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Abstract: Demand fluctuations and uncertainty bring challenges to inventory management, and inter-
mittent demand patterns increase the risk of inventory backlogs and raise inventory holding costs. In
previous studies on inventory routing problems, different variants have been proposed to cope with
complicated industrial scenarios. However, there are few studies on inventory routing problems with
intermittent demand patterns. To solve this problem, we introduce a lateral transshipment strategy
and build a single-product multi-period inventory routing mixed integer programming model to re-
duce customers’ inventory backlogs, balance regional inventory, reduce inventory holding costs, and
improve inventory management efficiency. Furthermore, we design an adaptive large-neighborhood
search algorithm with new operators to improve the solving efficiency. The experimental results
show that an appropriate transshipment price can reduce the share of distribution costs. Another
finding is that higher-capacity vehicles lead to higher revenue. Our findings not only expand the
scope of the IRP domain but also provide actionable management insights for business practitioners.

Keywords: inventory routing; transshipment; adaptive large-neighborhood search

1. Introduction

Inventory management is a pivotal aspect of supply chain management given its
role in ensuring the availability of appropriate products at the designated location,
time, and cost optimization [1,2]. However, the unpredictability of consumer demand
poses significant challenges to inventory management. Sudden demand can lead to
stockouts, reducing customer service levels. Conversely, a decrease in demand then
creates backlogs, increasing inventory costs [3,4]. Moreover, uncertainty and variability
in demand patterns can make it difficult to accurately predict future demand, which
directly impacts inventory planning and replenishment decisions [5]. As a result, man-
agers employ diverse strategies to address these fluctuations and enhance the efficacy of
inventory management.

To reduce the impact of demand fluctuations on inventory management, an op-
tional strategy is to develop appropriate inventory plans for different categories by
classifying demand. The concept of demand classification based on different patterns
was initially explored by Williams [6], who introduced the notion of variance parti-
tioning to categorize demand patterns as “smooth”, “slow-moving”, or “sporadic”.
Subsequently, Syntetos et al. [7] extended the research on demand classification by
incorporating the square of the coefficient of variation (CV) of demand size and the
average demand interval (ADI). They categorized demand patterns into four categories,
including “smooth”, “lumpy”, “intermittent”, and “erratic”, based on the cutoff values
of these two parameters. The intermittent demand pattern is prevalent in various
fields, such as retailing, spare parts management, aerospace, and electronics. It has
gained significant attention from scholars owing to its uniqueness and importance.
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Unlike other demand patterns, intermittent demand is characterized by a large number
of zero values, and the intervals between these zero values are irregular, raising the
risk of inventory backlogs [8].

ADI =
Total periods

Total demand buckets
(1)

CV =
Demand standard deviation

Demand mean
(2)

The inventory routing problem (IRP) is an important optimization problem in inven-
tory management that requires determining when to deliver the number of goods to a
given customer and the route of the vehicle [9]. The importance of the IRP is reflected in
the way it not only helps companies reduce inventory costs and the risk of stockouts but
also improves the transportation efficiency of their fleets [10]. In previous research, the
IRP has been studied by a large number of scholars, and different variants of the problem
have been proposed. The demand significantly impacts the IRP as it directly influences
routing and inventory management decisions, and the change in demand derives from
deterministic and stochastic variants of the IRP. The intermittent demand model can be
seen as a special case of stochastic demand, and the large amount of zero demand in this
pattern creates inventory backlogs and raises inventory holding costs. In this context, this
study aims to focus on an IRP with intermittent demand patterns. To reduce inventory costs
and improve inventory management efficiency, we use a lateral transshipment strategy to
address demand fluctuations.

Consider a single-product multi-period IRP with intermittent demand (IDSMIRP) in a
supply chain system. This model considers a two-echelon supply chain system consisting
of a central warehouse and multiple customers, with the central warehouse responsible for
maintaining inventory levels for all customers. Before the start of the replenishment cycle,
the central warehouse forecasts future demand based on customers’ historical demand.
Using the estimated demand and customer inventory levels, the replenishment plan is
initially formulated. During the replenishment cycle, the central warehouse arranges its
own vehicles to determine the appropriate replenishment route based on the distance
between the warehouse and each customer node. Distribution vehicles from the central
warehouse complete replenishment tasks at each customer node before returning to the
warehouse. When the distribution vehicles visit the customer nodes, the actual number of
customer demands becomes known. In these circumstances, products can be transferred to
other customer nodes through lateral transshipment, which is provided by a third-party
transportation servicer. Figure 1 illustrates an example of a lateral transshipment inventory
routing model.

The main contributions of this study are:

(a) We focus on the problem of an IRP with intermittent demand patterns (IDIRP) and
expand the scope of IRP research.

(b) We introduce the lateral transshipment strategy into an IDIRP to cope with the demand
fluctuations of intermittent patterns.

(c) We develop an MIP model for the IDIRP and improve the operators of the ALNS
algorithm to enhance the solution efficiency.

The remainder of the paper is organized as follows:
Section 2 provides a literature review. In Section 3, we formally introduce the IDSMIRP.

Section 4 gives detailed information about the ALNS algorithm. In Section 5, we conduct
the case study. The conclusions are presented in Section 6.
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2. Literature Review

The IRP is a distribution problem in which a product must be shipped from a supplier
to several customers over a given time horizon. The IRP is based on the vehicle routing
problem (VRP) and considers inventory management at the customer point. The VRP was
first proposed by Dantzig et al. [11]. The VRP problem is a classical problem in the field
of operations research that is mainly concerned with the arrangement of some fleets by
distribution centers to deliver goods to a certain number of customers with demand for
goods while achieving the goal of the shortest mileage or lowest cost to satisfy customer
demand [12–14]. The IRP was first proposed by Bell et al. [15] and considers the problem
of homogeneous fleet inventory management and vehicle path integration optimization in
a finite horizon and a one-to-many network structure. The IRP is more complex than VRP
problems; however, taking inventory management into account makes the application of
such problems much broader and has received a great deal of attention from industry and
academia. Driven by practical problems in industry, scholars have studied variants of the
IRP from several perspectives.

Most early studies of the IRP focused on deterministic demand and had a supply
chain structure that was mostly two echelon, with a small fleet as well as a single type of
product being transported without other more complex constraints. Abdelmaguid et al. [16]
presented an IRP that allows for delayed deliveries in which vehicle capacity is relatively
small and customer locations are close together, and they used an integrated transportation
strategy to solve the problem. Raa et al. [17] developed an inventory routing model with
distribution and inventory costs across the supply chain as the objective function, using
a long-term cyclical approach that integrated fleet size, vehicle routing, and inventory
management while considering limited storage capacity, driving time constraints, and fixed
replenishment intervals. Geiger et al. [18] studied a bi-objective IRP that minimized the total
inventory and the total distance traveled by vehicles in each period. To solve the model,
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they designed a local search method based on reference points. Cárdenas-Barrón et al. [19]
developed a heuristic algorithm based on the reduce and optimize approach to solve the
selective and periodic IRP in a waste vegetable oil collection environment. Lefever et al. [20]
studied a deterministic demand IRP with transshipment and designed exact algorithms
to solve it. Coelho et al. [21] investigated a multi-depot IRP with a heterogeneous fleet
and route duration constraints and developed a hybrid exact algorithm to speed up the
convergence of the model.

With the expansion of application scenarios, some scholars have considered the IRP
under stochastic demand. Rayat et al. [22] proposed a multi-product multi-period location
inventory routing problem considering disruption risk and developed a bi-objective mixed-
integer nonlinear programming model that was solved using an archived multi-objective
simulated annealing algorithm. Soysal et al. [23] introduced horizontal collaboration into
the IRP, and a case study of two suppliers showed that horizontal collaboration helped to
reduce the total costs and emissions. Ji et al. [24] focused on an IRP for perishable products
with time window constraints and used uncertainty sets to transform a mixed integer linear
programming (MILP) model into a mixed integer robust programming model to cope
with demand uncertainty. Achamrah et al. [25] investigated the IRP with transshipment
and substitution under the stochastic demand in a two-echelon spare parts supply chain
system. They developed an MILP model to solve the problem and the results showed
that transshipment and substitution have a positive impact on supply chain performance.
Ortega and Doerner [26] proposed a continuous-time stochastic IRP with a time window
by building a two-stage mathematical model that calculates the delivery time, sequence,
and quantity in the first stage and the associated cost in the second stage. They designed
five different solution methods and performed computational experiments.

A summary of key literature on the IRP is provided in Table 1 to show the research
gaps and contributions in this direction. To the best of our knowledge, there is no IRP with
an intermittent demand pattern in previous studies. In addition, one way to reduce the
risk of stockouts is to introduce the lateral transshipment strategy into the IRP model to
achieve a reduction in total system costs and improve inventory management efficiency.
Our research contributes to solving the IRP with intermittent demand patterns.

Table 1. Key literature on the IRP.

Reference Period Type Demand Type Commodity Type Fleet
Composition Solution Method

Cárdenas-Barrón et al. [19] Multiple Deterministic Single Homogeneous Heuristics
Lefever et al. [20] Multiple Deterministic Single Homogeneous Exact
Coelho et al. [21] Multiple Deterministic Multiple Heterogeneous Exact
Rayat et al. [22] Multiple Stochastic Multiple Heterogeneous Metaheuristics
Soysal et al. [23] Multiple Stochastic Multiple Homogeneous CPLEX

Ji et al. [24] Single Stochastic Single Homogeneous Gurobi
Achamrah et al. [25] Multiple Stochastic Multiple Homogeneous Approximation

Ortega and Doerner [26] Multiple Fuzzy Multiple Homogeneous Metaheuristics
This work Multiple Intermittent Multiple Homogeneous Metaheuristics

3. Model

In the IDSMIRP model, the objective of system optimization is to obtain a suitable
replenishment plan, distribution plan, and lateral transshipment plan that achieves the
lowest total cost for the system. The following relevant assumptions are made:

(1) The central warehouse inventory can meet the demand of all customers for all periods,
and stock-outs are not allowed.

(2) The central warehouse replenishes the same product to the customer without consid-
ering the cost and space impact brought by the heterogeneity of the product to the
vehicle transportation.



Information 2023, 14, 331 5 of 17

(3) Lateral transshipment is only initiated by customers and can only be conducted
between customers without considering the central warehouse.

(4) In replenishment and lateral transshipment, only the impact of distance on cost is
considered, and the difference arising from vehicle loads is not considered.

(5) The unit cost of transshipment provided by third-party transportation service providers
is lower than the unit cost of distribution by the company’s own vehicles.

According to the problem description and model assumptions of the IDSMIRP, the cor-
responding mathematical model is established, in which the symbols of the sets, parameters,
and variables involved are defined in Abbreviations.

3.1. Inventory Routing Model with Transshipment

In this subsection, we build the IRP model for the planning period and the lateral
transshipment model for the replenishment cycle, respectively. The IRP model determines
the initial replenishment plan and vehicle routing based on the estimated demand, and the
lateral transshipment model transfers the products based on the actual occurring demand.

3.1.1. Inventory Routing Model for the Planning Period

In this subsection, we present the inventory routing model before the start of the plan-
ning period. The products are pre-allocated to the customers based on the estimated demand.

min ∑
t∈T

h1 It
0 + ∑

t∈T
∑

i∈N ′
h2 It

i + ∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

h3lijxkt
ij (3)

It
0 = It−1

0 − ∑
k∈K

∑
i∈N ′

qkt
i ∀t ∈ T (4)

It
i = It−1

i + qkt
i − dt

i ∀i ∈ N ′, k ∈ K, t ∈ T (5)

It
i ≤ Qi ∀i ∈ N ′, t ∈ T (6)

qkt
i ≥ Qi ∑

k∈K
∑

j∈N ′
xkt

ij − It−1
i ∀i ∈ N ′, t ∈ T (7)

qkt
i ≤ Qi ∑

k∈K
∑

j∈N ′
xkt

ij ∀i ∈ N ′, t ∈ T (8)

qkt
i ≤ Qi − It−1

i ∀i ∈ N ′, k ∈ K, t ∈ T (9)

∑
i∈N

xkt
ij = ∑

i∈N
xkt

ji ∀j ∈ N , k ∈ K, t ∈ T (10)

vkt
i − vkt

j + Cxkt
ij ≤ C− qkt

j ∀i ∈ N ′, j ∈ N ′, k ∈ K, t ∈ T (11)

qkt
i ≤ vkt

i ≤ C ∀i ∈ N ′, k ∈ K, t ∈ T (12)

It
0 ≥ 0 ∀t ∈ T (13)

It
i ≥ 0 ∀i ∈ N ′, t ∈ T (14)

dt
i , qkt

i , vkt
i ≥ 0 ∀i, j ∈ N ′, k ∈ K, t ∈ T (15)

xkt
ij ∈ {0, 1} ∀i, j ∈ N , i 6= j, k ∈ K, t ∈ T (16)

Constraint (4) represents the opening inventory level of the central warehouse. Con-
straints (5) and (6) represent the opening customer node inventory level. Constraint (7)
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represents the specified inventory level replenishment policy constraint. Constraint (8) rep-
resents the inventory level constraint that cannot exceed node i. Constraint (9) considers the
inventory level of node i, tightening the constraint based on constraint (8). Constraint (10)
is the node flow balance constraint. Constraints (11) and (12) are the subloop elimination
constraints, and constraints (13) and (16) are the variable constraints.

3.1.2. Lateral Transshipment Model in the Replenishment Cycle

In this subsection, we present the lateral transshipment model within the planning pe-
riod. Lateral transshipment between customer points to balance inventory within the region.

min ∑
i∈N ′

∑
j∈N ′

∑
t∈T

h4lijrt
ij (17)

It+1
i = It

i + qkt
i − dt

i + ∑
j∈N ′

rt
ji − ∑

j∈N ′
rt

ij ∀i ∈ N ′, i 6= j, k ∈ K, t ∈ T (18)

rt
ij ≤ Qj ∀i, j ∈ N ′, i 6= j, t ∈ T (19)

rt
ij ≤ It

i ∀i, j ∈ N ′, i 6= j, t ∈ T (20)

∑
j∈N ′

rt
ij = ∑

j∈N ′
rt

ji ∀i ∈ N ′, i 6= j (21)

It+1
i ≥ 0 ∀i ∈ N ′, t ∈ T (22)

rt
ij ≥ 0 ∀i, j ∈ N ′, i 6= j, t ∈ T (23)

Constraint (18) is the initial customer node inventory constraint. Constraints (19) and
(20) are transshipment volume constraints, where constraint (20) tightens the constraint
based on constraint (20). Constraint (21) is a transshipment volume flow balance, and
constraints (22) and (23) are variable constraints.

4. Adaptive Large-Neighborhood Search Algorithm

Considering that the IRP is an integrated model of the vehicle path problem and the
inventory management problem, the IRP is an NP-hard problem; therefore, the IDSMIRP is
also an NP-hard problem. An adaptive large-neighborhood search algorithm (ALNS) is
proposed to solve the problem.

The ALNS algorithm is a meta-heuristic algorithm that uses a destroying operator to
remove the current solution according to certain rules, as well as a repair operator to restore
the current solution to achieve an adaptive way of searching multiple neighborhoods in
the same search process. The ALNS algorithm was originally extended by Ropke et al. [27],
based on the research of Shaw [28], to solve the pickup and delivery problem with time
windows. In the area of the IRP, two studies, Coelho et al. [29] and Coelho et al. [30],
used the ALNS algorithm to solve the consistency problem of multi-vehicle inventory
routing and the IRP with transshipment, respectively. Adulyasak et al. [31] used the ALNS
algorithm to solve the production routing problem and obtained a high-quality solution in
a short time. Alkaabneh et al. [32] focused on a multi-vehicle sequential allocation problem
and developed three models with the objectives of equity and efficiency and designed an
efficient ALNS algorithm for solving it.

The main framework of the ALNS algorithm contains several parts, which are initial
solution generation, neighborhood search, acceptance or rejection strategy of the solution,
neighborhood update, and the algorithm termination conditions. The main steps are shown
below, and the structure of ALNS is presented in Algorithm 1.
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(1) Initial solution generation: an initial solution is generated according to the charac-
teristics of the problem. The initial solution can be generated in greedy approaches,
random ways, and heuristic algorithms. Additionally, some parameters of the al-
gorithm are initialized, such as the weights of the operators and the corresponding
scores.

(2) Neighborhood search operation: choose a set of destroy and repair operators; the
solution is destroyed to obtain a new solution and subsequently a repair operation is
conducted on it to obtain the current solution.

(3) Acceptance or rejection strategy: the simulated annealing algorithm is generally
used to control whether the current solution is accepted or not, followed by judging
whether the termination condition is satisfied; if not, proceed to step (4).

(4) Neighborhood update: the weights and scores of the operators are updated according
to the quality of the current solution.

(5) Algorithm termination conditions: algorithm termination conditions are generally set
in terms of running time and a specified number of iterations.

Algorithm 1: The structure of the ALNS
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As shown in Algorithm 1, where bestS  is used to represent the optimal solution, currS  

represents the current solution, newS  represents the new solution,   is used to repre-
sent the set of destroy operators,   is used to represent the set of repair operators, ()nd  
and ()nr  denote the application of destroy and repair operators on the current solution, 
and f  is the simulated annealing algorithm objective function. 

As shown in Algorithm 1, where Sbest is used to represent the optimal solution, Scurr
represents the current solution, Snew represents the new solution, D is used to represent
the set of destroy operators, R is used to represent the set of repair operators, dn() and rn()
denote the application of destroy and repair operators on the current solution, and f is the
simulated annealing algorithm objective function.

4.1. Initial Solution Generation

Meta-heuristic algorithms generally need to generate an initial solution on which to
iterate. Therefore, a good initial solution can speed up the solution search process and
reduce the number of iterations of the algorithm. In this paper, the initial solution is
constructed by greedy insertion. Specifically, all customer nodes are sorted according to
the distance, the farthest one is selected as the endpoint, and an empty route containing the
starting point and the endpoint is constructed using the central warehouse as the starting
point. Subsequently, the closest customer nodes are added to the route in order without
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violating constraints such as vehicle capacity. The insertion process is repeated until no
more customer nodes can be inserted to form the initial solution scheme.

4.2. Initial Solution Generation

The operators used in this algorithm are mainly revised from Demir et al. [33] and
Ropke [27].

(1) Random removal

This operator randomly selects a point t from the current solution and selects several
client nodes i for deletion operations to be put into the list of deleted nodes M and the
deleted client nodes n ≤ N ′.
(2) Worst removal

This operator removes the customer node with the farthest distance from the current
solution, assuming that the set of customer nodes is N ′ = {1, 2, . . . , n}; when the delivery
vehicle travels from the previous node i to the current node j, there is a travel distance
lij, traverse all customer nodes, find the largest lij, and add node j to the list of deleted
nodes M.

(3) Shaw removal

The operator was proposed by Shaw [28], and its key idea is to remove customer
nodes with high similarity and evaluate the relevance of node i and node j by defining
the relevance metric Rij. In this study, for the IDSMIPR, we use the distance lij between
customer nodes, the number of customer demands dt

i , and the customer inventory capacity
Qi to calculate the correlation Rij; a smaller Rij represents a higher correlation between
two customer nodes. Additionally, we use ϕ, ζ, λ to denote the weight of the influence
of different factors on the correlation and have ϕ + ζ + λ = 1. The specific correlation
calculation formula is as follows:

Rij = ϕ(lij) + ζ(|di − dj|) + λ(|Qi −Qj|)

(4) Route removal

This operator randomly selects one of all routes for removal, randomly selects a client
node i to remove it, and iteratively selects other nodes on the route to which the node
belongs until all nodes are removed.

(5) Neighborhood removal

This operator selects a node from the path that is most important for the aver-
age distance of that path to delete. Suppose there is the path set B and for each line
B = {i1, i2, . . . , i|B|}; its average distance is calculated by dB = ∑

i1,i2∈B
di1i2 /|B|. Select a node

i∗ = argmaxB∈B;j∈B{dB − dB\{i}}.

(6) Demand-based removal

This operator is a special case of the Shaw operator. Let ϕ and λ be equal to zero and
ζ be equal to 1 to compute the similarity between nodes and select nodes for deletion.

(7) Greedy insertion

This operator selects a route to insert node i in the least-cost manner. Considering
the specific objective function, the cost of inserting a node i in the IDSMIPR is given by
∆ fi = lji + lik − ljk, where i, j, k ∈ N ′.

(8) Regret insertion

This operator was proposed by Potvin [34], mainly to solve the problem of plac-
ing the request with high insertion cost at the end of the Greedy insertion operator and
this resulting in no position for insertion. By defining ∆ fi1 as the optimal insertion cost
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variation value and ∆ fi2 as the second best insertion cost variation value, then the node
i∗ = argmaxi∈N ′∆ fi2 − ∆ fi1 is selected.

(9) Random insertion

This operator randomly selects a node from the list of nodes M that have been re-
moved and inserts it randomly into a route at some point in time and selects the node
i∗ = argmini∈N ′∆ fi.

(10) Sequential insertion

This operator sequentially selects a node from the list of deleted nodes M and inserts
the node into the route according to the node selection of i∗ = argmini∈N ′∆ fi until no node
can be inserted.

(11) Swap insertion

The operator randomly selects two time periods and swaps the routes.

4.3. Operator Selection and Weight Adjustment

The adaptive selection method of the operator uses the roulette wheel method, which
follows the rule that the more suitable the operator is, the higher the probability that
he or she will be selected. The method assumes that the probability of an operator be-
ing selected is proportional to the performance of the operator, which can be described
as follows. Suppose there are N operators and the weight score of each operator is
wi > 0 (i = 1, 2, . . . , N). The probability that the ith individual is selected is given by
the following formula: pi =

wi
∑N

i=1 wi
. At the end of each iteration, the weight score of the

operator needs to be updated, and the update formula is shown in (24) as follows :

ws+1
i = (1− r)ws

i + r
πi
θi

(24)

where θi is the number of times the operator i was used during the previous iteration
and r is the response factor that controls the speed of response of the operator weight
adjustment process to changes in weight performance. If r = 0, then the weights remain
constant; if r = 1, then the weights of the operators are determined by the most recent
score [26].

4.4. Acceptance Criteria and Termination Conditions

This algorithm uses the Metropolis criterion of the simulated annealing algorithm to
determine whether to accept the solution. The simulated annealing algorithm simulates
the behavior of crystal molecules in the annealing process of solid substances to solve
the optimization problem. It mainly generates an initial solution, sets the initial problem,
and generates a new solution according to a certain strategy to determine whether the
temperature of this solution reaches the target problem; if not, it continues to repeat the
annealing process. The Metropolis criterion, on the other hand, is the basis of the simulated
annealing algorithm, as shown in (25) by the following equation:

pt(Scurr = Snew) =

{
1, E ≤ E′

exp(∆E
t ), E > E′

(25)

where E is the energy value in the annealing process, pt(Scurr = Snew) denotes the prob-
ability of accepting the new solution Snew when E ≤ E′ or accepting the new solution
when E > E′. If exp(∆E

t ) is greater than a certain threshold, the new solution is accepted,
otherwise the new solution is rejected.

There are two conditions for the termination of this algorithm, the first one is that
the algorithm runs for the 1800s and the second one is that the number of iterations of the
algorithm reaches 2000. As soon as the algorithm runs to one of the two conditions, the
algorithm will stop running.
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5. Case Study

In this section, simulated datasets of different sizes are used to validate the accuracy of
the model and the effectiveness of the proposed ALNS algorithm. Among them, the small-
size example contains 5, 10, and 15 customer points and the medium-size example contains
20, 25, and 30 customer points for numerical experimental analysis. The horizontal and
vertical coordinates of these customer points are randomly generated in the range [0, 100],
and the distances between customer points are expressed using Euclidean distances. The
replenishment horizon of the customer is set to 3 days, and the demand of these customer
points for the next 3 days is randomly generated according to the calculation criteria of
the intermittent demand model. Moreover, the initial inventory of customers is randomly
set to any integer value from 0 to the upper inventory limit. The units of measuring the
capacity of the central warehouse, customers, and vehicles, as well as the demand, are the
items. The inventory capacity of customers and other parameters used in the illustration
are shown in Table 2. The experimental environment for this case study uses Python 3.9
programming, whereas the IDE environment is PyCharm 2022.1.2, the CPU is an Intel(R)
Xeon(R) W-2255 CPU @ 3.70 GHz, and the memory is 64 GB.

Table 2. The parameter values of the model.

Parameter Description Value Unit

O Number of central warehouses 1 -

P Number of products 1 -

N Number of customer nodes 5, 10, 15, 20, 25, 30 -

ai, bi Customer point coordinates ([0, 100], [0, 100]) -

lij Customer distance
√
(ai − aj)2 + (bi − bj)

2 km

T Periods 3 day

K Number of vehicles [1, 10] -

h1 Unit inventory cost in the central warehouse 2 dollar

h2 Unit inventory cost in customers 4 dollar

h3 Delivery cost per unit distance 5 dollar

h4 Transshipment cost per unit distance 3 dollar

C Capacity of vehicles 30 item

Qi Capacity of customers, i ∈ N ′ [3, 8] item

Some of the operators used in the ALNS algorithm require the determination of several
parameters, the values of which can have a large impact on the final algorithm’s solving
power. Since the number of parameters is small, we use iterative trials to determine the
optimal parameter values. The specific parameter values are shown in Table 3.

Table 3. The parameter value of ALNS.

Parameter Value Description

ϕ 0.7 Shaw removal operator, distance correlation weights between client nodes
ζ 0.2 Shaw removal operator, customer demand quantity relevance weights
λ 0.1 Shaw removal operator, customer inventory capacity correlation weights
r 0.8 Response factors in roulette strategy

Subsequently, the ALNS algorithm is used to solve the above small-size and medium-
size cases separately. Table 4 shows the algorithm distribution solution results for the
small-size case with 10 customer points, and Table 5 presents the algorithm solution results
for the medium-size case with 20 customer points.
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Table 4. Small-size calculation distribution results.

Type Route Delivery Costs Inventory
Costs

Transshipment
Costs Total Cost Time/s

Day one Delivery 0-2-8-1-6-0 1375 396 - - -
Transshipment 3-5-4 - - 318 - -

Day two Delivery 0-7-9-4-10-0 1140 492 - - -
Transshipment 6-8 - - 129 - -

Day three Delivery 0-8-4-7-9-2-0 1810 312 - - -
Transshipment 5-3-1 - - 222 - -

Total 4325 1200 669 6194 83

Table 5. Medium-size calculation distribution results.

Type Route Delivery
Costs

Inventory
Costs

Transshipment
Costs Total Cost Time/s

Day one Delivery
0-1-9-11-15-14-17-0,

0-12-2-8-5-4-0,
0-19-3-6-7-0

3635 632 - - -

Transshipment 13-10-16 - - 645 - -

Day two Delivery
0-8-2-9-7-16-0,
0-3-5-12-14-0,

0-11-17-19-1-2-0
2815 686 - - -

Transshipment 6-4-15 - - 771 - -

Day three Delivery
0-13-2-18-11-12-3-0,

0-7-1-15-19-0,
0-4-16-17-5-0

2465 728 - - -

Transshipment 2-6-20 - - 552 - -
Total 8915 2046 1968 12,929 237

The results of the experiment are shown in Tables 4 and 5 for a replenishment cycle
of 3 days. The second column shows the type of inventory replenishment and whether
it was delivered by the warehouse or a lateral transshipment between stores. The third
column shows the driving route of the vehicle, where the distribution cost and inventory
cost are generated by the company’s own vehicle distributing from the warehouse, whereas
transfer distribution provided by an external service provider generates the transfer cost.
From the results in Tables 4 and 5, it can be seen that the distribution cost accounts for a
higher percentage of the total cost, whereas the inventory cost and the transfer cost account
for a lower percentage. In general, products that need to be restocked have higher sales
volumes. The first case is influenced by the region, where an item does not sell well in this
store but sells well in other stores, thus creating a demand for transshipment. The second
situation is that the item is not selling well in all stores; however, a store needs a certain
amount of the product to avoid shortages.

In addition, to understand the proportion of cost under different numbers of customer
points, the proportion of distribution costs, inventory costs, and transshipment costs in the
total cost is shown in Figure 2. From Figure 2, it can be seen that as the number of customer
points increases, the proportion of distribution costs gradually decreases, the proportion
of transshipment costs gradually increases, and the proportion of inventory costs shows a
small increase. Therefore, with the increase in the number of customer points, the demand
for transshipment will be elevated. In addition, an appropriate price for transshipment will
help to reduce the distribution cost, balance the inventory of the region, and increase the
profit of the company.
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To observe the effect of vehicle capacity on the supply chain system, a sensitivity
analysis was performed. We set the vehicle capacity to grow from 20 to 50 with an interval
of 2 units to observe the change in the delivery cost. The number of customer nodes was set
to 30. As shown in Figure 3, the distribution cost gradually decreases to a stable value. Thus,
the increase in vehicle capacity can bring greater benefits. Larger vehicles are beneficial
to reduce the remaining empty loading of vehicles and can merge more routes. When all
node demands can be met by a large enough vehicle, only one vehicle is needed, making
the cost of distribution stable.
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Operators have a large impact on the performance of the ALNS algorithm, and oper-
ators designed for different problems help to improve the search capability and achieve
efficient solutions. Thus, we test the performance of the new operators by comparing the
best solution. The method we use is to add the new operators into the ALNS algorithm
one by one to observe the change in the optimal solution. In Figure 4, no new operator in
“Comb. 1”, operator (3) is added in “Comb. 2”, operator (3) and operator (6) are added in
“Comb. 3”. It is obvious that the addition of the new operator improves the quality of the
optimal solution. “Comb. 2” and “Comb. 3” improved by an average of 1.19% and 2.80%,
respectively.
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Figure 4. Operator performance comparison.

We generate six cases at 5, 10, 15, 20, 25, and 30 customer points. Considering the
randomness of the results, we used the Gurobi, TS, and ALNS algorithms to perform
multiple solution tests and took the mean value of the results as the test results. The results
of the algorithm comparison tests are shown in Table 6, where Z1, Z2, and Z3 denote the
objective function values solved by the Gurobi, TS, and ALNS algorithms, respectively, and
T1, T2, and T3 denote the solving time of the Gurobi, TS and ALNS algorithms, respectively.
Gap1 denotes the percentage error of the solution results of the Gurobi and TS algorithms;
Gap1 = 100 × (Z2 − Z1)/Z1. Gap2 denotes the percentage error of the solution results of
the Gurobi and ALNS algorithms; Gap2 = 100 × (Z3 − Z1)/Z1.

Table 6. Comparison of algorithm test results.

Nodes Gurobi TS ALNS Error

Z1 T1 Z2 T2 Z3 T3 Gap1 Gap2
5 5381 32 5387 64 5385 71 0.00 0.00

10 6828 53 6859 72 6850 83 0.46% 0.32%
15 9902 84 9997 151 9967 176 0.96% 0.66%
20 12,812 173 13,001 198 12,929 237 1.48% 0.91%
25 15,682 324 16,029 257 15,890 315 2.21% 1.33%
30 19,648 479 20,157 326 19,996 394 2.59% 1.77%
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From Table 6, we can find that the values of Gap1 and Gap2 are close to 0 for the cases
with 5 and 10 customer points, which indicates that all three methods can find the optimal
solution quickly when the number of customer points is small. In the cases with 15, 20, 25,
and 30 customer points, the advantage of the TS algorithm gradually decreases compared
with the commercial solver, and the value of Gap1 can reach a maximum of 2.59%. The
advantage of the ALNS algorithm is gradually obvious, and the value of Gap2 can reach up
to 1.77%. Due to the increase in the search neighborhood, the ALNS algorithm can obtain
better solutions, whereas the TS algorithm may be trapped in the local optimal solution
and cannot jump out.

As shown in Figure 5, the running time of the Gurobi solver gradually increases with
the increase in the case size and the increasing trend is higher than the other two algorithms.
Compared with the TS algorithm, the solution time of the ALNS algorithm is slightly higher
than that of the TS algorithm due to the increase in the searched neighborhood. Considering
that the ALNS algorithm can obtain better quality solutions, the ALNS algorithm proposed
in this study can effectively handle this class of the single-product multi-period IRP.
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This study provides managerial insights to academia and industry. For academia, we
focus on the IRP under intermittent demand, a particular demand pattern that can pose
challenges for inventory management, creating inventory backlogs and raising inventory
costs. To address this problem, we introduce a lateral transit strategy, build a two-stage
model, and design an ALNS algorithm with new operators. Our study extends the scope
of the IRP domain, and the proposed operators can improve the performance of the ALNS
algorithm. For industry, the number of customers in a region has the greatest impact on the
total cost of inventory management. At the same time, an increase in the number of nodes
leads to more transshipment needs and reduces the distribution costs as a percentage of the
total costs. Therefore, the implementation of a lateral transshipment strategy can effectively
balance the regional inventory, lower the risk of demand shortage, and improve the effi-
ciency of inventory management. In addition, the increase in distribution vehicle capacity
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can bring higher revenue. We offer the following suggestions to managers: (1) Use the
lateral transshipment strategy to balance the inventory in the region. (2) Reduce transship-
ment prices and improve profits by finding external service providers, etc. (3) Determine
the appropriate size of vehicle capacity according to the regional demand and use larger
capacity models to reduce distribution costs.

6. Conclusions

This study considers the IRP in a two-echelon supply chain system consisting of a
central warehouse and several customers. In this supply chain system, the intermittent
demand pattern of products poses challenges for inventory management. On the one hand,
the fluctuating demand of products can reduce the accuracy of replenishment planning. On
the other hand, continuous backlogs of products can generate significant inventory holding
costs and reduce the profitability of the system. In this context, we build a single-product
multi-period inventory routing model with lateral transshipment. Before the replenishment
planning period, the warehouse’s own vehicles are used to replenish products to customers.
During the planning period, the lateral transshipment of products between customers is
achieved using the distribution service provided by external service providers. An ALNS
algorithm is also designed for solving the model.

The results show that the lateral transshipment strategy can provide a promising way
to manage inventory for intermittent demand patterns and that transfer can effectively
balance regional inventory, reduce distribution costs, and improve corporate profits. Specif-
ically, distribution costs constitute the highest percentage of the total costs and the number
of customer points has the greatest impact on distribution costs. Managers can increase
the demand for transferring products between customer points to each other by lowering
the price of transshipment and avoiding delivery from the central warehouse. In addition,
an increase in vehicle capacity has a positive impact on reducing the distribution costs. In
addition, our work extends the scope of the IRP and makes an academic contribution to
solving IRP variants.

Several limitations of this study need to be acknowledged. On the one hand, we
can consider multi-products in our future research. On the other hand, we can consider
designing different transshipment strategies to match the actual business situation. Finally,
more ALNS operators can be developed to improve the solving power of the algorithm.
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Abbreviations
The following abbreviations are used in this study:
Symbol Meaning
Sets
N Set of all nodes, N = {0, 1, 2, . . . , n}
A Set of all arcs, A = {(i, j) : i, j ∈ N , i 6= j}
O Central warehouse, O = {0}
N ′ Set of all customer nodes, N ′ = N |{0}
T Set of periods, T = {1, 2, 3, . . . , t}
K Set of vehicles, K = {1, 2, 3, . . . , k}
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Parameters
h1 Unit inventory cost in the central warehouse
h2 Unit inventory cost in customers
h3 Delivery cost per unit distance
h4 Transshipment cost per unit distance
Qi Inventory capacity of customers, i ∈ N ′
C Capacity of vehicles
lij Distance between node I and j
Variables
dt

i The actual demand of node i at period t, i ∈ N ′, t ∈ T

xkt
ij

At period t, the vehicle k visits node j after visiting node i,
i, j ∈ N , i 6= j, k ∈ K, t ∈ T

rt
ij

The number of goods transferred from node i to node j
at period t, i, j ∈ N ′, i 6= j, t ∈ T

It
i

The inventory level of node i at the beginning of period t,
i ∈ N ′, t ∈ T

qkt
i

The number of goods transported by vehicle k from the central
warehouse to node i at time t, i ∈ N ′, k ∈ K, t ∈ T

vkt
i Dummy variables for sub-loop elimination

References
1. Biuki, M.; Kazemi, A.; Alinezhad, A. An integrated location-routing-inventory model for sustainable design of a perishable

products supply chain network. J. Clean. Prod. 2020, 260, 120842. [CrossRef]
2. Dey, B.K.; Seok, H. Intelligent inventory management with autonomation and service strategy. J. Intell. Manuf. 2022, 1–24.

[CrossRef]
3. Mandal, B.; Dey, B.K.; Khanra, S.; Sarkar, B. Advance sustainable inventory management through advertisement and trade-credit

policy. RAIRO-Oper. Res. 2021, 55, 261–284. [CrossRef]
4. Dalalah, D.; Al-Araidah, O. Dynamic decentralised balancing of CONWIP production systems. Int. J. Prod. Res. 2010, 48, 3925–3941.

[CrossRef]
5. Wu, S.N.; Liu, Q.; Zhang, R.Q. The Reference Effects on a Retailer’s Dynamic Pricing and Inventory Strategies with Strategic

Consumers. Oper. Res. 2015, 63, 1320–1335. [CrossRef]
6. Williams, T.M. Stock Control with Sporadic and Slow-Moving Demand. J. Oper. Res. Soc. 1984, 35, 939–948. [CrossRef]
7. Syntetos, A.A.; Boylan, J.E.; Croston, J.D. On the categorization of demand patterns. J. Oper. Res. Soc. 2005, 56, 495–503. [CrossRef]
8. Turkmen, A.; Januschowski, T.; Wang, Y.Y.; Cemgil, A. Intermittent Demand Forecasting with Renewal Processes. arXiv

2010, arXiv:2010.01550.
9. Wu, W.T.; Zhou, W.; Lin, Y.; Xie, Y.Q.; Jin, W.Z. A hybrid metaheuristic algorithm for location inventory routing problem with

time windows and fuel consumption. Expert Syst. Appl. 2021, 166, 114034. [CrossRef]
10. Olgun, M.O.; Aydemir, E. A new cooperative depot sharing approach for inventory routing problem. Ann. Oper. Res. 2023,

307, 417–441. [CrossRef]
11. Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
12. Alkaabneh, F.; Diabat, A. A multi-objective home healthcare delivery model and its solution using a branch-and-price algorithm

and a two-stage meta-heuristic algorithm. Transp. Res. Part C Emerg. Technol. 2023, 147, 103838. [CrossRef]
13. Mousavi, R.; Salehi-Amiri, A.; Zahedi, A.; Hajiaghaei-Keshteli, M. Designing a supply chain network for blood decomposition by

utilizing social and environmental factor. Comput. Ind. Eng. 2021, 160, 107501. [CrossRef]
14. Yin, Y.; Liu, X.; Chu, F.; Wang, D. An exact algorithm for the home health care routing and scheduling with electric vehicles and

synergistic-transport mode. Ann. Oper. Res. 2023, 1–36. [CrossRef]
15. Bell, W.J.; Dalberto, L.M.; Fisher, M.L.; Greenfield, A.J.; Jaikumar, R.; Kedia, P.; Mack, R.G.; Prutzman, P.J. Improving the

Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer. Interfaces 1983, 13, 4–23.
[CrossRef]

16. Abdelmaguid, T.F.; Dessouky, M.M.; Ordóñez, F. Heuristic approaches for the inventory-routing problem with backlogging.
Comput. Ind. Eng. 2009, 56, 1519–1534. [CrossRef]

17. Raa, B.; Aghezzaf, E.-H. A practical solution approach for the cyclic inventory routing problem. Eur. J. Oper. Res. 2009,
192, 429–441. [CrossRef]

18. Geiger, M.J.; Sevaux, M. On the Use of Reference Points for the Biobjective Inventory Routing Problem. arXiv 2011, arXiv:1109.3094.
19. Cárdenas-Barrón, L.; González-Velarde, J.L.; Treviño-Garza, G.; Garza-Nuñez, D. Heuristic algorithm based on reduce and

optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment. Int. J.
Prod. Econ. 2019, 211, 44–59. [CrossRef]

https://doi.org/10.1016/j.jclepro.2020.120842
https://doi.org/10.1007/s10845-022-02046-4
https://doi.org/10.1051/ro/2020067
https://doi.org/10.1080/00207540902998323
https://doi.org/10.1287/opre.2015.1440
https://doi.org/10.1057/jors.1984.185
https://doi.org/10.1057/palgrave.jors.2601841
https://doi.org/10.1016/j.eswa.2020.114034
https://doi.org/10.1007/s10479-021-04122-z
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1016/j.trc.2022.103838
https://doi.org/10.1016/j.cie.2021.107501
https://doi.org/10.1007/s10479-023-05313-6
https://doi.org/10.1287/inte.13.6.4
https://doi.org/10.1016/j.cie.2008.09.032
https://doi.org/10.1016/j.ejor.2007.09.032
https://doi.org/10.1016/j.ijpe.2019.01.026


Information 2023, 14, 331 17 of 17

20. Lefever, W.; Aghezzaf, E.; Hadj-Hamou, K.; Penz, B. Analysis of an improved branch-and-cut formulation for the Inventory-
Routing Problem with Transshipment. Comput. Oper. Res. 2018, 98, 137–148. [CrossRef]

21. Coelho, L.C.; Maio, A.D.; Laganà, D. A variable MIP neighborhood descent for the multi-attribute inventory routing problem.
Transp. Res. Part E Logist. Transp. Rev. 2020, 144, 102137. [CrossRef]

22. Rayat, F.; Musavi, M.; Bozorgi-Amiri, A. Bi-objective reliable location-inventory-routing problem with partial backordering under
disruption risks: A modified AMOSA approach. Appl. Soft Comput. 2017, 59, 622–643. [CrossRef]

23. Soysal, M.; Bloemhof-Ruwaard, J.; Haijema, R.; Vorst, J.G.V.D. Modeling a green inventory routing problem for perishable
products with horizontal collaboration. Comput. Oper. Res. 2018, 89, 168–182. [CrossRef]

24. Ji, Y.; Du, J.H.; Han, X.Y.; Wu, X.Q.; Huang, R.P.; Wang, S.L.; Liu, Z.M. A mixed integer robust programming model for two-echelon
inventory routing problem of perishable products. Physica A 2020, 548, 124481. [CrossRef]

25. Achamrah, F.E.; Riane, F.; Limbourg, S. Spare parts inventory routing problem with transshipment and substitutions under
stochastic demands. Appl. Math. Model. 2022, 101, 309–331. [CrossRef]

26. Ortega, E.; Doerner, K. A sampling-based matheuristic for the continuous-time stochastic inventory routing problem with
time-windows. Comput. Oper. Res. 2023, 152, 106129. [CrossRef]

27. Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time
Windows. Transp. Sci. 2006, 40, 455–472. [CrossRef]

28. Shaw, P. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In Proceedings of the
Principles and Practice of Constraint Programming—CP98: 4th International Conference, CP98, Pisa, Italy, 26–30 October 1998.

29. Coelho, L.C.; Cordeau, J.-F.; Laporte, G. Consistency in multi-vehicle inventory-routing. Transp. Res. Part C Emerg. Technol. 2012,
24, 270–287. [CrossRef]

30. Coelho, L.C.; Cordeau, J.-F.; Laporte, G. The inventory-routing problem with transshipment. Comput. Oper. Res. 2012, 39, 2537–2548.
[CrossRef]

31. Adulyasak, Y.; Cordeau, J.-F.; Jans, R. Optimization-Based Adaptive Large Neighborhood Search for the Production Routing
Problem. Transp. Sci. 2014, 48, 20–45. [CrossRef]

32. Alkaabneh, F.; Shehadeh, K.S.; Diabat, A. Routing and resource allocation in non-profit settings with equity and efficiency
measures under demand uncertainty. Transp. Res. Part C Emerg. Technol. 2023, 149, 104023. [CrossRef]
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