
Citation: Christopoulos, K.; Baltsou,

G.; Tsichlas, K. Local Community

Detection in Graph Streams with

Anchors. Information 2023, 14, 332.

https://doi.org/10.3390/

info14060332

Academic Editors: Gabriele Gianini

and Tao Yin

Received: 10 April 2023

Revised: 29 May 2023

Accepted: 6 June 2023

Published: 12 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Local Community Detection in Graph Streams with Anchors
Konstantinos Christopoulos 1,* , Georgia Baltsou 2 and Konstantinos Tsichlas 1

1 Department of Computer Engineering and Informatics, University of Patras, 26500 Rion, Greece
2 School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
* Correspondence: kchristopou@upnet.gr

Abstract: Community detection in dynamic networks is a challenging research problem. One of the
main obstacles is the stability issues that arise during the evolution of communities. In dynamic
networks, new communities may emerge and existing communities may disappear, grow, or shrink.
As a result, a community can evolve into a completely different one, making it difficult to track its
evolution (this is known as the drifting/identity problem). In this paper, we focused on the evolution
of a single community. Our aim was to identify the community that contains a particularly important
node, called the anchor, and to track its evolution over time. In this way, we circumvented the
identity problem by allowing the anchor to define the core of the relevant community. We proposed
a framework that tracks the evolution of the community defined by the anchor and verified its
efficiency and effectiveness through experimental evaluation.

Keywords: local community detection; networks; graph streams; anchor

1. Introduction

Complex systems are very often represented by networks, since they can successfully
demonstrate the natural structures and functions of various fields such as communication,
biology, and the World Wide Web, where huge amounts of data are constantly being
generated. Community detection, a fundamental task of network analysis, focuses on
revealing group of nodes that are densely connected to each other and loosely connected
to the nodes in the other groups in the network and has attracted the attention of many
researchers. For decades, great efforts have been made to detect global communities, i.e.,
the partitioning of an entire network into communities [1]. However, there are many cases
in which researchers are only interested in the communities of specific nodes. Therefore, in
recent years, there has been an increased interest in exploring local communities based on
a few query nodes [2–4]. From the computational cost point of view, the local community
discovery problem is better suited to uncovering the community structure for nodes of
interest in large networks, considering real-world scenarios such as purchase or social
networks [5].

Most existing work on community detection, whether global or local, aims to uncover
the community structure of static networks. Static networks have an unchanging structure
over time. However, most real-world networks change over time. Such networks are called
temporal or dynamic. A very recent survey of local community detection in both dynamic
and static networks was presented in [6]. Furthermore, there are cases where relations
between nodes are established only instantaneously and the structure of the networks
changes rapidly, e.g., in email communication. The most common approach to handling
such data networks is the (graph) streaming model. A graph stream consists of a sequence
of updates on the edges of a graph. Time is defined in terms of the order of the updates
within this sequence. The lifetime of an edge is defined as the time between its insertion
and removal [7,8], which in fact defines the notion of time with respect to these transactions
(transaction time). Compare this notion to the valid time notion, where each edge update
carries its valid interval, that is, the time during which the update is in effect.

Information 2023, 14, 332. https://doi.org/10.3390/info14060332 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14060332
https://doi.org/10.3390/info14060332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1246-7236
https://orcid.org/0000-0002-7042-8876
https://doi.org/10.3390/info14060332
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14060332?type=check_update&version=2

Information 2023, 14, 332 2 of 24

In most local community detection approaches in the literature, communities are
uncovered starting from seed nodes with particular topological importance according
to a specific metric, such as node degree. As one can deduce, such nodes can be the
most important according to the chosen measure, but this does not mean that they are
always the right seeds for local community detection approaches. In the present work, we
focused on local community detection of particular nodes in graph streams by extending
the theoretical framework of [9]. More specifically, our goal was to uncover the evolution
of the community of a node (or a set of nodes) of particular interest, called the anchor.
The anchor has a special meaning for its community. This importance may or may not be
reflected in the topological properties of the nodes and is based on knowledge from the
external environment of the network. This node defines the evolving community and acts
as an anchor for the community, thus circumventing the identity problem.

As a toy example, one could imagine a football team in a social network. This com-
munity evolves as new fans join or existing fans may stop supporting the team. However,
the core fans (e.g., the Ultras) of the team are more stable and in a way act as an anchor
for this community. Imagine a first-class player of the team that has a large degree of cen-
trality (much larger than the Ultras). This player is topologically central in the community
referring to this team. However, when he decides to leave the team then all his connections
within this community are severed but the community continues to exist due to its more
permanent members (any of them can be chosen as an anchor). Another motivating exam-
ple could be an IoT network. The IoT is defined as a network of connected devices and end
systems that directly interact with each other to collect, share, and analyze important data
via the cloud [10]. In such networks, the connections between nodes are not stable, but
change over time. Thus, as an example, someone might be interested in uncovering the
evolution of the community to which a particular switch device node belongs. The former
node would act as an anchor for this community.

Another motivating example comes from social networking platforms. TikTok is an
example of a network-based social platform, in which people every day express their
opinions about many topics. A reaction of a user (node) to the challenge of another user
constitutes an edge between both users in a reaction network model. In this case, the
anchor node can be a person that issued such a challenge that may have a certain number of
reactions. Applying local community detection with the anchor being the person that issued
the challenge, we can discover not only the people that reacted to this challenge but also
the people that reacted to such reactions and further see how this temporary community
evolved over time from the time it started until the time people lost their interest. As a result,
researchers can further analyze the dynamics of the community that, for example, may be
used in the evolution of the sentiments within this community [11]. Additionally, sometimes
such challenges may be characterized as dangerous, and discovering the evolution of the
community may lead to the identification of evolutionary patterns that allow them to
distinguish the communities of users who participate in dangerous and non-dangerous
challenges [12].

Another motivating example is related to tracking potential COVID-19 cases ema-
nating from a single infected person who recently traveled from overseas. This person
could act as an anchor for identifying a community that potentially has been infected either
directly or indirectly by her/him. We assume the existence of a contact temporal network.
This could be constructed by using appropriate mobile apps (e.g., [13]). The identification
of this community allows the application of preventive policies, such as suggesting that all
people in this community should check for infection. However, we must highlight ethical
issues related not only to the construction of such a contact network but also to the process
of identifying the community. This is because the identification of the community may
lead unaware people to be subjected to unnecessary actions and at the same time reveal
personal information. The ethics of shared COVID-19 risks are discussed in [14], while
issues related to shared responsibility in health policy can be found in [15].

Information 2023, 14, 332 3 of 24

Contributions

Our present work focused on identifying the community of a particular node, called
an anchor, which is assumed to be of particular importance to that community due to
external knowledge related to the network. To achieve this, we proposed a multi-stage
framework in a graph streaming setting that updates the community whenever an edge is
updated (inserted or deleted) “near” the anchor. We experimentally showed how promising
the proposed framework is when compared to other methods in both synthetic and real
datasets. Our contribution is twofold:

• From a modeling perspective, our contribution lies in introducing the notion of the
anchor node in the local community detection problem into time-evolving networks.

• From an algorithmic perspective, a general multi-step framework was proposed that
can be used to detect stable communities of an important node in time-evolving
networks.

The remaining sections are organized as follows. In Section 2, we review the literature
on local community detection in dynamic networks. The proposed framework is described
in Section 3. In Section 4, we present experimental results illustrating our algorithmic
framework. Finally, we discuss future expansions of the suggested framework in Section 5
and conclude in Section 6.

2. Related Work

Local community detection, also known as the seed set expansion problem, has
attracted the attention of researchers because only a small part of the network is processed.
This is either because the network is so large that it is impossible to look for all communities
or because the user is interested only in communities in a small part of the network. A
striking characteristic of local community detection is that the choice of the seed(s) defines
the detected local community that can be quite different from the one that the seed would
belong to in the case of global community detection. Many different approaches have been
proposed for this problem. However, the literature on dynamic networks and especially on
graph streams is much smaller than that on static networks. In the following, we discuss
algorithms for local community detection in a streaming setting that are closely related to
our work.

Ref. [16] used an online approach to find communities in data streams, where at each
given moment they maintain the current graph of interactions in main memory and store
previous graphs of interactions on the disk. In [17], an incremental method, to update the
communities of a graph segment when a new incoming graph is added, was proposed.
Random walks with restart were used and the suggested approach requires the mainte-
nance of the whole graph structure. In addition, the authors of [18] adopted the static
L-metric approach [19] to find dynamic communities in an incremental way. The L-metric
is a measure expressing the observation that a community has a lower number of edges
to other communities than to nodes within the community. At each snapshot, communi-
ties are discovered using information from previous snapshots. At the end, communities
found in different snapshots are matched based on their similarity (L-metric). Experiments
have shown that this method leads to meaningful communities. Additionally, in [20], the
authors studied the problem of community detection in a streaming environment where
the rows of the graph’s adjacency matrix are revealed one by one, as they believe that
maintaining the entire graph is prohibitively expensive. They proposed an online algorithm
with a space complexity that grows sub-linearly with the size of the graph. Furthermore,
in [21,22], a dynamic method of expanding the seed set was proposed, where the authors
proposed to incrementally update the fitness score of each snapshot. To center the com-
munity around the seed, their method ensures that the order of fitness scores remains
monotonically increasing by tracking the order of added nodes. Experiments have shown
that the proposed method is quite fast and the performance is better when low latency
updates are required. The authors of [23] suggested an incremental community detection
approach for high-volume graph streams based on a batch-oriented algorithm named

Information 2023, 14, 332 4 of 24

DEMON [24]. The suggested algorithm considers only adding edges in an incremental way
and requires maintaining the entire graph structure. Moreover, in [25], a method called
PHASR was proposed to find the temporal community with the lowest conductance. This
work aimed to find communities with stable membership over time. Experiments have
shown that the proposed method has a low running time and manages to find high quality
communities. In [26], a metric called local fitness was used to first find the starting nodes
of a community and run a static algorithm to define the communities in the first snapshot.
In subsequent snapshots, they used a metric for node contribution to gradually reveal the
communities. Their experiments showed that the proposed method reveals communities
with high accuracy. Despite the fact that the work in [27] pertains to static networks, we
mention the importance of this research while the authors deal with the problem of the
maximal a-quasi-clique; from a local community perspective, detecting the communities
of a specific node of interest. Furthermore, the authors of [28] proposed the HqsMLCD
algorithm in order to detect multiple overlapping communities for a given starting node.
The notion of high quality seeds was introduced, which are obtained by the embedded
candidate subgraph. Their motivation was to define a local community detection method
that is sensitive to the local structure of the seed node. Experiments in real datasets showed
that the aforementioned approach detects high quality communities. Finally, a method
named CoEuS [29] has been proposed for local community detection in graph streams.
The method works in a rather restricted setting where only a single access to the stream
is assumed and the working memory is limited. Experiments with networks have shown
that the algorithm is able to discover local communities with high accuracy. In contrast to
existing work on local community detection in a streaming setting, our proposed multilevel
framework focuses on community detection of a particular important node, called anchor.
This work is the first to propose the notion of “anchor” in graph streams.

3. Problem Formulation and Methodology

In this section, we introduce some basic terms and state our research problem more
formally. Then, we discuss the framework for local community detection with anchors in
stream graphs.

3.1. Preliminaries

The network is denoted as G = (V, Et) and consists of a static node set V = {1, . . . , n},
where n = |V| is the number of nodes, and Et ⊆ V2 is the set of edges at time t. Given the
definition of network G, a community can be defined as a subset of nodes in G such that the
density of connections within the subset is greater than the density of connections between
the subset and the rest of the network G. That is to say, a community can be thought of as a
group of nodes that have stronger relationships with each other than with nodes in other
parts of the network.

In this work, we considered a streaming model of computation on the graph in the
sense that edges are processed in a continuous and incremental manner, as they arrive
in a stream, instead of processing the entire graph structure in bulk. Thus, let t be a
discrete time domain with time steps 1, 2, A streaming source for edges in G can be
defined as a function s : t → P(V2), where s(t) = Et represents the set of edges in the
graph at time t, and δs(t) = {e(t)} represents the single edge update at time t, with e(t)
being an edge in the graph. In other words, the streaming source s(t) generates one edge
update δs(t) per time unit in the graph G. The update can be an addition, a deletion, or
a modification of an edge in V2. The result of this update on the stream graph is that the
communities of the corresponding network may change. Dynamic community detection is
the process by which we can observe the evolution of communities in a network subject to
such edge updates.

A Local Community (LC) is defined as the community to which the seed nodes belong.
Seed nodes are the nodes that define the community to be discovered. Thus, a network
G can be divided into LC and the rest of the network G − LC = U. Figure 1 shows the

Information 2023, 14, 332 5 of 24

commonly accepted definition of the local community in a network G. Based on Figure 1,
we can define three types of edges of LC: internal, boundary and external. Internal edges
are the edges between nodes in LC. Boundary edges are those between nodes in LC and
U. Lastly, edges between nodes in U, are called external. We also define the internal and
boundary degree of LC as the number of internal and boundary edges of LC, respectively.
In Table 1 we summarize the notation used throughout the paper.

Figure 1. The shape of a community. Black nodes are the seed nodes. Blue nodes are nodes within
the community while red nodes are outside of the community.

Table 1. List of basic symbols and abbreviations used in the present work.

Symbol/Abbreviation Description

Gt The network at time instance t—if no time index is given
(G) then time is irrelevant

V The node set of G
N The total number of nodes in G (= |V|)
Et The edge set of network G at time t
w(e) Weight of edge e
A The anchor node
Ct The community of the anchor at time t
kCi

in The total internal degree of LC, when the i-th node is in-
serted to the community

kCi
out The total boundary degree of LC, when the i-th node is

inserted to the community C
N(u) The set of neighbors of node u
R The radius of the ball centered around the anchor A
AR The set of nodes, called influence range, in distance at most

R from anchor A.
s(t) The streaming source
b The size of the batch in the streaming algorithm
LCDS-A The proposed General framework of Local Community

detection in graph streams with Anchors
DWR The Dynamic With Rewards algorithm. It is an instance of

LCDS-A for a particular reward scheme and quality metric.
DOR The Dynamic WithOut Rewards algorithm [22]
SWR The Static With Rewards algorithm
SOR The Static withOut Rewards algorithm

Information 2023, 14, 332 6 of 24

3.2. Problem Formulation

In the following, we discuss more formally the problem of local community detection
in graph streams with anchors. Given a node A called the anchor, the network G and the
streaming source s(t), our aim is to discover the community C which includes A. As the
network evolves, the community C may also change. Our goal is to uncover the community
of the anchor during the evolution process. We assume that the anchor is of particular
importance to the community to which it belongs, due to external knowledge. Thus, it acts
as a reference point for this community, i.e., the anchor in a sense defines the community to
which it belongs.

To minimize the avalanche effect (the avalanche effect corresponds to the phenomenon
where communities can experience significant deviations compared to what a static algo-
rithm would compute in each instance of time) [30], we proposed to limit the community
update only to a region of influence around the anchor. The influence range AR of anchor
A, is the set of nodes in the ball of radius R with the anchor A being the center of the ball.
This means that within the influence range all nodes with shortest paths to the anchor A of
length ≤ R are included. For example, A1 contains the anchor as well as all its adjacent
nodes. In general, a high value for the influence range would increase the requirements for
the process, as a larger network area is explored. Internal, boundary and external edges
with respect to the influence range are similarly defined to the case of the community.

Moreover, to identify the most stable anchor community, we applied a node reward
method. That is, for each update, we rewarded the edges in the anchor’s influence range
by increasing their weight. For example, in the case where R = 1, all edges of the anchor
as well as all edges between nodes in N(A) are rewarded a weight in order to strengthen
the ties of the anchor to its adjacent nodes. This procedure leads to the identification of a
community that is “more” centered around the anchor. In the case of A1, we may choose a
very simple rewarding scheme that simply sets the weights of the edges of the anchor to be
equal to a constant larger than 1. For instance, in case we choose this reward to be 2 then all
incident edges of the anchor get a weight equal to 2 (recall that graph is unweighted, that
is, it is assumed that all edges have weight 1). In addition, all the edges between nodes that
are adjacent to the anchor receive the same reward, creating in this way weighted triangles
around the anchor. An example of this process is shown in Figure 2.

Our proposed framework uses a quality metric to guide the incremental construction
of the anchor’s community. The one we chose based on its simplicity and performance was
the fmonc, which is defined as the ratio of intra-community edges to all edges with at least
one endpoint in community C [31]:

f (C)monc =
2kC

in + 1

(2kC
in + kC

out)
α

,

where kC
in and kC

out are the internal and boundary degree of community C, and α is a positive
real-valued parameter, controlling the size of the communities, i.e., lower α values allow
larger community sizes.

A part of the proposed algorithm uses a static algorithm as suggested in [22], (see
Algorithm 1). This greedy algorithm searches for new community members in the neigh-
borhood of the current community. Each time, utilizing the corresponding quality measure,
the fitness score f Ci is estimated using the internal and boundary degree of the community.
The node that produces the largest increase in the fitness score is chosen for addition in
the community. When a new node u is added to Ci−1, a new community Ci is assigned
to the node ui, for i > 0, and as a consequence, regarding the size of the new community
it holds that |Ci| = |Ci−1|+ 1. For each node ui, the pointer i declares the order in which
the node u was added to the community. For example, C0 is the community that contains
only the anchor A with fitness score f C0 , while C1 is the community that results from
the addition of the chosen node u1 to community C0. Lastly, the corresponding fitness
score will be f C1 , with f C1 > f C0 . Table 2 depicts this process. The final community C

Information 2023, 14, 332 7 of 24

identified through the preceding process is the community Cn, n ≥ 0, such that no node can
be added to Cn resulting in the increase of its fitness score. This incremental construction
of C defines a sequence of communities C0, C1, . . . , C = Cn, termed incremental community
sequence henceforth.

Figure 2. Applying rewards for local community detection with anchors in case R = 1: (a) The
initial rewards around anchor is 2. (b) The edge (2, 3) appears in the streaming source within
the influence range of the anchor. The rewards are updated accordingly. (c) The deletion of edge
(2, 4) appears in the streaming source within the influence range of the anchor and the rewards are
updated accordingly.

Algorithm 1 Static algorithm [22]
Input: G(V, E), A

C ← {A}
f itnessmax = 0
nodemax = 0
while add new nodes in C do

for u ∈ N(C) do
if f itnessscore(C ∪ {u}) ≥ f itnessscore(C) then

f itnessmax ← f itnessscore(C ∪ {u})
nodemax ← u

end if
end for
C ← C ∪ {nodemax}

end while

Information 2023, 14, 332 8 of 24

Table 2. The incremental community sequence.

Sequence of added nodes A u1 u2 . . . un

Incremental Community Sequence C0 C1 C2 . . . Cn

Internal edges of Ci kC0
in kC1

in kC2
in . . . kCn

in

Boundary edges of Ci kC0
out kC1

out kC2
out . . . kCn

out

Fitness scores in ascending order f C0 f C1 f C2 . . . f Cn

3.3. Local Community Detection in Graph Streams with Anchors

In this section, we propose the Local Community Detection in graph Streams with
Anchors (LCDS-A) framework. From a bird’s eye view, this framework first applies a
reward scheme in the influence range of the anchor and then Algorithm 1 is used. When an
edge is inserted/deleted that falls in AR or C, then the rewards and/or the fitness scores
are updated accordingly. At the next step, we check if some nodes should be removed from
C and the fitness scores are further updated. In the last step, we check if the batch b of the
inserted/deleted edges is completed. If yes, then we scan the fitness score sequence and
apply Algorithm 1, otherwise, the next stream update is processed. The basic (five) steps
of LCDS-A, given an initial graph G0, are shown in Figure 3. In case the initial graph G0
is empty (no edges), the first two steps are irrelevant. In this case, the initial community
contains only the anchor A at t = 0.

Figure 3. The general framework of the proposed approach LCDS-A for graph streams, using an
initial graph G0.

Since the anchor A is by definition of great importance to its community C, the goal
of LCDS-A is to further strengthen its participation in C. In this way, we expected that
local community detection algorithms would provide better results. In the following, we
make the convention for internal edges (u, v) in the community C, that u has been inserted
in the incremental community sequence of C earlier than v based on their fitness scores.
Similarly, for a boundary edge (u, v) of community C, we make the convention that u ∈ C
while v /∈ C. The proposed framework is divided into two phases; the initialization phase
and the streaming phase.

Initialization phase: Initially, in Step 1, we attach the rewards in the influence range
AR of the anchor by using a simple BFS traversal of all nodes at distance R. Then, in Step 2
we apply the static local community detection algorithm to find the community C that
contains the anchor A. In case G is initially empty, community C consists only of the anchor
while Ki,in , Ki,out and f are initialized to 0. In this case, Steps 1 and 2 are omitted.

Streaming phase: In Step 3 of the framework, a stream update a is applied. This
update can be either an insertion or a deletion of an edge. If a occurs in the anchor’s
influence range then: (1) the influence range must be recalculated and (2) the edge rewards
are updated according to the reward method. If the updated rewards affect the internal
and/or the boundary edges of the community, then the fitness scores in the incremental
community sequence must be updated by recalculating the internal kCi

in and boundary kCi
out

Information 2023, 14, 332 9 of 24

values used in the computation of the fitness score (see Section 3.2). We considered two
cases based on how the weight of the affected edges has changed due to the stream update
a. In the first case, the weight of the affected edge (u, v) is decreased. In this case, if the
affected edge is internal, we keep node v in the list nd (This is a list of candidate nodes for
removal from C), becoming a candidate node for removal from community C. Node u is
not selected as a candidate because after the weight decrease all kCi

out will be decreased, from
the moment where u was inserted in the incremental community sequence up until v is
also inserted in this sequence. As a consequence, all the F1 scores will be increased and the
ascending order of fitness scores in the incremental community sequence will be maintained
up until v. Thus, node v is selected as a candidate because after weight decrease all kCi

in will
be decreased, from the moment where v is inserted in the incremental community sequence,
meaning that the order of fitness scores of Ci−1 and Ci may be violated (this means that in
the sequence of nodes in increasing order based on the fitness score, if the candidate node
was inserted in i-th order then the fitness score of Ci−1 has become larger than the fitness
score of Ci, which is a clear violation of the imposed increasing order in fitness scores), e.g.,
f Ci−1 ≥ f Ci , and needs to be checked. If the affected edge is boundary, then for the same
reason as mentioned above, the increasing order of fitness scores will be maintained and we
do not need to insert the internal node u in nd list as a candidate node for removal from C.

In the second case, if the weight is increased, regardless of whether the affected edge
(u, v) is internal or boundary, we insert node u in the list nd, unless u is the anchor A, in
which case nothing happens. u is selected as candidate node because after the weight
increase in (u, v), from the time u was inserted in the incremental community sequence up
until v was also inserted in the sequence (in case (u, v) is an internal edge), all kCi

out will be
increased. As a consequence, the sequence of fitness scores of Ci−1 and Ci communities
may be violated, e.g., f Ci−1 ≥ f Ci , and they need to be checked.

Irrespective of whether a occurs or not in the anchor’s influence range, we should
also check if a occurs in the community of the anchor and update the fitness scores of
communities of the affected nodes, f Ci for i ≥ 1, since C may extend beyond the influence
range. If a corresponds to a deletion of an internal edge (u, v) of C, we insert node v in the list
nd. If a corresponds to an insertion of an internal or boundary edge (u, v), we insert node u in
the list nd, unless u is the anchor A, in which case nothing happens. The way we select the
candidate nodes for removal from C is exactly the same as mentioned previously in Step 3.

In Step 4, we check for each candidate node uj in nd whether the community Cj has a
fitness score that violates the increasing order, that is f Cj−1 ≥ f Cj . In this case, the node uj
is removed from community C and Cj is also removed from the incremental community
sequence. Then, we update the fitness scores of all succeeding communities f Ci , for i > j.
We insert in the list nd all the neighbours of the removed node uj that belong to community
C and that have been inserted in the incremental community sequence later than uj. We
do not need to check neighbours that have been added earlier than uj because they were
added to C without taking into account uj. The whole process is repeated until there are no
neighbors affected by these changes and the list nd is empty.

Finally, in Step 5, we check whether a batch of b stream updates has been processed.
b counts the total number of stream updates that have occurred in the influence range of
the anchor or in its community. Thus, stream updates that do not affect the community
of the influence range are discarded and not counted within the batch. When a batch of
stream updates has been completed, we first check whether the incremental community
sequence is valid, that is the fitness scores are in ascending order. If not, then we remove all
nodes from this sequence from the leftmost violation to the end. For instance, given the
sequence f C1 ≤ f C2 ≤ f C3 ≥ f C4 ≤ f C5 , we observe a violation between i = 3 and i = 4,
and thus all nodes from u3 to u5 should be removed from C. After the removal of nodes,
the community C contains only three nodes, the anchor A, u1 and u2. Then Algorithm 1 is
applied to the current community of the anchor, in order to add new node members in the
community by extending the incremental community sequence. We must note at this point
that the more frequent we run the static algorithm, the more accurate the result. However,

Information 2023, 14, 332 10 of 24

the computational cost is also higher. Assuming that G0 is empty (Steps 1 and 2 are not
shown), the pseudo-code of LCDS-A is presented in Algorithm 2.

Algorithm 2 The pseudo-code of the proposed LCDS-A framework
Input: G(V, Et), A, R, b

C ← {A}
AR ← set of nodes within distance R from A
k0,in ← 0
k0,out ← 0
f C0 ← 0
for (u, v) ∈ Et do

Step 3:
if (u ∈ AR) ∨ (v ∈ AR) then

update AR and w(u, v) according to RW . RW: ReWard scheme
for e = (uI , vI) ∈ C and (uI , vI) 6= (u, v) do

if w(e) affected by RW then
update ki,in, ki,out and f Ci

if w(e) is decreased and vI ∈ C then
nd ← vI

else if w(e) is increased and uI 6= A then
nd ← uI

end if
end if

end for
end if
if (u ∈ C) then

if (u, v) is deleted and (v ∈ C) then
update ki,in, ki,out and f Ci

nd ← v
else if (u, v) is inserted and u 6= A then

update ki,in, ki,out and f Ci

nd ← u
end if

end if

Step 4:
while nd 6= ∅ do

uj ← extract a node from nd

if (f Cj−1 ≥ f Cj) then . f : the fitness score
C ← C− {uj}
update ki,in, ki,out and f Ci

for v` ∈ N(uj) do
if (v` ∈ C) ∧ (` > j) then . Check if v` added to C later than uj

nd ← v`
end if

end for
end if

end while

Step 5:
if # of stream updates that belong to C or AR is equal to b then

Remove all nodes from the leftmost violation to the end in the incremental com-
munity sequence

end if
Run the static Algorithm 1 to add new nodes in C

end for

Information 2023, 14, 332 11 of 24

Time Complexity

The complexity of the DOR method, based on the analysis of [22], is O(n2d), where
d is the mean degree of the nodes in graph G and n is the size of the community of the
anchor. Initially, we provide a very crude worst-case analysis of LCDS-A based on N and
M, which are the number of nodes and edges of the graph respectively (M, n and d are
quantities that change as the graph evolves—we have assumed that nodes do not change
although many of them can have zero degree. However, asymptotic notation allows us
to be more relaxed with these values assuming that they do not change much during a
period of time. Indeed, we can safely assume that during a period of one batch the mean
degree d as well as the number of edges M change only by a multiplicative constant. The
size of the community n can only drop between two successive calls to the static algorithm
(Step 5 of LCDS-A) and as such, n is an upper bound). DOR has a worst-case complexity of
O(N3), since d, n ≤ N. For each stream update (edge insertion/deletion) in the anchor’s
influence range/community, we update all rewards in time O(M), since in the worst-case
we will have to update the rewards of all edges in the graph. Then, we update the new
fitness scores in time O(N2), since for each node in the community we need to calculate the
internal and the boundary edges. For each update of a fitness score, if the node remains in
the community then no other node is affected. If, on the other hand, the node is removed
from the community then all its neighbors must have their fitness score recalculated. If a
node is removed, then it is not inserted again in the community unless we are at Step 5.
This, implies an O(N + M) steps for these recalculations of fitness scores. This means
that a crude upper bound of the complexity of each update that does not evoke Step 5,
is O(M + N2). In case, Step 5 is evoked, then the cost of the update is increased by an
additive O(N3) since the bottleneck in this step is the use of the DOR algorithm. Thus, in
total we get a complexity of O(bN2 + N3) for a batch of b stream updates, since M < N2.

The above analysis is very pessimistic since the size of the community is expected to be
much less than the size of the graph (n << N) and the internal computation of the LCDS-A
algorithm is also expected to be less intense than the one implied above. A better estimation
(although still pessimistic) can be achieved by using more graph-related parameters in the
time complexity of each update. To this end, as already stated, during a batch of b updates,
Algorithm 1 is executed in O(n2d) time. Moreover, the time we need in order to calculate
the rewards of the affected edges in the influence range of the anchor A, in the worst case,
is O(bdR). This is because during the b updates, the rewards will change in a ball of radius
R around the anchor of size at most dR—for R > 1 this is a clearly pessimistic upper bound
since it assumes no common neighbors between nodes. In addition, the endpoints of some
edges that belong to C will be affected and the corresponding fitness scores should be
recalculated, as well. This can be achieved in O(bd), since for each of the b stream updates,
we need O(d) time to recalculate the fitness scores of the neighbors of the affected nodes.
Assuming that the average number of violations per update is 1 (This implies that during a
batch, the community will lose b nodes. Of course, in the worst-case, in one stream update
all nodes may be removed from the community. However, our experimental results imply
that the average number of violations per stream update is lower than 1), then, for each
node removal from C, d new neighbours of the removed node should be inserted in the nd
list, and for each one the fitness score will be estimated in O(d). Thus, for d neighbours, the
total time is O(d2), and for all b updates in a batch, the time we need is O(bd2). In total, the
time complexity is O(b(dR + d2) + n2d) given the plausible assumptions we made. This
means that a rather pessimistic upper bound per stream update is O

(
dR + d2 + n2d

b

)
.

Regarding the other three baseline algorithms, the static without rewards scheme
requires O(bn2d) for a batch of stream updates, since the static algorithm is applied for each
stream update. The static with rewards scheme requires O(bd(n2 + dR−1)), since besides
the time required for applying the static algorithm, it requires O(bdR) additional time to
calculate the rewards after each update. Finally, the dynamic without rewards requires
O(d(bd + n2)) with a reasoning similar to the analysis of LCDS-A. Apparently, LCDS-A

Information 2023, 14, 332 12 of 24

is faster than the static baseline algorithms as it is expected but slower than the dynamic
algorithm without rewards due to the maintenance of the rewards in the influence range.

4. Experiments
4.1. Experiment Design

In this section, we experimentally compared different baseline approaches with the pro-
posed framework LCDS-A, on both synthetic and real datasets. The baseline approaches are
(a) DOR (Dynamic withOut Reward), as proposed by Zakrzewska and Bader [22], (b) SOR
(Static withOut Reward) and (c) SWR (Static With Reward). Regarding the approaches
SOR and SWR, each time a stream update arrives, then Algorithm 1 is applied, incurring
a rather large computational cost. In addition, for the SWR method, before we applied
Algorithm 1, the weights of the edges in the influence range were recalculated.

LCDS-A is a general framework where we can apply various reward schemes and
quality metrics. In our experiments, we used a specific instance of the general framework
in terms of reward and quality metric. In order to differentiate this instance from the frame-
work LCDS-A, we used the term DWR (Dynamic With Reward). First, we experimented
with synthetic datasets. We used a representative node as an anchor A for each experiment
with the synthetic datasets, which was determined by its degree. We experimented with
different anchors of low, medium, and high degree when compared to the average degree
of the network when the streaming process was ended (the last instance of the graph).
Thus, a high degree node is a node that has degree considerably larger than the average
degree at the last instance. Second, with respect to the real datasets, we gave an average F1
score for several important nodes and, consequently, certain anchor nodes A were chosen
based on external knowledge about each dataset.

In the experimental evaluation of DWR, we assumed that the radius of the influence
range was R = 1. We chose this value as a good compromise between efficiency and
effectiveness. The anchor A was a single node and the reward scheme was very simple
since we only assigned a chosen reward to all edges in A1.

Finally, regarding the size b of the batch of stream updates, after extensive experimental
evaluation we concluded that b should be analogous to the current size of the community
or influence range. More precisely, the static algorithm was executed only when the size of
stream updates b that belong to AR or C were greater than a percentage of the current size
of C or AR. In this way, we gave an advantage to the community that suddenly loses a lot
of members after a stream update.

4.2. Datasets
4.2.1. Synthetic Datasets

The synthetic datasets we used in our experiments were generated by RDyn [32],
which is capable of generating dynamic networks that respect known real-world network
properties, along with time-dependent ground truth communities with adjustable qual-
ity. Both merging and splitting of communities is allowed. The generator contains two
important user-defined parameters. The first is the number of nodes of the generated
dynamic network and the second is the number of iterations. Each iteration consists of a
batch of stream updates (insertion/deletion of edges) and the number of these updates is
not necessary the same for each iteration. For our experiments, we used only the anchor
as the initial graph, followed by a full streaming procedure. Moreover, we used three
different datasets generated by the RDyn generator. The basic properties of these datasets
are described in Table 3.

Information 2023, 14, 332 13 of 24

Table 3. The basic properties of the synthetic datasets used.

Dataset Nodes Mean Degree Iterations Final Edges Stream Updates

SD1 500 64 1000 1680 41,433
SD2 1000 54 1000 6226 50,871
SD3 5000 55 1000 25,590 251,107

4.2.2. Real Datasets

The real datasets we used for our experiments are datasets that can provide us with
side information in the form of metadata about the meaning of certain entities. More
specifically, the first dataset we used in our experiments [33] consists of nodes representing
employees of a company, while edges represent email communications between them. As
side information, we already knew to which department each employee belongs and what
position they hold there. We were interested in understanding the communication patterns
of a specific node, e.g., a manager, based on the company email communication. We could
apply local community detection for that node (manager), as the seed node, to identify the
different groups of people she communicates with most frequently. This could reveal which
departments or teams the manager interacts with most often, as well as any individuals
who may be particularly influential or well-connected within those groups.

For example, we might find that the manager is part of a local community that includes
other managers and executives within the company, as well as members of their direct
team. Alternatively, we might discover that the manager is more closely connected to
employees in certain departments, indicating that they may have a more specialized or
targeted role within the organization. Based on these insights, we could develop strategies
to improve communication and collaboration within the company, such as encouraging the
manager to build stronger relationships with certain individuals or groups, or facilitating
more cross-functional collaboration between departments or teams.

The second real-world dataset we used in our experiments is a terrorism dataset [34].
More specifically, the nodes represent terrorists and the edges between them represent
attacks involving both endpoint nodes of each edge. As side information, we obtained the
position of each terrorist in a terrorist group, e.g., the bomber, and the possible relationships
between them. For instance, in the context of a dataset that describes terrorism in the
last decades, if we chose a specific node such as “bomber” and applied local community
detection, it could help us identify the different groups and networks that the bombers
belong to, as well as the key players and influencers within those groups. This could
potentially reveal important insights about the organization, structure, and tactics of
terrorist groups. For example, by identifying the local communities that include bombers,
we may be able to determine which groups are most active in carrying out bombings
and whether there are any patterns or trends in their activities (such as targeting specific
locations or types of targets).

Additionally, by analyzing the connections between bombers and other members
of their communities, we may be able to identify potential collaborators, recruiters, or
facilitators, which could be useful for law enforcement and counter-terrorism efforts. The
basic properties of these datasets are described in Table 4.

Table 4. The basic properties of the real datasets.

Dataset Nodes Actions

terrorism 271 756
email−Eu−core 1006 16,706

Information 2023, 14, 332 14 of 24

4.3. Evaluation Metrics

To evaluate our proposed framework, we compared the results of our community
detection with the ground truth communities generated by the synthetic dataset generator,
in different time instances. However, a valid argument (to some extent) against using
the synthetic generator’s ground truth communities is that the detected community is
influenced by the anchor. To this end, on the one hand, we tried to set up the generator
so that the communities were not as intertwined, and on the other hand, we were more
interested in comparing the methods to each other than in looking at the values of the
metrics compared to the ground truth. Regarding the real networks, we compared our
results, in each timestamp, with the same ground truth community as given from our
dataset. The evaluation metrics that we used were the standard precision, recall, and F1
score [35]. Precision is the ratio of elements found correctly to the total number of elements
found. Recall is the proportion of relevant elements that were successfully retrieved. The F1
score is the harmonic mean of precision and recall. The harmonic mean is used instead of
the simple average because this way the extreme values are penalised. The F1 score has been
used extensively in the context of clustering and community detection. This is achieved
by comparing to the ground truth communities, to measure how well the algorithm has
grouped together items that share common characteristics or features. The F1 score is
utilized as an evaluation metric in a lot of research regarding local and global community
detection algorithms [28,36–40] and has also been used in large related surveys [30] as a
low computational cost evaluation metric. The Jaccard coefficient [41] is another metric
that could also be used in order to evaluate the detected communities. However, since the
F1 score is linearly related [42] to the Jaccard coefficient, we chose the former for simplicity
in presenting the results.

4.4. Experiment Results
4.4.1. Experiments on Synthetic Datasets

Our experiments were conducted on an Intel Core 2, 9 GHz i7 processor with 16 GB
memory. In addition, we used Python to implement the methods and we made use of
the NetworkX, igraph, and numpy libraries. To begin with, for all datasets, experiments
were conducted using several nodes (low, average and high-degree) and we present the
most representative results. Regarding the figures, the values on the x-axis represent the
number of iterations. The graph generator returns the graph partition after one or more
iterations, and in each iteration the number of stream updates is not the same. As a result,
each interval on the x-axis consists of the same number of iterations but a different number
of stream updates. In the first experiment, we compare DWR (Dynamic With Rewards),
with DOR using several nodes and six different rewards (1.2, 1.5, 2, 3, 5 and 10). In each
experiment, the static algorithm was activated when the size of the batch of stream updates
b that occur in the influence range or the community C was greater than b = 30, 50, 70 or
90 percent of their current size.

Analyzing the experimental results of SD1 dataset, in Table 5, we observe that all six
rewards outperform DOR [22]. More precisely, while we increase the reward, we observe
that the F1 score is increased as well, and the maximum difference is achieved when the
reward is equal to 3. On the other hand, when the reward value is greater than 3, we see
that the average F1 score is decreased. This happens because the weight difference between
the influence range area and the rest of the graph is too high and as a result, when the static
algorithm runs, it does not add any new nodes to the community. In addition, with respect
to the batch size b, we do not observe any significant changes in the results. We realise
some fluctuations regarding the rewards and a slight increase for DOR until batch is equal
to 70%.

Having shown that DWR is better than DOR as far as F1-score is concerned, in Table 5
we also report results concerning execution time. In the third column, we represent the
average execution time of DOR for each batch. Moreover, the last column shows the
average execution time of DWR with multiple rewards for each batch. It is obvious that

Information 2023, 14, 332 15 of 24

in both methods, while the batches are increasing the execution time is decreasing. This
occurs because when the batch is low, then Algorithm 1 is called more times and this is
time consuming. Comparing the third with the last column of Table 5, we observe that
the average execution time of DWR with multiple rewards is slightly higher than DOR,
and the percentage difference between these two methods is almost 13.5%. However, the
F1-score results of DWR is almost 5.5% better in average than DOR and for certain reward
and batch choices, the results of DWR are much better than DOR. Similar experiments were
conducted for the next datasets and for this reason we used a batch equal to 30%, since it is
the value that provides the best results.

Table 5. Average F1 scores and execution time of SD1 for multiple rewards (1.2, 1.5, 2, 3, 5 and 10) and
batches. For the batch, we provide only the percentage.

DOR Time 1.2 1.5 2 3 5 10 Time

b = 30% 0.709 37.2 s 0.736 0.748 0.764 0.777 0.767 0.733 44.7 s

b = 50% 0.71 32.8 s 0.73 0.742 0.76 0.776 0.767 0.73 39.5 s

b = 70% 0.714 31.9 s 0.725 0.741 0.761 0.771 0.76 0.731 35.6 s

b = 90% 0.705 30.8 s 0.723 0.741 0.755 0.767 0.756 0.725 33.6 s

For the second synthetic dataset, SD2, we used a reward equal to 2, because for
values greater than 2 our F1 score was decreased, and we utilized the static algorithm
when b is 30%. Figures 4 and 5 present our results using nodes with high and average-
degree respectively as anchors. In this experiment, we compared DWR with DOR and
two baselines, SWR and SOR. The F1 score in Figure 4 exemplifies the superiority of our
method. The average F1 score shows that using rewards is better by an additive 8% when
compared to DOR. In addition, SWR is better than SOR by 8% as well. It is remarkable
that our method outperforms SOR, and this result shows the significant outcome we can
achieve by utilizing rewards.

DOR DWR SWR SOR

b = 30% 0.731 0.814 0.845 0.764

Figure 4. Using a node with high degree as an anchor in the synthetic dataset SD2. The tuple at the
bottom presents the average F1 score for the different methods.

Information 2023, 14, 332 16 of 24

DOR DWR SWR SOR

b = 30% 0.512 0.652 0.677 0.465

Figure 5. Using a node with medium degree as an anchor in the synthetic dataset SD2. The tuple at
the bottom presents the average F1 score for the different methods.

Looking in more detail at the results of recall and precision in Figures 6 and 7, respec-
tively, we realise that the fluctuations in F1 score are due to the low recall. More precisely,
the DOR algorithm, on average, has low recall because the detected community contains
fewer nodes than those from the ground truth. Conversely, when we utilized rewards with
either the Dynamic or the Static algorithm, the detected community contains an average
of 81% of nodes of the ground truth community. In addition, we see that precision is
almost equal to 1 for all methods, after the first few iterations. In Figure 5, working with an
average-degree node, we observe a lot of ups and downs in the F1 score in all methods,
except for in the proposed one. This happens because in the first third of the graph stream,
the recall for DOR and SOR is very low and, at the same time, precision fluctuates wildly.
At the beginning of the graph stream, until iteration 541, only a few edges are connected to
the anchor and for this reason the values of the evaluation metrics are low, except SWR and
DWR, which give better results from iterations 335 and 411, respectively. To summarize,
the proposed method, as well as the static method with reward, both outperform the other
two because on average the recall value is much better.

In the third synthetic dataset, SD3, (Figure 8) a low-degree node was used and, for this
reason, until iteration 600, we get low F1 scores because there are a few edges connected to
the anchor. Beyond iteration 600, we observe a significant increase in the F1 score for almost
all methods, except SOR, and at the end DWR again outperforms the DOR method. At
this point we need to make two observations. First of all, after iteration 600, our proposed
method reaches an F1 score of nearly 98%, which is much better than the other three
approaches. Secondly, the average F1 score for the SOR method is only 28.5%, and this
occurs because without reward and with the combination of many edge deletions, the SWR
method cannot reach the performance of the other three methods. Looking more carefully
at the Figures 8 and 9, we observe the differences when we use nodes that have few and
many connections respectively, from the beginning of the experiment. For instance, in
Figure 9, the F1 score is quite high for all methods. The observed fluctuations for DOR,
and especially for SOR, occur due to the extremely low recall. In these two methods,
communities suddenly lose a lot of members and, as a consequence, recall is decreased.
Regarding the precision of the DWR method, there are a lot of fluctuations in the first half of
the stream updates. On the other hand, in the second half, precision is consistently higher

Information 2023, 14, 332 17 of 24

than 90% and for this reason F1 shows a spectacular improvement. The most remarkable
result in all the above experiments is that the proposed method outperforms the other three.
Last but not least, on average, the SOR method produces the worst results in recall in all
the experiments. As a consequence, the F1 score is low and, comparing it with the SWR
method, it gives us an obvious explanation about the prominence of the reward method.

Figure 6. Using a node with high degree as an anchor in the synthetic dataset SD2.

Figure 7. Using a node with high degree as an anchor in the synthetic dataset SD2.

Information 2023, 14, 332 18 of 24

DOR DWR SWR SOR

b = 30% 0.441 0.541 0.546 0.285

Figure 8. Using a node with low degree as an anchor in the synthetic dataset SD3. The tuple at the
bottom presents the average F1 score for the different methods.

DOR DWR SWR SOR

b = 30% 0.765 0.783 0.774 0.774

Figure 9. Using a node with high degree as an anchor in the synthetic dataset SD3. The tuple at the
bottom presents the average F1 score for the different methods.

Information 2023, 14, 332 19 of 24

4.4.2. Experiments on Real Datasets

The experiments on real datasets using our proposed framework are quite promising.
For these datasets, as stream updates we considered only insertions of edges. Moreover,
both real datasets contain multiple edges and, in addition, the email dataset is directed. For
our experiments, we pre-processed these datasets in order to remove multiple edges and
make all edges undirected.

In this case, we have two types of experiments. First, we compared the DWR with
the DOW method, for rewards 1.5 and 2 and for several different nodes. We did not use
other rewards, as in synthetic datasets, because for rewards greater than 2 we did not
observe significant changes. Second, we compared four different approaches to include as
many alternatives as possible to identify the community of anchors. These approaches are:
(1) SOR, (2) SWR, (3) DOR, and (4) DWR, which is our proposed method. We present the
results of all these approaches in terms of the F1 score from experiments with real datasets
considering different anchor nodes. When metadata about specific nodes was given, we
used these nodes as anchors. In addition to these nodes, we also used low-degree nodes,
average-degree nodes, and high-degree nodes in each dataset to test the behavior of our
framework. Regarding the figures, the values on the x-axis represent the number of stream
updates (inserted edges) while the y-axis corresponds to the quality metric used for the
detected community when compared to the ground truth.

In the first experiment (Figure 10), using the email-EU-core network, we compared
our proposed method with DOR and we applied the static algorithm when the batch was
30% of the current size of the community or influence range area. In this case, we gave the
average of several nodes and for rewards equal to 1.5 and 2. As we can see, we achieved the
best F1 score results when the reward was equal to 2. There is more than a 10% difference
between DOR and DWR. Based on the analysis of the email-EU-core network, the chosen
nodes for the experiments are the high, average, and low degree nodes.

DOR 1.5 2

b = 30% 0.493 0.57 0.60

Figure 10. Average F1 score of several nodes as anchors, for high, average and low node degree, in
the email dataset. The tuple present the average F1 score of the Dynamic, the Dynamic with reward
1.5 and the Dynamic with reward 2.

Information 2023, 14, 332 20 of 24

In Figure 11, the anchor is retrieved from metadata [43], which is the manager of
a department that is of high importance. On average, DWR outperforms DOR and in
addition, both static methods work better. Analyzing the dataset, we observe that our
anchor (manager) sometimes sends emails in several departments (other communities) and
as a consequence, DOR and DWR lose the community coherence while a lot of nodes leave
the community. Furthermore, when the batch is reached and the static algorithm is called,
the above methods cannot add any new nodes because the fitness score of the already-
existing community cannot be increased. For this reason, we have some fluctuations in
recall and, as a consequence, in F1 score. On the other hand, the two static algorithms, SOR
and SWR, due to the fact that they run from scratch, can add many nodes in C. Thus, the
F1 score for the static methods is consistently higher with an average of 91.5%.

DOR DWR SWR SOR

b = 30% 0.736 0.780 0.915 0.915

Figure 11. Using a node of high importance from metadata of the email dataset as an anchor. The
tuple at the bottom presents the average F1 score for the different methods.

Regarding the experiments in the terrorism dataset, first we present the average of sev-
eral nodes (terrorists) that have the most important role in a terrorism action (e.g., bomber,
foot soldier). In addition, we use a reward equal to 2. In Figure 12 we clearly observe that
the proposed method outperforms DOR with almost 14% difference. Furthermore, the
results are almost the same when comparing the two static methods. In Figure 13, we used
as an anchor a terrorist that had the role of the foot soldier. A foot soldier, e.g., suicide
bomber [44], has one of the most important roles in a terrorism organisation. One more
time we see that the proposed method produces the best results. More precisely, DWR
outperforms the other three methods. Both static methods work better than DOR, and
SOR is slightly better than SWR. In this case, we need to point out that, in real networks,
the SOR method gives at least the same results with SWR, compared to synthetic graphs
where SWR is always better than SOR. The reason is, as mentioned above, that in synthetic
datasets there are both insertions and deletions. The rewarding scheme, when a deletion
cause the break of the community coherence, helps the static algorithm to add nodes in C
and as consequence to improve the recall and the F1 scores.

Information 2023, 14, 332 21 of 24

DOR DWR SWR SOR

b = 30% 0.582 0.725 0.742 0.743

Figure 12. Average of several nodes of high importance as anchors in the terrorism dataset. The tuple
at the bottom present the average F1 score for the different methods.

DOR DWR SWR SOR

b = 30% 0.657 0.741 0.684 0.696

Figure 13. Using a node of high importance from metadata of the terrorism dataset as an anchor. The
tuple at the bottom presents the average F1 score for the different methods.

5. Discussion

The experimental results of Section 4.4 generally show that the LCDS-A framework
improves community detection results aggravating slightly the time efficiency. More
specifically, several experiments were conducted with different rewards and batch sizes.
Our goal was to present the most significant results in terms of the F1 score. More precisely,
we focused on the differences in F1 score between DOR and DWR methods. However, in
most of the cases, for both synthetic and real datasets, the proposed framework outperforms

Information 2023, 14, 332 22 of 24

even the static algorithms, in terms of the F1 score. On the one hand, these results indicate
the importance of giving an extra reward around the anchor’s area. On the other hand, it
seems that when the community changes slightly between successive updates, it is better
to incrementally update the community rather than recomputing it from scratch. Of course,
this is not the case when large changes happen at the vicinity of the anchor.

Fmonc is the metric we used in order to measure the quality of community C and the
one that was presented in our experiments. However, for comparison purposes we also
used conductance as a quality metric [45]. The results of the experiments with conductance
were the same as Fmonc in the best case. For this reason, only the experiments with Fmonc
are shown in this paper.

Furthermore, different batches and rewards were used. However, the most significant
results in F1 score for our datasets were obtained with a batch equal to 30% of the size of the
community and a reward equal to 2. Indeed, on the one hand, due to the fact that the static
algorithm is triggered less times when the batch size is increased, the resulted communities
exhibit low percentages in terms of precision, recall and F1-score. On the other hand, our
algorithm is not so time consuming because the static algorithm is called smaller number
of times. In addition, in our experimental evaluation, the influence range was set to 1, since
otherwise, the process becomes more time consuming combined with lower F1 scores in
most of the cases. Better F1 scores were obtained for larger influence ranges in the case
when the anchor was in the periphery of a sparse network. In this case, the larger influence
range did not have a considerable impact on the time efficiency since the network is sparse
and at the same time it identified a non-trivial community around the anchor.

6. Conclusions

Dynamic local community detection is an area of research that has attracted the interest
of scientists in recent years. In the present work, we focused on the discovery of local
communities that contain important nodes called anchors. Our goal was not only to identify
such communities but also to track their evolution over time as new edges are inserted
and/or deleted in a network. To achieve this, we proposed a multi-step framework that
updates the anchor’s community for each incoming edge change in the anchor’s influence
range or community area. The influence range was used to minimize the avalanche effect.
To determine the most stable anchor community, we proposed a node reward method. That
is, at each update, we suggested rewarding the edges closer to the anchor by increasing
their weight.

An experimental evaluation of the proposed framework was performed on three
different synthetic and two real datasets. We used a rather simple but quite efficient reward
scheme and we compared the results with the case where no reward method was used.
Our results show that our method outperforms the dynamic method without rewards in
terms of recall, precision, and F1 score.

From a practical perspective, the proposed approach can help researchers discover
useful features of the networks they study. For instance, the suggested approach can be
applied to co-purchase networks in order to uncover buying habits. This could lead to
smarter advertising techniques and improved targeted marketing. Another example of the
practical application of the suggested approach could be politics. For instance, the LCD-A
framework could reveal the trends in a network of politics collaborations. Apart from these,
another type of network that our proposed approach could be useful for is that of medicine
co-prescription. Having patients’ demographics and medical history as side information,
our framework could uncover the future medical problems of specific anchor patients.

We intend to further extend this work along the following axis: (1) extended exper-
imental evaluation of more rewarding schemes that take into account the edge history,
possibly using ageing mechanisms; and (2) extensive tuning of the different parameters of
the reward schemes.

Information 2023, 14, 332 23 of 24

Author Contributions: Conceptualization, K.C., G.B. and K.T; methodology, K.C., G.B. and K.T.;
software, K.C.; validation, K.C.; formal analysis, K.C. and K.T.; investigation, K.C. and G.B.; resources,
K.C.; data curation, K.C.; writing—original draft preparation, K.C., G.B. and K.T.; writing—review
and editing, K.C. and K.T.; visualization, K.C.; supervision, G.B. and K.T.; project administration, K.T.;
funding acquisition, K.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Re-
searchers” (Project Number: 3480).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
2. Veldt, N.; Klymko, C.; Gleich, D.F. Flow-based local graph clustering with better seed set inclusion. In Proceedings of the 2019

SIAM International Conference on Data Mining, Calgary, AL, Canada, 2–4 May 2019; pp. 378–386.
3. Bian, Y.; Ni, J.; Cheng, W.; Zhang, X. The multi-walker chain and its application in local community detection. Knowl. Inf. Syst.

2019, 60, 1663–1691. [CrossRef]
4. Bian, Y.; Luo, D.; Yan, Y.; Cheng, W.; Wang, W.; Zhang, X. Memory-based random walk for multi-query local community detection.

Knowl. Inf. Syst. 2020, 62, 2067–2101. [CrossRef]
5. De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Mixing local and global information for community detection in large networks.

J. Comput. Syst. Sci. 2014, 80, 72–87. [CrossRef]
6. Baltsou, G.; Christopoulos, K.; Tsichlas, K. Local Community Detection: A Survey. IEEE Access 2022, 10, 110701–110726.

[CrossRef]
7. Kostakos, V. Temporal graphs. Phys. A Stat. Mech. Its Appl. 2009, 388, 1007–1023. [CrossRef]
8. Casteigts, A.; Flocchini, P.; Quattrociocchi, W.; Santoro, N. Time-varying graphs and dynamic networks. In Proceedings of

the 10th International Conference, ADHOC-NOW 2011, Paderborn, Germany, 18–20 July 2011; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 346–359.

9. Baltsou, G.; Tsichlas, K. Dynamic Community Detection with Anchors. In Proceedings of the 10th International Conference
on Complex Networks and Their Applications, Madrid, Spain, 30 November–2 December 2021; Published by the International
Conference on Complex Networks and Their Applications; pp. 64–67.

10. Yang, L.; Shami, A. IoT data analytics in dynamic environments: From an automated machine learning perspective. Eng. Appl.
Artif. Intell. 2022, 116, 105366. [CrossRef]

11. Bonifazi, G.; Cauteruccio, F.; Corradini, E.; Marchetti, M.; Terracina, G.; Ursino, D.; Virgili, L. A framework for investigating the
dynamics of user and community sentiments in a social platform. Data Knowl. Eng. 2023, 146, 102183. [CrossRef]

12. Bonifazi, G.; Cecchini, S.; Corradini, E.; Giuliani, L.; Ursino, D.; Virgili, L. Investigating community evolutions in TikTok
dangerous and non-dangerous challenges. J. Inf. Sci. 2022, 2022, 01655515221116519.

13. Jalabneh, R.; Syed, H.Z.; Pillai, S.; Apu, E.H.; Hussein, M.R.; Kabir, R.; Arafat, S.Y.; Majumder, M.A.A.; Saxena, S.K. Use of mobile
phone apps for contact tracing to control the COVID-19 pandemic: A literature review. Appl. Artif. Intell. COVID-19 2021, 2021,
389–404.

14. Radanliev, P.; De Roure, D.; Ani, U.; Carvalho, G. The ethics of shared COVID-19 risks: An epistemological framework for ethical
health technology assessment of risk in vaccine supply chain infrastructures. Health Technol. 2021, 11, 1083–1091. [CrossRef]

15. Radanliev, P.; De Roure, D. Epistemological and bibliometric analysis of ethics and shared responsibility—Health policy and IoT
systems. Sustainability 2021, 13, 8355. [CrossRef]

16. Aggarwal, C.C.; Yu, P.S. Online analysis of community evolution in data streams. In Proceedings of the 2005 SIAM International
Conference on Data Mining, Beach, CA, USA, 21–23 April 2005; pp. 56–67.

17. Duan, D.; Li, Y.; Jin, Y.; Lu, Z. Community mining on dynamic weighted directed graphs. In Proceedings of the 1st ACM
International Workshop on Complex Networks Meet Information & Knowledge Management, Hong Kong, China, 2–6 November
2009; pp. 11–18.

18. Takaffoli, M.; Rabbany, R.; Zaïane, O.R. Incremental local community identification in dynamic social networks. In Proceedings of
the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), Istanbul,
Turkey, 10–13 November 2013; pp. 90–94.

19. Chen, J.; Zaiane, O.R.; Goebel, R. Detecting communities in large networks by iterative local expansion. In Proceedings of the 2009
International Conference on Computational Aspects of Social Networks, Fontainebleau, France, 24–27 June 2009; pp. 105–112.

20. Yun, S.Y.; Proutiere, A. Streaming, memory limited algorithms for community detection. Adv. Neural Inf. Process. Syst. 2014, 27,
3167–3175.

http://doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1007/s10115-018-1247-1
http://dx.doi.org/10.1007/s10115-019-01398-3
http://dx.doi.org/10.1016/j.jcss.2013.03.012
http://dx.doi.org/10.1109/ACCESS.2022.3213980
http://dx.doi.org/10.1016/j.physa.2008.11.021
http://dx.doi.org/10.1016/j.engappai.2022.105366
http://dx.doi.org/10.1016/j.datak.2023.102183
http://dx.doi.org/10.1007/s12553-021-00565-3
http://dx.doi.org/10.3390/su13158355

Information 2023, 14, 332 24 of 24

21. Zakrzewska, A.; Bader, D.A. A dynamic algorithm for local community detection in graphs. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Paris, France, 25–28
August 2015; pp. 559–564.

22. Zakrzewska, A.; Bader, D.A. Tracking local communities in streaming graphs with a dynamic algorithm. Soc. Netw. Anal. Min.
2016, 6, 65. [CrossRef]

23. Kanezashi, H.; Suzumura, T. An incremental local-first community detection method for dynamic graphs. In Proceedings of the
2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 3318–3325.

24. Coscia, M.; Rossetti, G.; Giannotti, F.; Pedreschi, D. Demon: A local-first discovery method for overlapping communities. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China,
12–16 August 2012; pp. 615–623.

25. DiTursi, D.J.; Ghosh, G.; Bogdanov, P. Local community detection in dynamic networks. In Proceedings of the 2017 IEEE
International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 847–852.

26. Guo, K.; He, L.; Huang, J.; Chen, Y.; Lin, B. A Local Dynamic Community Detection Algorithm Based on Node Contribution. In
Proceedings of the CCF Conference on Computer Supported Cooperative Work and Social Computing, Kunming, China, 16–18
August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 363–376.

27. Conde-Cespedes, P.; Ngonmang, B.; Viennet, E. An efficient method for mining the maximal α-quasi-clique-community of a
given node in complex networks. Soc. Netw. Anal. Min. 2018, 8, 20. [CrossRef]

28. Liu, J.; Shao, Y.; Su, S. Multiple local community detection via high-quality seed identification over both static and dynamic
networks. Data Sci. Eng. 2021, 6, 249–264. [CrossRef]

29. Liakos, P.; Papakonstantinopoulou, K.; Ntoulas, A.; Delis, A. Rapid detection of local communities in graph streams. IEEE Trans.
Knowl. Data Eng. 2020, 34, 2375–2386. [CrossRef]

30. Rossetti, G.; Cazabet, R. Community discovery in dynamic networks: A survey. ACM Comput. Surv. (CSUR) 2018, 51, 1–37.
[CrossRef]

31. Havemann, F.; Heinz, M.; Struck, A.; Gläser, J. Identification of overlapping communities and their hierarchy by locally calculating
community-changing resolution levels. J. Stat. Mech. Theory Exp. 2011, 2011, P01023. [CrossRef]

32. Rossetti, G. RDYN: Graph benchmark handling community dynamics. J. Complex Netw. 2017, 5, 893–912. [CrossRef]
33. Collection, Stanford Large Network Dataset. Available online: http://snap.stanford.edu/data (accessed on 25 November 2022).
34. Database, J.J.A.T.T. Al Qaeda Operations Attack Series 1993–2003. Worldwide. 2003. Available online: http://doitapps.jjay.cuny.

edu/jjatt/data.php (accessed on 5 November 2022).
35. F1 Score Lemma. F1 Score Lemma—Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/F-score

(accessed on 5 May 2022).
36. Li, Y.; He, K.; Bindel, D.; Hopcroft, J.E. Uncovering the small community structure in large networks: A local spectral approach.

In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 658–668.
37. Li, Y.; He, K.; Kloster, K.; Bindel, D.; Hopcroft, J. Local spectral clustering for overlapping community detection. ACM Trans.

Knowl. Discov. Data (TKDD) 2018, 12, 1–27. [CrossRef]
38. Shang, R.; Zhang, W.; Zhang, J.; Feng, J.; Jiao, L. Local community detection based on higher-order structure and edge information.

Phys. A Stat. Mech. Its Appl. 2022, 587, 126513. [CrossRef]
39. Rossetti, G.; Pappalardo, L.; Rinzivillo, S. A novel approach to evaluate community detection algorithms on ground truth. In

Proceedings of the Complex Networks VII: Proceedings of the 7th Workshop on Complex Networks CompleNet 2016, Dijon,
France, 23–25 March 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 133–144.

40. Zhang, Y.; Wu, B.; Liu, Y.; Lv, J. Local community detection based on network motifs. Tsinghua Sci. Technol. 2019, 24, 716–727.
[CrossRef]

41. Jaccard Similarity Coefficient Lemma. Jaccard Similarity Coefficient Lemma—Wikipedia, the Free Encyclopedia. Available
online: https://en.wikipedia.org/wiki/Jaccard_index (accessed on 2 November 2022).

42. Labatut, V.; Cherifi, H. Accuracy measures for the comparison of classifiers. arXiv 2012, arXiv:1207.3790.
43. Bharali, A. An Analysis of Email-Eu-Core Network. Int. J. Sci. Res. Math. Stat. Sci. 2018, 5, 100–104. [CrossRef]
44. Gill, P.; Young, J.K. Comparing Role-Specific Terrorist Profiles. 2011. SSRN 1782008. Available online: https://papers.ssrn.com/

sol3/papers.cfm?abstract_id=1782008 (accessed on 8 November 2022).
45. Gao, Y.; Zhang, H.; Zhang, Y. Overlapping community detection based on conductance optimization in large-scale networks.

Phys. A Stat. Mech. Its Appl. 2019, 522, 69–79. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13278-016-0374-5
http://dx.doi.org/10.1007/s13278-018-0497-y
http://dx.doi.org/10.1007/s41019-021-00160-6
http://dx.doi.org/10.1109/TKDE.2020.3012608
http://dx.doi.org/10.1145/3172867
http://dx.doi.org/10.1088/1742-5468/2011/01/P01023
http://dx.doi.org/10.1093/comnet/cnx016
http://snap.stanford.edu/data
http://doitapps.jjay.cuny.edu/jjatt/data.php
http://doitapps.jjay.cuny.edu/jjatt/data.php
https://en.wikipedia.org/wiki/F-score
http://dx.doi.org/10.1145/3106370
http://dx.doi.org/10.1016/j.physa.2021.126513
http://dx.doi.org/10.26599/TST.2018.9010106
https://en.wikipedia.org/wiki/Jaccard_index
http://dx.doi.org/10.26438/ijsrmss/v5i4.100104
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1782008
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1782008
http://dx.doi.org/10.1016/j.physa.2019.01.142

	Introduction
	Related Work
	Problem Formulation and Methodology
	Preliminaries
	Problem Formulation
	Local Community Detection in Graph Streams with Anchors

	Experiments
	Experiment Design
	Datasets
	Synthetic Datasets
	Real Datasets

	Evaluation Metrics
	Experiment Results
	Experiments on Synthetic Datasets
	Experiments on Real Datasets

	Discussion
	Conclusions
	References

