes, as shown in Figure 1b. The frame field
is computed by propagating the frames defined on the boundaries of the domain with a
PDE-based method. In order to make the final quad elements align with the boundaries of
the domain, the initial frames on the boundaries are set to be aligned with the boundaries
(see Figure 1b). After the frame field is obtained in the geometric domain, the positions
of the singularities of the field are determined, which are shown as the points in red in
Figure 1c. Then, the streamlines emanating from these singularities are constructed, and
these streamlines partition the domain into several four-sided sub-domains (see Figure 1d),
which can be discretized with structured quadrilateral meshes.
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Figure 1. Domain decomposition based on frame field: (a) The background mesh; (b) The frame field;
(c) The singular points in the frame field; and (d) The domain decomposition results partitioned by
streamlines (lines in blue).
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The singular points and the streamlines partitioning the domain are called the singular
structure of the frame field, and this provides a theoretical basis for the domain decom-
position of the geometric model. Inspired by the above idea of domain decomposition, a
convolutional neural network is proposed and trained to identify the singular structures of
the frame field, and then, the singular structures are used for the domain decomposition of
the model.

2.2. Training Data

As mentioned earlier in the Introduction section, local modifications of the geometric
model often occur in the engineering design. For such applications, the topology structure
of the geometries may not change, and thus, the singular structure of the frame field inside
the geometric model will not change. The network in this study is trained to identify the
singular structures for such geometries. Therefore, the training data for the network are
only from the geometries with the same topology structure.

Overall, the background mesh nodes of each model are taken as the input point cloud
data. Except for the coordinates information, a frame is attached to each node, and therefore,
a discretized frame field is obtained over the point cloud. We expect the neural network
to classify the frames on the background mesh nodes according to whether they lie on
the streamlines that partition the model. Each two-dimensional frame is composed of
four vector components (see Figure 2a). Considering the central symmetry of the frame
vectors and the usage of the frame vectors in the generation of streamlines, each frame
is represented by two independent vectors perpendicular to each other (see Figure 2b).
Therefore, for each mesh node, we obtain two samples:{(

x, y, v1,x, v1,y, l1
)(

x, y, v2,x, v2,y, l2
)

where (x,y) are the coordinates of mesh nodes,
(
vi,x, vi,y

)
(i = 1, 2) are the vector compo-

nents of a frame on the mesh node, li (i = 1, 2) are the labels of the vector components (the
value is 0 or 1).
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Figure 2. A two-dimensional frame represented by: (a) Four vectors; and (b) Two perpendicular
vectors, respectively.

For the test data, li is predicted by the neural network, and based on that, streamlines
are generated accordingly to partition the model domain. However, for the training data,
the value of li needs to be set in advance. Its value depends on the position of the mesh
node and the angle between the vector component

(
vi,x, vi,y

)
and the streamline. The

setting of li is shown in Figure 3 according to the following rules: for the frame vectors on
the nodes of a mesh element that a streamline goes through, the vectors that are consistent
with the direction of the streamline are marked as 1 (see the arrows in red in Figure 3),
and the vectors that are inconsistent with the direction of the streamline edge are marked
as 0; for the frame vectors on the nodes of a mesh element that the streamlines do not go
through, all are marked as 0 (see the vectors on node D in Figure 3). Figure 4 shows the
frame components identified for the partition results shown in Figure 1. For the semicircle
model shown in Figure 1, Figure 4a shows the background mesh and streamlines, and
Figure 4b shows the vector components of frames marked near the streamlines according
to the above rules, which are the vector components marked with label 1.
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Figure 4. Labeled vectors of frames: (a) The background mesh and streamlines; (b) Vectors of frames
that are marked with label 1.

At this point, the training data for the neural network can be created. First, each two-
dimensional geometric model is discretized with a triangular mesh with about 2048 nodes.
Secondly, the method in Ref. [10] is used to generate a discretized frame field distributed
on the mesh nodes and also the streamlines that partition the domain computed based on
the frame field. Then, for each frame on a mesh node, select two mutually perpendicular
vectors and set li according to the rules mentioned above. In order to obtain a large number
of training data, for each geometric model, more different test sample data sets are obtained
through means such as rotation, deformation, and random movement of mesh points.
Figure 5 shows part of the training data for the concave model.
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3. Neural Network Model and Its Training
3.1. Neural Network Model

In order to classify the frame components near the streamlines, it is necessary to
consider not only the local features but also the global features of the model. In this study,
the EdgeConv operation proposed in Ref. [23] is used to extract the local features of the
frame field, while the conventional convolution operation is used to extract the global
features of the frame field.

In this study, the TensorFlow platform is selected as the neural network development
library. Figure 6 shows the convolutional neural network structure used to identify the
singular structure of the frame field. The dimension of the input layer of the network is
(N × 4), N is set to be the number of mesh nodes of each model (i.e., 2048), and 4 represents
the data dimension on each mesh node (including the coordinates of the mesh node and
frame component information). Subsequently, three feature extraction layers (Net1, Net2,
and Net3) are added to enhance the ability of the network to capture features of the frame
field. Each feature extraction layer includes edge convolution operations and regular
convolution operations. The results of these two kinds of convolution operations are
concatenated and used as the input of the next layer. The convolution kernel sizes in these
three feature extraction layers are all (1 × 1), and the number of convolution channels is
16, 32, and 64, respectively. After Net3, the results of Net1, Net2, and Net3 are further
concatenated and taken as the input of a maximum pooling layer (max pooling). Afterward,
four more convolution layers with convolution kernel size (1 × 1) are introduced, and the
number of convolution channels is 256, 256, 128, and 2, respectively. To avoid overfitting,
a dropout layer is added after the first two convolutional layers, and the threshold is set
to 0.5. In all convolutional layers, the padding is all set to be “VALID”. Finally, the output
of the network is a two-category classification of semantic labels, identifying whether the
frame component is located near the streamline and in the same direction as the streamline.
Table 1 shows the more detailed parameter settings of the entire convolutional neural
network structure.

Table 1. Detailed parameters of the convolutional neural network model.

Layers Input Channels Kernel Stride Padding Output

Conv1 [4,2048,4,1] 16 [1,1,1,16] [1,1,1,1] VALID [4,2048,4,16]
Edge

Conv1 [4,2048,10,4] 16 [1,1,1,16] [1,1,1,1] VALID [4,2048,10,16]

Concat1 [4,2048,16,16] – – – – –
Conv2 [4,2048,16,1] 32 [1,1,1,32] [1,1,1,1] VALID [4,2048,16,32]
Edge

Conv2 [4,2048,10,16] 32 [1,1,1,32] [1,1,1,1] VALID [4,2048,10,32]

Concat2 [4,2048,36,32] – – – – –
Conv3 [4,2048,32,1] 64 [1,1,1,64] [1,1,1,1] VALID [4,2048,32,64]
Edge

Conv3 [4,2048,10,32] 64 [1,1,1,64] [1,1,1,1] VALID [4,2048,10,32]

Concat3 [4,2048,42,64] – – – – –
Concat4 [4,2048,1,112] – – – – –

Max pool [4,2048,1,112] – [1,2048,1,1] – – [4,1,1,512]
Expand [4,1,1,512] – – – – [4,2048,1,512]
Conv4 [4,2048,1,512] 256 [1,1,512,256] [1,1,1,1] VALID [4,2048,1,256]

Droupout [4,2048,1,256] – – – – –
Conv5 [4,2048,1,256] 256 [1,1,256,256] [1,1,1,1] VALID [4,2048,1,256]

Droupout [4,2048,1,512] – – – – –
Conv6 [4,2048,1,256] 128 [1,1,512,128] [1,1,1,1] VALID [4,2048,1,128]
Conv7 [4,2048,1,128] 2 [1,1,128,2] [1,1,1,1] VALID [4,2048,1,2]

Squeeze [4,2048,1,2] – – – – –
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3.2. Loss Function and Training

The domain decomposition problem in this study can be classified as a segmentation
problem. The segmentation problem usually uses intersection over union (IoU) [23] as the
evaluation standard, and the dice coefficient [27] is a key parameter when determining
the IoU value. Considering the improvement of the IoU value and reducing the difficulty
of neural network training convergence, the cross-entropy loss function and the dice loss
function [27] are used as the loss function of the neural network training in this study,
as follows:

loss = 0.5 ∗ loss0 + 0.5 ∗ loss1,

where loss0 and loss1, are the cross-entropy loss function and the dice loss function, respec-
tively, and the expressions are

loss0 = −|labels ∗ log(z) + (1− labels)∗ log(1− z)|,

loss1 = 1−
2 ∗

(
sum(z ∗ labels) + 10−5

sum(z ∗ z) + sum(labels ∗ labels) + 10−5

where labels are the label vectors of the sample data set, and z is the result of the output
layer configured with the Sigmoid activation function.

During training, the optimization algorithm we use is the stochastic gradient descent
(SGD) method, the initial learning rate is 0.001, the momentum is 0.9, and the batch size is
set to 4. The randomly selected 80% of the data from the sample data set is taken as the
training data set, and the remaining 20% is taken as the test data set. After the training
converges, IoU and overall accuracy (OA) are used to evaluate the experimental results.

4. Streamline Extraction and Quad Mesh Generation

Figure 7 presents the workflow of the proposed method. As can be seen, after the above
convolutional neural network is trained, it can be used to predict the singular structure
of a geometric model with the same topology. The prediction results identify the frame
components that fall near the streamlines, which reflect the roughly singular structure
of the geometric model. Based on this, the streamlines that partition the domain can be
extracted, and finally, block-structured quad mesh can be generated.
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Based on the prediction results of the neural network, the way to obtain streamlines is
much simpler than the method in Ref. [10]. It is only necessary to find out the discrete line
segments connected end to end in the prediction results. According to the existing frame
field, the information related to singular points can be calculated according to the method
in Ref. [10], such as the positions, the valences of the singular points, and the extension
directions of the streamlines at a singular point. Suppose there are n singular points,
denoted as si (i = 1, . . . , n), and the corresponding extension directions of streamlines
are vi,k (i = 1, . . . , n; k = 1, . . . , 3 or 1, . . . , 5), we extract all streamlines starting from the
extension directions of the singularity. Taking the extension direction vi,k of the singular
point si as an example, the process of extracting the streamline li,k is as follows:

(1) Take the singular point si and its extension direction vi,k as the initial current node
(denoted as sc) and the initial current extension direction (denoted as vc), and add sc
into the streamline li,k, sc becoming a node of the streamline li,k;

(2) Among the nodes with frame components marked with label 1, find m neighboring
nodes of the current node sc, denoted as neigi(i = 1, ..., m), and their frame compo-
nents, denoted as vneigi(i = 1, ..., m). Let a neigc(1 ≤ c ≤ m) be the closest node to
sc, whose corresponding vneigc has the smallest angle with vector vc (then, neigc is
regarded as the next node of the streamline), and add it into li,k. Figure 8 presents
the schematic for choosing the next node of the streamline; the nodes in blue in the
circle centered at the current node sc are candidate neighboring nodes, and the node
in yellow is the node that satisfies the above conditions, and therefore, it is chosen as
the next node of the streamline;

(3) Update the value of sc to be neigc, and the value of vc to be vneigc;
(4) If sc is a singular node or a boundary node, the entire streamline li,k is extracted;

otherwise, go to step 2.
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Figure 8. Schematic of searching for the next node of the streamline: the nodes in black are the nodes
already added to the streamline, the nodes in blue are the candidate neighboring nodes of sc, and the
node in yellow is the next node of the streamline, the arrows are the frame components marked with
label 1.

In order to speed up the searching process of neighboring nodes, the approximate
nearest neighbor (ANN) search algorithm is used in this study. Additionally, all the
nodes predicted to be near the streamlines are organized with a binary search tree, such
that the time complexity of searching for neighboring nodes of a node should be within
O(logn) [28]. It should be noted that the streamlines obtained with the above method
are formed by connecting discrete nodes, which may result in non-smooth streamlines.
Therefore, after obtaining the initial streamlines, the Laplace smoothing method is used
to smooth the streamlines. In addition, to obtain continuous streamlines, the continuous
parameter expression of streamlines can be obtained with the curve fitting algorithm after
the smoothing operation. For the predicted results shown in Figure 4b, the green line in
Figure 9a shows the streamlines of the semicircle model obtained after the above process;
they are used to partition the domain.

After all the streamlines are obtained, the model domain is partitioned into multiple
sub-domains, and each sub-domain can be transformed into a four-sided domain. Therefore,
the mapping method can be used to generate high-quality quadrilateral meshes for each
sub-domain. In order to make the mesh conform to the shared edges of neighboring
sub-domains, it is usually necessary to solve a linear programing problem to compute the
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number of discrete segments on each edge before mesh generation [10]. Figure 9b shows
the final block-structured quadrilateral mesh of the semicircle model.
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5. Results

In order to verify the effectiveness of the proposed algorithm, two different topologies
are selected as examples for testing, and they are the concave topology and the four-hole
topology. The convolutional neural network proposed in Section 3.1 is trained first with
the training data. Note that a small part of the mesh data are obtained with in-house
mesh generation code, and the remaining data are obtained with the data augmentation
techniques mentioned in Section 2.2. Then, the frame field on a new mesh model is used
for prediction with the trained neural network, based on which the geometric model
is partitioned.

Figure 10a,c present the background triangular mesh of a model with the concave
topology and four-hole topology, respectively. To be consistent with the input of the
neural network, the number of mesh nodes is limited to around 2048 for each mesh. The
corresponding frame fields of these two models are shown in Figure 10b,d. The singular
structures of these two models obtained with the method introduced in Ref [10] can be seen
in Figure 11a,b, respectively. Note that for the training of the neural network, a data set
with the size of 2000 for each topology is created (seen in Table 2), among which 80% of
the samples are used as the training set, and the remaining 20% are used as the testing set.
Table 2 shows the accuracy and IoU of the training results on the testing sets. As can be
seen, the overall accuracy rate exceeds 0.96, and the IoU exceeds 0.82.

Information 2023, 14, x FOR PEER REVIEW 10 of 13 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. The concave and four-hole models: (a,b) The background triangular mesh of a geometric 

model with the concave topology and the corresponding frame field; (c,d) The background triangu-

lar mesh of a geometric model with the concave topology and the corresponding frame field. 

 

 
(a) (b) 

Figure 11. Singular structures generated based on the method in Ref [10]: (a) A geometric model 

with the concave topology; (b) A geometric model with the four-hole topology. 

Table 2. Training results of two two-dimensional examples. 

Topology Name Data Size IoU Accuracy 

The concave topology 2000 0.852 0.981 

The four-hole topology 2000 0.821 0.965 

Figures 12a and 13a present the prediction results of the concave model and the four-

hole model shown in Figure 10, respectively. The short lines in the figure are the vectors 

of the frame component predicted by the neural network, which is around and aligned 

with the extension direction of the singular edges. These vectors are all located on the 

background mesh nodes, and these mesh nodes form several strips of the point cloud. It 

can be seen that the strips of point cloud almost go along with the extension direction of 

the singular edge of the model, and the directions of the vectors labeled with tag 1 are also 

almost consistent with the extension direction of the singular edge. The previous results 

Figure 10. The concave and four-hole models: (a,b) The background triangular mesh of a geometric
model with the concave topology and the corresponding frame field; (c,d) The background triangular
mesh of a geometric model with the concave topology and the corresponding frame field.
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Figure 11. Singular structures generated based on the method in Ref [10]: (a) A geometric model
with the concave topology; (b) A geometric model with the four-hole topology.

Table 2. Training results of two two-dimensional examples.

Topology Name Data Size IoU Accuracy

The concave topology 2000 0.852 0.981
The four-hole topology 2000 0.821 0.965

Figures 12a and 13a present the prediction results of the concave model and the four-
hole model shown in Figure 10, respectively. The short lines in the figure are the vectors
of the frame component predicted by the neural network, which is around and aligned
with the extension direction of the singular edges. These vectors are all located on the
background mesh nodes, and these mesh nodes form several strips of the point cloud. It
can be seen that the strips of point cloud almost go along with the extension direction of
the singular edge of the model, and the directions of the vectors labeled with tag 1 are
also almost consistent with the extension direction of the singular edge. The previous
results mean that the convolutional neural network proposed in Section 3.1 can learn the
distributions of the singular structures according to the input of frame field information.
The green curves in Figures 12a and 13a show the streamlines extracted from the predictions
for the two geometric models. It can be seen that the domain decomposition results are
quite close to the results obtained with the method in Ref. [10] shown in Figure 11a,b. This
can be further verified in Figure 14 where the domain decomposition results generated by
the proposed method and the method in Ref. [10] are presented together; it can be seen that
only minor differences exist. The final block-structured quadrilateral mesh of the concave
model and the four-hole model is shown in Figures 12b and 13b, respectively.

In order to show the time efficiency of the proposed method, the four-circle model is
used as an example to evaluate the time consumed during the step of domain decompo-
sition with the proposed method and the method in Ref. [10]. The test is conducted on a
personal computer (CPU: 3.5 GHz; Memory: 16 GB). With the predicted results of the CNN
model, it takes 0.782 s for the proposed method to reconstruct the streamlines and obtain
the domain decomposition result. However, the method in Ref. [10] consumes more than
two times the time, i.e., 1.644 s, to generate the streamlines for domain decomposition. This
is because the method in Ref. [10] relies on a numerical method to generate the streamlines,
which is time consuming and could cause robustness issues. It needs to be noted that the
proposed method needs extra time to train the CNN model, but for engineering designs that
often require local modifications of the geometric model, the extra time can be apportioned
to different design cycles.
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6. Conclusions

The frame field distributed inside the model region describes the singular structural
features inside the model. Aiming at the block-structured mesh generation problem, this
paper proposes a convolutional neural network model to identify the internal singular
structures contained in the frame field and then decompose the model area into multi-
ple quadrilateral structures according to these singular structures and generate a block-
structured quadrilateral mesh. The neural network model is trained with a large amount
of model domain decomposition data. For geometric models with the same topology, the
trained model can identify the frame component vectors located near the region segmenta-
tion streamlines and then construct the segmentation streamlines from the labeling results
through an algorithmic process. Experiments show that the neural network model in this
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paper can effectively identify the internal singular structure of the model in order to realize
the decomposition of the model area and the generation of block structure mesh.

Note that the proposed method can be extended to three-dimensional problems by
considering one more frame component. The preparation of the training data and the
network model would be similar to those in the two-dimensional problems. We will work
on this extension in the near future. Finally, it needs to be mentioned that, currently, the
network needs to be trained for each different topology structure.
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