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Abstract: In this study, based on a morpheme segmentation framework, we researched a text keyword
extraction method for Uyghur, Kazakh and Kirghiz languages, which have similar grammatical and
lexical structures. In these languages, affixes and a stem are joined together to form a word. A stem is
a word particle with a notional meaning, while the affixes perform grammatical functions. Because
of these derivative properties, the vocabularies used for these languages are huge. Therefore, pre-
processing is a necessary step in NLP tasks for Uyghur, Kazakh and Kirghiz. Morpheme segmentation
enabled us to remove the suffixes as the auxiliary unit while retaining the meaningful stem and it
reduced the dimension of the feature space present in the keyword extraction task for Uyghur, Kazakh
and Kirghiz texts. We transformed the morpheme segmentation task into the problem of labeling
the morpheme sequences, and we used the Bi-LSTM network to bidirectionally obtain the position
feature information of character sequences. We applied CRF to effectively learn the information of
the preceding and following label sequences to build a highly accurate Bi-LSTM_CRF morpheme
segmentation model, and we prepared morpheme-based experimental text sets by using this model.
Subsequently, we used the stem vectors’ similarity to modify the TextRank algorithm, subsequent
to the training of the stem embedding vector using the Doc2vec algorithm, and then we performed
a text keyword extraction experiment. In this experiment, the highest F1 scores of 43.8%, 44% and
43.9% were obtained for three datasets. The experimental results show that the morpheme-based
approach provides much better results than the word-based approach, which shows the stem vector
similarity weighting is an efficient method for the text keyword extraction task, thus proving the
efficiency of morpheme sequence for morphologically derivative languages.

Keywords: Uyghur–Kazakh–Kirghiz; keyword extraction; morpheme segmentation; stem extraction;
stem vector; TextRank

1. Introduction

Keywords are important phrases with a semantic meaning in a text. By extracting the
keywords, the most representative lexical units in the text can automatically be identified.
Therefore, the text keyword extraction method has important applications in text mining [1],
information retrieval [2] and natural language processing [3]. In text searching tasks,
keywords are extensively used to classify the search results and help users to rapidly obtain
specific data. However, automatic keyword extraction is a challenging task because of the
complexity of natural language, the heterogeneity of input text type and the different types
of keywords that need to be extracted. An effective representation and retention of the
semantic context information are important steps in the text keyword extraction process.

Uyghur, Kazakh and Kirghiz are morphologically rich, agglutinative languages shar-
ing similar grammar and lexical structures. In the written form, officially, Arabic script
is used for these three languages; at the same time, people also extensively use the Latin
alphabet for mobile messages or on social networks such as WeChat. Sentences in these lan-
guages are composed of naturally separated words, which are formed by affixes attached to
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the stem. A stem is a unit with independent semantics and is part of an open set, and affixes
are the functional units and a closed set. The function of affixes is very important. They
can change the meaning of a stem and derive new stems (vocabularies). As a result of these
derivative properties, these languages have many combinations of morphemes, and greatly
expand the available vocabulary. Therefore, through pre-processing operations, such as
morpheme segmentation and word stem extraction, the meaningful and effective features
of Uyghur, Kazakh and Kirghiz texts can be retained, thus, different forms of words can be
merged into the same feature space, which can effectively reduce the repetition rate and
dimension of features. This notion is presented in the example below:

Arabic script form.
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ler 
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Kirghiz:darigArgA = darigAr + gA 

 
Ga 
Ge 
gA 

(medicine) 
Uyghur:doHturluq = doHtur + luq 
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Kirghiz:darigArlik = darigAr + lik 

 
luq 
lik 
lik 

Various changes in the morphological structures of these languages easily cause sur-
face form explosion and lead to the problem of language resource scarcity. Furthermore, 

(Uyghur)
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(Kirghiz)
English meaning: Doctors must have the medical ethics.
Latin alphabet form.
(Uyghur) doHturlarda doHturGa Has doHturluq vAHlaqi bolixi kerAk.
(Kazakh) darigerler darigerge tiesili darigerlik vetikagi bolsi kerek.
(Kirghiz) darigArlAr darigArgA kArAklik darigArlik AHlakin saktasi kArAk.
After morpheme segmentation.
(Uyghur) doHtur + lar + da doHtur + Ga Has doHtur + luq vAHlaq + i bolix + i kerAk.
(Kazakh) dariger + ler dariger + ge tiesili dariger + lik vetikagi bolsi kerek.
(Kirghiz) darigAr + lAr darigAr + gA kArAk + lik darigAr + lik AHlak + in saktas + i kArAk.
The three sentences above contain seven words, and each sentence has three words

which share the same stem (shown in), which are /doHtur/, /dariger/ and darigAr/
(English meaning: doctor). Subsequent to morpheme segmentation and stem extraction
operations on these sentences, these three words grouped to only one stem; therefore, the
dimensionality of the text feature space is considerably reduced, as shown in Table 1.

Table 1. Uyghur–Kazakh–Kirghiz word variants.

Stem Variants Affix

(doctor)
Uyghur:doHtur
Kazakh:dariger
Kirghiz:darigAr

(on the doctors)
Uyghur:doHturlarda = doHtur + lar + dA

(doctors)
Kazakh:darigerler = dariger + ler

Kirghiz: darigArlAr = darigAr + lAr

lar + dA

ler
lAr

(to the doctor)
Uyghur:doHturGa = doHtur + Ga
Kazakh:darigerge = dariger + ge

Kirghiz:darigArgA = darigAr + gA

Ga
Ge
gA

(medicine)
Uyghur:doHturluq = doHtur + luq
Kazakh:darigerlik = dariger + lik
Kirghiz:darigArlik = darigAr + lik

luq
lik
lik

Various changes in the morphological structures of these languages easily cause
surface form explosion and lead to the problem of language resource scarcity. Furthermore,
the data collected from the Internet contain various dialects, dubious spelling and encoding
that challenge the reliability of the textual information processing task [4].

This study proposes a morphological segmentation method for Uyghur, Kazakh and
Kirghiz based on the Bi-LSTM and CRF model, and a method of text keyword extraction for
these languages based on the Doc2vec_TextRank model. First, we built the Bi-LSTM_CRF
morpheme segmentation model, then we used this model to perform morpheme segmenta-
tion and stem extraction separately on Uyghur, Kazakh and Kirghiz text sets which were
collected from the Internet; then, we generated sets of morpheme sequences. Subsequently,
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the Doc2vec embedding vector technique is used for vectorization and the stem cosine
similarity calculation in order to adjust the probability transition matrix in the TextRank
algorithm. Based on this new probability transition matrix, the TextRank weights of the
candidate stems were calculated and the keyword extraction task was conducted. The
contributions of our proposed method can be summarized as follows:

• Starting from the derivative morphology of Uyghur, Kazakh and Kirghiz languages,
we propose a multilingual morpheme segmentation method based on Bi-LSTM_CRF
model. We introduce a character embedding vector to efficiently retain the contextual
information, and we solve the problem of data sparsity.

• Stem embedding vector similarity is applied to weight the TextRank algorithm and
conducted text keyword extraction task. By categorizing the semantic information
and reducing redundancy, the keyword extraction efficiency is improved.

• Based on the comparative experimental results on different units such as word and
stem, the effect of morphological processing is verified for some derivative languages.

The rest of this paper is organized as follows. The next section presents the related
works. Section 3 discusses our proposed method. Section 4 explains the experimental
results. In the last section, we provide the conclusion and ideas for future work.

2. Related Works
2.1. Morpheme Segmentation and Stem Extraction

Scholars have conducted extensive research on stem extraction in major languages
such as English and there are several commonly used stem extraction tools, such as Porter
Stemmer, KStem Token Filter, Hunspell Stemmer, and so on. Research on the stem extraction
of low-resource languages, such as Uyghur, Kazakh and Kirghiz, was started relatively
late and is still in progress. Some works on Uyghur, Kazakh and Kirghiz morpheme
segmentation and stem extraction have been reported in [5–10]. Rana et al. [5] proposed
a method for Uyghur morpheme segmentation based on a combination of rules and
dictionaries, and an Uyghur word stemmer is developed using left-to-right analysis of the
lexical connection rules and Lovin algorithm. Saidiyaguli et al. [6] proposed an Uyghur
stem extraction method based on an N-gram model and, according to the constraints of
Uyghur word formation, using the parts of speech and contextual stem information features
to extract the Uyghur word stem. The experimental results show that hybrid features
can improve the efficiency of Uyghur stem extraction to a certain extent. Ulan et al. [7]
combined the Kazakh word formation rules with the statistical characteristics of the stem–
affix connection point and used a N-gram language model to extract the Kazakh word
stems. Gulinazi et al. [8] used a combination of the lexical analysis and bidirectional full
segmentation to segment the Kazakh morphemes, matched the segmentation result with
the pre-prepared stem table to extract the Kazakh word stems and conducted Kazakh text
classification based on the stem unit. Kaibierhan [9] used a hybrid strategy of combining the
rules and stem–affix dictionaries to extract Kirghiz word stems. Previous studies on Uyghur,
Kazakh and Kirghiz morpheme segmentation and stem extraction methods [5–9] mentioned
above were mainly based on manually collected rules or suffix-based stemming methods;
therefore, the extraction results obtained from using these methods were ambiguous. In
addition, numerous words appear only once in the training corpus; therefore, numerous
morpheme units that were collected after manually segmenting these words for training the
model also appeared in the corpus no more than once. The inclusion of such morphemes in
the corpus creates a data sparsity problem in the estimation of probability when training
the segmentation model. Abudukelimu et al. [10] introduced deep learning into the Uyghur
morpheme segmentation task and established an Uyghur morphological segmentation
model using a bidirectional gated recurrent unit (Bi-GRU) neural network. This model
automatically learnt feature representations from the experimental data and alleviated the
problem of difficulty in ensuring the coverage in manual feature design, and it improved
the efficiency of Uyghur morpheme segmentation.
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2.2. Text Keyword Extraction

At present, the mainstream text keyword extraction methods used in the field of natural
language processing include the word frequency statistics method, the topic model method,
the vocabulary graph model method and the machine learning method. TFIFD [11,12]
is a typical statistics-based keyword extraction method, which is efficient and simple
and outperforms some of the more complex keyword ranking methods; however, this
method performs information mining tasks based only on term and inverse document
frequencies; therefore, it cannot reflect the complex semantic information of the text. The
LDA model [13] is a representative topic model in the field of text keyword extraction. This
model performs well with large training corpora and when dealing with longer textual
information; however, the keywords extracted by the LDA model are often too broad to
reflect the topic of the article and the model performs poorly on short texts. The methods
based on machine learning mainly include the SVM [14], Naive Bayes classifiers [15]. This
method transforms the keyword extraction task into a binary classification problem to
determine whether or not a candidate word is a keyword and requires the preparation of
the manually labeled experimental data and the training of the classification model. The
lexical graph model mainly includes the TextRank model [16–19], which maintains that the
importance of a word is determined by the votes of other related words, and the weight of
a given word determines the importance of the voting process. The graph model has the
advantages of linguistic knowledge and domain independence.

Several studies conducted on Uyghur and Kazakh text keyword extraction tasks are
been reported in [20–23]. In [20], the frequency of occurrence of words in the text was
obtained by weighting the feature items, and the positional information of the given word
present in the text was also considered. The TFIDF weighting factor was set for the feature
item to calculate the final weight of the candidate word, and the keywords were then
extracted from Uyghur texts. In [21], based on the TextRank algorithm, information on
the words’ positions and word frequency features were used as weighting items, and
the keyword extraction task was conducted on Uyghur texts, and this result was used
to conduct Uyghur text classification. The work in [21] presented the text classification
results, and the detailed results of the keyword extraction were not mentioned. The authors
of [22] made improvements to the TFIDF algorithm and used the position features and
frequency of words to extract keywords from Kazakh text. The authors of [23] used the
TextRank, SAD (Sparse Discriminant Analysis) and SVM algorithms to extract the keywords
from the Uyghur text and then conduct an Uyghur text sentiment classification based on
the keyword extraction results. This paper presented the final sentiment classification
results with improved accuracy. To date, there is a lack of research conducted on the
keyword extractions performed on the Kirghiz text, and most recently, research on the
keyword extraction in Uyghur and Kazakh texts has been intermittent, and the latest
relevant research has not been found in publicly available academic resources. Although
the keyword extraction methods used for Uyghur and Kazakh texts used the information
in the text to extract the keywords, a traditional text representation method was used
to represent the content of the text, and the main features of the words formed parts of
the speech and word frequency. In this way, the important semantic information of the
text’s context was overlooked in the calculation process; therefore, these features could not
provide sufficient semantic information for clustering or classification processes, resulting
in the low accuracy of the keyword extraction methods.

3. Proposed Method

In this study, an approach for extracting the keywords from the Uyghur, Kazakh
and Kirghiz texts is proposed. This study consists of five main steps, namely, text data
collection; text pre-processing which includes spellchecking, morpheme segmentation
and stem extraction; Doc2vec-based stem embedding vector representation and weight
adjustment on the TextRank algorithm; TaxtRank value calculation and selection; and a final
step of evaluation. For evaluation of the proposed method, we used the accuracy, precision,
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recall rates and F1 measure. We also compared our method with some of the previous
approaches from the related works. The steps of the proposed method are presented
in Figure 1.
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3.1. Morpheme Segmentation Method Based on the Bi-LSTM_CRF

Recently, LSTM and Bi-LSTM networks have been widely used in natural language
processing tasks, such as parts-of-speech tagging [24,25], Chinese word segmentation [26,27]
and named entity recognition [28], and they have achieved outstanding results. In order
to improve the efficiency of morpheme segmentation and stem extraction processes for
Uyghur–Kazakh–Kirghiz, this study drew on the idea of Chinese word segmentation and
transformed the task of morpheme segmentation into the label classification problem of
morpheme sequences, and built a Uyghur–Kazakh–Kirghiz morpheme segmentation model
based on the Bi-LSTM and CRF networks. A character embedding vector was introduced
to continuously represent the word formation sequences so that the data sparsity problem
caused by the discrete representation of morphemes when training the segmentation model
could be alleviated.

3.1.1. The Bi-LSTM Model

The Bi-LSTM network is a bidirectional RNN network structure that was further
improved and generalized by Alex Graves et al. [29] on the basis of the LSTM network.
The Bi-LSTM network has bidirectional hidden layers, including forward and backward
layers. These layers have the ability to capture the information of sentences in two different
directions; therefore, the final output of the network depends on the forward calculation of
the forward hidden layer and the backward calculation of the backward hidden layer, and
then the states of the two hidden layers are ultimately connected. The Bi-LSTM network’s
structure is presented in Figure 2.
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←
ht =

←
σh(
←
U·xt +

←
W·
←−−
ht−1 +

←
b ) (2)

The forward and backward hidden states are combined to obtain the final output of
the hidden state ht at time t, as is presented in Equation (3):

ht =

[−→
hT

t ;
←−
hT

t

]
(3)

We added a linear SoftMax layer after the LSTM network and classified the sequence
of the attained labels.

3.1.2. The CRF Model

CRF [30] is an undirected graph model that has the advantages of its simple labeling
and high efficiency. In relation to an observed sequence that must be labeled, the CRF
model calculates the joint probability distribution of all sequences to infer the corresponding
state sequences. For the sequence labeling task, the CRF model jointly decodes the input
sentence by considering the correlation evident between the adjacent labels to obtain the
best label chain for a given input sentence and normalize the global features to obtain a
global optimal solution. The chain structure of the CRF model is presented in Figure 3.
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If we assume that X = (x1, x2, · · · , xn) is the given observable sequence and
y = ( y1, y2, · · · , yn) is the corresponding label sequence, the conditional probability of label
sequence y that appears can be calculated by Equation (4):

p(y|X) = exp(∑
j

λjtj(yi−1, yi, X, i) + ∑
k

uksk(yi, X, i ) (4)

where tj(yi−1, yi, X, i) is the probability transition function representing the probability
of a transition from the (i − 1)-th token to the i-th token in the label sequence y for the
observation sequence X, sk(yi, X, i) is a state function representing the probability of label yi
at the i-th position for the observation sequence X, and λj and uk are the weight parameters.

3.1.3. The Bi-LSTM_CRF-Based Uyghur–Kazakh–Kirghiz Morpheme Segmentation Model

The Bi-LSTM_CRF model is a neural network structure that combines the Bi-LSTM
and CRF models. In this model, the SoftMax classification layer after the hidden layer of
the Bi-LSTM network is replaced by the CRF layer, and the vector output from the Bi-LSTM
network is used as the input of the CRF layer to obtain the final probability output of the
model. When the characters in Uyghur, Kazakh or Kirghiz words are labeled according to
the word formation characteristics of morphemes and used as inputs for the Bi-LSTM_CRF
model, the Bi-LSTM model can realize the effective retention of the context information and
the information of the preceding and following label sequences can also be effectively used
by the CRF model; thus, the globally optimal label sequence with the highest probability
can be obtained. The network structure of the Bi-LSTM_CRF model is presented in Figure 4.
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When the CRF layer is added after the output layer of the Bi-LSTM network, the CRF
layer needs to adopt the state transition matrix as a parameter. Let A be the state transition
matrix and let P be the output matrix of the bidirectional LSTM network. The output
result predicted by the Bi-LSTM_CRF model for the state sequence y = ( y1, y2, · · · , yn)
corresponding to the observed sequence X = (x1, x2, · · · , xn) can then be represented by
the scoring function presented in Equation (5):

p(X, y) =
n

∑
i=0

Ayi ,yi+1 +
n

∑
i=1

Pi,yi (5)

where Ayi ,yj represents the probability of transition from states yi to yj and Pi,yi represents
the probability that the i-th character in the input observation sequence is the yi-th label.

We used the datasets obtained from [4], which included 10,000 Uyghur, 5000 Kazakh
and 3000 Kirghiz sentences, to prepare a lexical corpus, including 17,230 Uyghur,
14,516 Kazakh and 9460 Kirghiz words, and labeled these words using the BMES la-
beling method. That is, the characters of all words in the lexical corpus were labeled
with {B, M, E, S} to represent the position of the morphemes that constitute a word, where
B represents the starting character of the morpheme in the word, M represents the middle
character of the morpheme in the word, E represents the end character of the morpheme in
the word and S represents a morpheme with a single character. For example, the Kazakh
word “qezmEtneN” (English meaning: of work) would be labeled as:

“q/B e/M z/M m/M E/M t/E n/B e/M N/E”. The labeled data set was used as
the input in the Bi-LSTM_CRF model, where the Bi-LSTM model extracted the inherent
features of the Uyghur, Kazakh and Kirghiz languages, and the CRF model predicted
the label of the sequences. The Bi-LSTM_CRF-based Uyghur–Kazakh–Kirghiz morpheme
segmentation framework is presented in Figure 5.
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Figure 5. Structure of the Bi-LSTM_CRF-based Uyghur–Kazakh–Kirghiz morpheme segmentation model.

After the Kazakh word “qezmEtneN” was segmented by the Bi-LSTM_CRF model, it
was divided into two parts: “qezmEt” (work) + neN (suffix).
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In this study, the labeled Uyghur, Kazakh and Kirghiz word datasets were divided
into training, validation and the test sets, according to a split ratio of 0.75:0.10:0.15. When
training the Bi-LSTM_CRF model, the epochs of model training and the number of hidden
layer neurons were both set to 100, the learning rate was set to 0.001 and the dropout ratio
was set to 0.5. The mini-batch method was used to train the model, in which the batch
size was set to 128, and the model was optimized using the Adam optimization function.
The Word2vec tool was used for training the character vectors, and the size of the training
window was set to 5, the number of iterations was set to 10 and the batch word was set
to 10,000. The character vector dimension is an important hyperparameter, which directly
affects the segmentation effect of the model. In order to determine the optimal dimensions
of the character vector, we selected a range from 50 to 300 dimensions, with steps of 50
dimensions, and used the validation set to test the effect of different character vector
dimensions on the segmentation performance, as shown in Figure 6. The accuracy was
determined as the number of correctly segmented words out of all the segmented words.
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Figure 6. Influence of the character vector dimensions on the accuracy of the segmentation model.

As can be observed from Figure 6, when the character vector presented approxi-
mately 150 dimensions, the model’s segmentation performance was the best. Therefore,
150 dimensions were selected as the optimal number for the character vectors in the subse-
quent experiments. Figure 7 presents the effect of changes in the number of iterations of
the model on the accuracy of the morpheme segmentation.
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As can be observed from Figure 7, with an increase in the number of iterations, the
model began to learn the positional features of the preceding and following character
sequences more completely; therefore, the model’s accuracy of segmentation also improved.
When the number of iterations reached approximately 80, the segmentation accuracy of the
model on the three datasets attained the highest values of 97.68%, 97.29% and 96.34%, after
which the model started to converge.
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3.2. Text Representation Method Based on the Doc2vec Model

Following the morpheme segmentation and stem extraction procedures, the subse-
quent step was to effectively represent the text features. The Doc2vec model [31] is an
improved text representation model based on Word2vec. The word embedding vector
represented by Doc2vec not only considers the semantic information between words, but
also compresses the dimensions of the vectors; at the same time, the word order information
is also considered, which offsets the shortcomings of Word2vec in ignoring the influence of
word order in the text. The Doc2vec model predicts words by training two neural networks:
a distributed memory (DM) model and a distributed bag of words (DBOW) model. The
DM model predicts the occurrence probability of a word, given the context and document
vector. The DM model [31] is presented in Figure 8.
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Figure 8. The DM model.

During the process of training the DM model, each document ID and all the words
present in the corpus were first initialized as N-dimensional vectors. The document vector
and context vocabulary were then fed into the model, and the hidden layers accumulated
these vectors to obtain an intermediate vector, which was used as the input to the SoftMax
output layer. During the document training process, the document ID remained the same
and shared the same document vector, which was equivalent to using the semantics of the
entire sentence when predicting the probability of a word.

The DBOW model predicts the probability of a random set of words appearing in a
document based on a given document vector. In the process of training a single document,
the document vector is shared, that is to say, the probability of a word’s occurrence is
predicted by using the semantic information of the whole document. The DBOW model [31]
is presented in Figure 9.
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The DBOW model is a three-layer neural network. This model ignores the context of
the input sentence and predicts random words that appear in the paragraph. That is, in
each iteration, a window is sampled from the text, then a random word from that window
is used as the prediction target, and it is predicted using the model, where the input to the
model is the paragraph vector. We used the DBOW model to generate document vectors.
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After we generated the word (stem) vector based on the Doc2vec model, the Euclidean
distance was used to calculate the cosine similarity between two words to quantify their
similarity. If the cosine value is higher, the two words are more similar and the degree
of association is stronger, whereas a lower cosine value means that two words are less
similar and the degree of association is weaker. Let us suppose that Wi and Wj are two
words represented by word vectors. The similarity between them can be calculated by
using Equation (6):

Sim(Wi, Wj) = ωij =

→
Wi·

→
Wj∥∥→Wi

∥∥ ∗ ∥∥→Wj
∥∥ (6)

3.3. Text Keyword Extraction Method Based on the TextRank Algorithm

The TextRank algorithm is a graph-based ranking algorithm that uses a text graph
to represent the relationships between words in a given text [32]. Subsequent to building
the text graph, each word in the document was regarded as a node, and the PageRank
algorithm [33] was used to calculate the TextRank score of each node. Initially, all the
words contained in the text graph were considered as candidate keywords, and the top
n words with the highest TextRank scores were selected as the final keywords following
the calculation of the PageRank. The TextRank score for a given node is calculated by
using Equation (7):

TR(wi) = (1− d) + d× ∑
wj∈in(wi)

ewji

∑vk∈out(wj)
ewjk

TR(wj) (7)

where TR(wi) is the TextRank score of the node wi and d is the damping coefficient, which
represents the probability of any node randomly jumping to other nodes in the word graph;
d is a constant between 0 and 1, and usually takes 0.85. Moreover, in(wi) represents the
set of nodes pointing to the node wi, out

(
wj
)

represents the set of nodes pointed to by the
node wj, and ewji and ewjk are the edge weights between two nodes, that is, ewji and ewjk
represent the random weight probability matrix of a transition from nodes j to i and from
nodes j to k, respectively, as shown in Equation (8):

WT =


ew11 ew12 · · · ew1n
ew21 ew22 · · · ew2n

...
...

. . .
...

ewn1 ewn2 · · · ewnn

 (8)

A text graph is defined as an undirected graph G = (V, E), where V represents the set
of words and E represents the set of edges between the words. Text graphs are created
using two steps: first, the candidate keywords are selected from the text and considered
as nodes in V; second, edges are built between words within a given window size W. The
edges of the text graph are constructed by using a co-occurrence relationship [34], which is
controlled by setting a sliding window for a given text. Specifically, if two words wi and wj
appear in a sentence in the text with a window size of W, then we treat wi and wj as a node
and add it to V, then build an edge between wi and wj, and the weight of the edge is 1; if
not, there is no connection evident between wi and wj, and the weight of the edge is 0.

In fact, language is a natural phenomenon, and the semantic relationship between
language units is present at different degrees; therefore, links of different strengths are
present between the nodes. Using the traditional TextRank algorithm to calculate edge
weights leads to the sparsity problem of probability transfer matrices. The word vector
similarity generated by the Doc2vec model overcomes the sparsity problem in traditional
text representation and includes the semantic information between the words. Therefore,
we can use the Doc2vec algorithm to represent Uyghur, Kazakh and Kirghiz texts with word
(stem) embedding vectors, and use the semantic information contained in the embedding
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vector representation to weigh the probability of a transition occurring between the word
graph nodes in TextRank, that is, using the similarity of the word vectors generated by
the Doc2vec model to represent the relationships between the nodes of the traditional
TextRank algorithm can ensure that some useful information is retained in the process of
calculating the TextRank weight, thus improving the performance of extracting keywords
from Uyghur, Kazakh and Kirghiz texts, as shown in Equation (9). The transition probability
matrix after the edge weights have been replaced by the Doc2vec similarity is presented in
Equation (10):

TR(wi) = (1− d) + d× ∑
wj∈in(wi)

ωji

∑vk∈out(wj)
ωjk

TR(wj) (9)

WT∗ =


ω11 ω12 · · · ω1n
ω21 ω22 · · · ω2n

...
...

. . .
...

ωn1 ωn2 · · · ωnn

 (10)

Then, the TextRank values of all candidate words (stems) were calculated on the basis
of the new transition probability matrix by iteratively using Equation (9). After obtaining
the TextRank values of all the nodes in the Uyghur–Kazakh–Kirghiz text graph, we selected
the top n important stems with the highest TextRank values as keywords.

4. Experimental Results and Analysis
4.1. Experimental Corpus and Pre-Processing

At present, the research conducted on textual information processing methods in
Uyghur–Kazakh–Kirghiz is still in the preliminary stage. There are no standard Uyghur,
Kazakh and Kirghiz keyword extraction text datasets publicly available. In this study,
we used the datasets obtained from [35], which consisted of over 8000 Uyghur texts in
9 categories (100 newly added texts for each category downloaded from the same data
source) and over 7000 Kazakh texts in 8 categories (100 newly added texts for each category
downloaded from the same data source) to prepare the Uyghur and Kazakh experimental
texts. We built the Kirghiz text dataset by using a web crawling technique to download
Kirghiz texts in six categories from the Xinjiang Radio and Television Station’s website. In
this experiment, 1000 texts were randomly selected from each dataset.

Due to the influence of other languages on Uyghur, Kazakh and Kirghiz and indi-
viduation, the texts downloaded from the Internet are prone to spelling errors. Therefore,
we developed a spellchecker for the Uyghur, Kazakh and Kirghiz texts. The program ana-
lyzed the syllable rules of Uyghur, Kazakh and Kirghiz to detect the majority of misspelt
words so that the spelling errors in a given word could be corrected. The flowchart of the
spellchecker is presented in Figure 10. We used this program to correct spelling errors
evident in the texts.
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We then used the Uyghur–Kazakh–Kirghiz morpheme segmentation model to perform
the morpheme segmentation and stem extraction operations on three text datasets, and
then used the self-built stop word (stem) dictionary to implement stop word filtering. The
Bi-LSTM_CRF model can lead to a significant reduction in the feature space dimensions of
the texts, as shown in Table 2, which produces the stem extraction results obtained for all
the collected texts.

Table 2. Reduction in vocabulary number by stem extraction.

# of Category Language No. of Word
Vocabulary

No. of Stem
Vocabulary

Stem-Word
Vocabulary Ratio (%)

9 Uyghur 89,819 26,810 29.85
8 Kazakh 84,205 25,354 30.11
6 Kirghiz 35,643 11,024 30.93

It can be observed in Table 2 that, following the morpheme segmentation, the stem
vocabulary decreased to approximately 30% of the word vocabulary. After the stems had
been extracted from the texts, the stem vector was trained using the DBOW model. During
the training stage, the vector dimension was set to the default value of 100, and the training
window and learning rate were set to 10 and 0.025, respectively.

4.2. Experimental Results and Analysis

The performance of the keyword extraction method proposed in this study was
evaluated by precision rate P, recall rate R and the F1 value. The formulae for calculating
these are as follows:

P = T/A
R = T/M
F1 = 2 × P × R/(P + R)

where T represents the total number of correctly extracted keywords, A represents the num-
ber of all extracted keywords, and M represents the number of keywords selected manually.

In this study, keyword extraction methods, such as TF, TFIDF [20,22], TextRank [21,23]
and Word2vec_TFIDF [36] (our previous work), were used to perform a comparison with
the proposed method, and keyword extraction experiments were conducted on the datasets
prepared in this study. As, besides our previous work, other given experimental results
from the related works used different data sets, and the number of the experimental data
was too small, we just applied the methods from the related works and experimented
on our data sets for fair comparison. In the experiment, we first manually selected three
keywords (stems) for each experimental text, and then we used TF, TFIDF, TextRank,
Word2vec_TFIDF and the proposed method to extract three, four, five and seven keywords.
The comparative experimental results are presented in Tables 3–6.

Table 3. Comparison results of extracting three keywords.

Method Language
Result (%)

P R F1

TF
Uyghur 26.7 32.7 29.4
Kazakh 26.5 32.4 29.2
Kirghiz 25.9 31.8 28.5

TFIDF
Uyghur 27.7 32.9 30.1
Kazakh 27.5 33.4 30.2
Kirghiz 27.5 33.2 30.1

TextRank
Uyghur 33.4 43.4 37.7
Kazakh 32.9 42.7 37.2
Kirghiz 32.7 42.3 36.9
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Table 3. Cont.

Method Language
Result (%)

P R F1

Word2vec_TFIDF
Uyghur 34.5 38.8 36.5
Kazakh 34.3 38.6 36.3
Kirghiz 34.3 38.3 36.2

Doc2vec_TextRank
Uyghur 42.8 44.1 43.4
Kazakh 43.2 44.7 43.9
Kirghiz 42.9 44.3 43.6

Table 4. Comparison results of extracting four keywords.

Method Language
Result (%)

P R F1

TF
Uyghur 24.9 30.8 27.5
Kazakh 24.7 30.5 27.3
Kirghiz 24.1 29.9 26.7

TFIDF
Uyghur 30.9 34.1 32.4
Kazakh 31.1 34.3 32.6
Kirghiz 31 34.1 32.5

TextRank
Uyghur 33.1 44.2 37.9
Kazakh 32.8 44.1 37.6
Kirghiz 32.4 44.3 37.4

Word2vec_TFIDF
Uyghur 36.3 43.2 39.5
Kazakh 36.4 43 39.4
Kirghiz 35.8 43.1 39.1

Doc2vec_TextRank
Uyghur 42.1 45.3 43.6
Kazakh 42.5 45.6 44
Kirghiz 42.4 45.5 43.9

Table 5. Comparison results of extracting five keywords.

Method Language
Result (%)

P R F1

TF
Uyghur 23.2 29.7 26.1
Kazakh 23.5 29.6 26.2
Kirghiz 22.9 29.1 25.6

TFIDF
Uyghur 32.3 39.5 35.5
Kazakh 32.8 39.9 36
Kirghiz 32.4 39.8 35.7

TextRank
Uyghur 33.7 42.6 37.6
Kazakh 33.5 42.7 37.5
Kirghiz 33.1 42.3 37.1

Word2vec_TFIDF
Uyghur 40.6 45.7 43
Kazakh 40.9 45.5 43.1
Kirghiz 40.1 44.9 42.4

Doc2vec_TextRank
Uyghur 41.4 46.5 43.8
Kazakh 41.3 46.9 43.9
Kirghiz 41.5 46.4 43.8
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Table 6. Comparison results of extracting seven keywords.

Method Language
Result (%)

P R F1

TF
Uyghur 22.8 30.4 26.1
Kazakh 22.5 30.8 26
Kirghiz 22.1 30.5 25.6

TFIDF
Uyghur 31.8 40.2 35.5
Kazakh 31.4 40.5 35.4
Kirghiz 31.7 39.9 35.3

TextRank
Uyghur 32.6 43.9 37.4
Kazakh 32.9 43.6 37.5
Kirghiz 32.6 43.5 37.3

Word2vec_TFIDF
Uyghur 39.7 45.9 42.6
Kazakh 39.5 45.9 42.5
Kirghiz 39 45.2 41.9

Doc2vec_TextRank
Uyghur 39.8 47.2 43.2
Kazakh 39.2 47.3 42.9
Kirghiz 39.7 47.2 43.1

It can be observed in Tables 3–6 that when the number of extracted keywords was four,
the F1 values of the Kazakh and Kirghiz texts reached the highest values of 44% and 43.9%,
respectively. With five keywords, the F1 value of the Uyghur text attained the highest score
of 43.8%. When the number of extracted keywords increased, the P, R and F1 values of the
TF algorithm that was run on the three data sets began to decrease, while the values of
P, R and F1 of the TFIDF algorithm gradually increased. However, the overall effect was
significantly lower than the method proposed in this study. Among them, with different
numbers of keywords, there was a gap of approximately 6–13% in the F1 values between
TFIDF and the method proposed in this study. When the number of keywords increased,
the traditional TextRank algorithm produced relatively stable results, but the effect lagged
behind the proposed method; among them, the F1 value was lower than approximately
5.5%. When the number of keywords extracted was low, the P, R and F1 values of the
Word2vec_TFIDF method were significantly lower than that of the proposed method; as
the number of keywords increased, the values of P, R and F1 began to increase (when
the number of keywords was seven, each value slightly decreased), and the gap with the
method presented in this study began to narrow. The highest F1 value for the three datasets
was approximately 0.8% less than for the method presented in this study. For different
numbers of keywords, the values of P, R and F1 of the proposed method all maintained a
relatively stable level.

In order to verify the impact of morpheme segmentation and stem extraction processes
on the performance of the keyword extraction task in derivative languages, Doc2vec embed-
ding vectors are trained on word sequence prior to conducting morpheme segmentation
on the datasets and keyword extraction is conducted based on the words. The results of
the keyword extraction task based on words and stem units were compared, as shown
in Table 7.

As can be observed in Table 7, as the number of keywords increased, the value P,
based on the word and stem units, began to decrease, while the values of R and F1 began
to increase (when the number of keywords was seven, the F1 value decreased). Stem
units provided better extraction results at all keyword levels, where the P, R and F1 values
obtained with stem units were approximately 2% higher than those with word units. In
particular, when the number of extracted keywords was four, the F1 value for the stem
units on the three datasets was approximately 2.8% higher than that of the word units.
It can be observed from the results that stem units can provide better results in textual
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information processing tasks than word units and prove that morpheme segmentation can
improve the effect of the text keyword extraction.

Table 7. Comparisons of extraction results based on word and stem units.

Method No. of Keywords Language Vocabulary Unit
Result (%)

P R F1

Doc2vec_TextRank

3

Uyghur Word 40.5 41.3 40.9
Stem 42.8 44.1 43.4

Kazakh
Word 40.7 41.5 41.1
Stem 43.2 44.7 43.9

Kirghiz Word 41.1 41.7 41.4
Stem 42.9 44.3 43.6

4

Uyghur Word 39.7 42.8 41.2
Stem 42.1 45.3 43.6

Kazakh
Word 39.3 42.4 40.8
Stem 42.5 45.6 44.0

Kirghiz Word 39.8 42.7 41.2
Stem 42.4 45.5 43.9

5

Uyghur Word 39 44.2 41.4
Stem 41.4 46.5 43.8

Kazakh
Word 38.8 44.5 41.5
Stem 41.3 46.9 43.9

Kirghiz Word 39.2 44.3 41.6
Stem 41.5 46.4 43.8

7

Uyghur Word 37.1 45.6 40.9
Stem 39.8 47.2 43.2

Kazakh
Word 37.5 45.3 41.0
Stem 39.2 47.3 42.9

Kirghiz Word 37.6 45.5 41.2
Stem 39.7 47.2 43.1

5. Conclusions and Future Work

Text keyword extraction is basic work in text information processing tasks. Automatic
keyword extraction becomes challenging because of the complexity of natural languages
and the heterogeneity of document types. Uyghur, Kazakh and Kirghiz are agglutinative
languages with similar grammatical and lexical structures, where words are formed by
adding affixes to stems. Some affixes change the meaning of the stem and derive new stems.
As a result of their derivative characteristics, these languages have multiple combinations
of morphemes and their vocabulary tends to greatly increase in size. Therefore, morpheme
segmentation and stem extraction processes are some of the important methods used in
the research to improve the performance of keyword extraction. This study discussed
a morpheme segmentation method based on the Bi-LSTM_CRF deep neural network
and a keyword extraction method based on Doc2vec and TextRank models. The task
of extracting keywords from Uyghur, Kazakh and Kirghiz texts was implemented with
different keyword extraction methods and language units based on various numbers of
keywords. The experimental results show that the proposed method, which is based on
morpheme segmentation, Doc2vec and TextRank methods, obtained F1 values of 43.8%,
44% and 43.9% on the three datasets. Compared with the extraction results based on
other language unit and keyword extraction methods, the keyword extraction performance
of proposed method was significantly improved. It can be observed that effective pre-
processing techniques, such as morpheme segmentation and stem extraction, can improve
the efficiency of natural language processing tasks for derivative languages such as Uyghur,
Kazakh and Kirghiz.

As they are low-resource languages, Uyghur, Kazakh and Kirghiz experimental text
data are relatively small. In future works, we will further expand the corpus data size by
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using methods such as data augmentation and cross-lingual processing. We will also extend
the morpheme segmentation method to incorporate other derivative languages, such as
Uzbek and Mongolian, and conduct keyword extraction research on these languages.
Additionally, we can apply keyword extraction methods to study sentiment analysis.
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