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Abstract: Speech separation is a well-known problem, especially when there is only one sound
mixture available. Estimating the Ideal Binary Mask (IBM) is one solution to this problem. Recent
research has focused on the supervised classification approach. The challenge of extracting features
from the sources is critical for this method. Speech separation has been accomplished by using a
variety of feature extraction models. The majority of them, however, are concentrated on a single
feature. The complementary nature of various features have not been thoroughly investigated. In
this paper, we propose a deep neural network (DNN) ensemble architecture to completely explore
the complimentary nature of the diverse features obtained from raw acoustic features. We examined
the penultimate discriminative representations instead of employing the features acquired from the
output layer. The learned representations were also fused to produce a new features vector, which
was then classified by using the Extreme Learning Machine (ELM). In addition, a genetic algorithm
(GA) was created to optimize the parameters globally. The results of the experiments showed that our
proposed system completely considered various features and produced a high-quality IBM under
different conditions.

Keywords: single-channel audio separation; deep neural networks; ideal binary mask; feature fusion

1. Introduction

Both signal processing and neutral network researchers have paid a lot of attention to
source separation (SS) in recent years. Source separation refers to the ability to separate
a mixed signal into distinct components. Separating target speech from mixed signals is
crucial for several applications, including speech communication and automatic speech
recognition. From an application viewpoint, conducting speech separation by utilizing
a single recorder is frequently the preferred method. To solve this difficult issue, several
solutions have been proposed. The recovery (separation) of several audio sources that
have been mixed into a single-channel audio signal, such as many persons talking over
each other, is the challenge of single-channel audio source separation. Many methods have
been suggested to solve the Single-Channel Source Separation (SCSS) issue. One of the
main methods, Computational Auditory Scene Analysis (CASA), attempts to emulate the
human auditory system in order to identify a variety of sound sources based on distinctive
individual qualities [1,2].

A deep-neural-network-based ensemble system is suggested in this study, and ’wide’
and ’forward’ ensemble systems are used to comprehensively examine the complimentary
properties of various characteristics. Additionally, the penultimate representations are
looked into rather than the characteristics learnt from the output layer. The Extreme
Learning Machine classification of the final embedded features produces binary masks to
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separate the mixed signals. The experimental findings show that the suggested ensemble
system can produce a high-quality binary mask in a variety of settings.

The contributions of this paper are as follows: The Ideal Binary Mask (IBM) is es-
timated by using a DNN ensemble audio separation method to separate the premixed
signal. Each DNN in the proposed system is trained with raw acoustic features by using a
layer-wise pretraining approach. Various DNNs can extract different meaningful represen-
tations with different initializations. The multiview spectral embedding (MVSE) is used to
embed the output of the penultimate layer of each individual DNN into a low-dimensional
embedding [3–5]. The objective is to extensively investigate the aspects that complement
the previously studied ones. “DNN Ensemble Embedding (DEE)” is the name of the first
module. DNN Ensemble Stacking (DES) is the second module, which is a stack of DNN
ensembles. The embedded features from the bottom module are concatenated with raw
acoustic features to create a new feature set for each individual DNN in this module.

The DNNs in the system have the same design but different initializations for simplic-
ity. By ensembling and stacking the input data, the proposed ensemble system is capable of
completely exploring the complementary characteristics of the data and therefore general-
ize the learned representations with greater robustness and discriminative features than an
individual DNN. As a result, even with limited training examples, the suggested system
may still perform effectively. The Extreme Learning Machine (ELM) classifier is able to
classify the time–frequency (TF) unit more accurately by using the learned discriminative
characteristics of the ensemble system, and therefore the estimated IBM is more precise for
source separation. Finally, a genetic algorithm is used to finetune the entire system settings
in order to regularize any outliers learned by the DNNs and create a smooth map to increase
the classification accuracy. Experiments were carried out on a limited training dataset,
and the testing results showed that our proposed system could achieve a high separation
performance. The proposed method has a high learning speed and high accuracy and
lower computational complexity, and the separation performance is improved.

The remainder of this paper is organized as follows: The related work is presented in
Section 2. The learning system is introduced in Section 3. Section 4 presents the proposed
approach to generate acoustic features and the ensemble and stacking of deep neural net-
works. Section 5 discusses the experimental results and compares the obtained performance
with other contending methods. Finally, the conclusion is drawn in Section 6.

2. Related Work

In [6], a single-channel audio source separation (SCASS) task was tackled by using a
couple of stages in order to separate the sound sources, which was achieved by exploring
the interference from other sources and other distortions. From the mixed signal, the sources
were separated in the first stage, while deep neural networks (DNNs) were used to minimize
both the distortions and the interference between the separated sources in the second
stage. In the second stage, two techniques were used to employ the DNNs to increase
the quality of the separated sources. Each separated source was improved separately by
using a trained DNN that was employed by using the first technique, whereas all the
separated sources were improved collectively by using a single DNN that was employed
by using the second method. These enhancement techniques utilizing DNNs resulted in
the attainment of separated sources with low interference and distortion. Additionally, the
DNN-based enhancement approaches have been compared with the Non-Negative Matrix
Factorization (NMF)-based enhancement, and the results demonstrated that utilizing DNNs
for enhancement is more effective than using NMF.

In [7], a deep-neural-network-based gender-mixture detection method was presented
to conduct unsupervised speech separation on mixtures of sound from two unseen speakers
in a single-channel situation. A thorough amount of experiments and analyses were carried
out, including comparisons between different mixture combinations and the relevance of
DNN- based detectors. The results showed that the DNN-based strategy outperformed
state-of-the-art unsupervised approaches without requiring any particular knowledge
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about the mixed target and interfering speakers that were being separated. A stacked Long
Short-Term Memory (LSTM) network was suggested in [8], based on the single-channel
Blind Source Separation of a spatial aliasing signal by using a deep learning approach.
The results showed that when compared to classical techniques (Independent Component
Analysis (ICA), NMF, and other deep learning models), the model had a strong performance
in both pure and also noisy environments. In addition, a one-shot single-channel source
separation problem was presented in [9]. Based on a mix of separation operators and
domain-specific information about sources, a unique adaptive-operator-based technique to
derive solutions was achieved. This method is capable of separating sparse sources and
also AM-FM sources. In addition, in both noiseless and noisy environments, this technique
outperformed identical state-of-the-art solutions.

In [10], a multichannel audio source separation task was proposed by using Gaussian
modeling and a spectral model of a generic source that could be previously learned by NMF.
The Expectation-Minimization (EM) method was presented in this work for parameter
estimation. In order to properly restrict the intermediate source variances calculated in
each EM iteration, a source variance separation criterion was exploited. Experiments
using the Signal Separation Evaluation Campaign (SiSEC) benchmark dataset have proven
the efficacy of the suggested technique when compared to the current state-of-the-art
techniques. Moreover, [11] produced a Multichannel Non-Negative Matrix Factorization
(MNMF) based on Ray Space for audio source separation. The findings demonstrated that
the Ray Space is appropriate when using the MNMF algorithm and that it is successful in
real-world settings. Additionally, for the single-channel speech separation problem, the
multihead self-attention was proposed in [12], whereby the authors used a deep clustering
network approach. To boost the performance even further, the density-based canopy
K-means method was used. In addition, the training and evaluation for this system were
achieved by using the Wall Street Journal dataset (WSJ0).

Experiments have demonstrated that when compared to several advanced models, the
new method outperforms them. Other works such as [13] adopted a Generative Adversarial
Networks (GANs) technique for convolutive mixed speech separation in a single channel.
In this work, the dereverberation and separation of speech and interference are the two
phases in the separation process. Moreover, reverberation suppression and target speech
improvement are two elements of the proposed network. Furthermore, an improved
Cycly GAN was utilized in order to dereverberate the target speech and interference,
while a differential GAN was exploited for speech enhancement. Consequently, according
to simulation findings, this study achieved an excellent recognition rate and separation
performance in long and severe reverberation environments.

Other researchers have employed a deep learning system that is completely convo-
lutional in time-domain audio separation for time-domain speech separation from end to
end [14]. The convolutional time-domain audio separation network (Conv-TasNet) creates a
speech waveform representation that is optimized in order to separate individual speakers
by using a linear encoder. In addition, the encoder output is subjected to a series of weight-
ing functions (masks) to accomplish the speaker separation. Moreover, by using a linear
decoder, the modified encoder representations are inverted back to the waveforms. The
proposed ConvTasNet system outperforms earlier time–frequency masking approaches as
well as various ideal time–frequency magnitude masks, with a substantially smaller model
size and lower minimum latency, which makes it a good fit for both real-time and offline
speech separation applications. In [15], a deep multimodal architecture for multichannel
target speech separation is presented. The multimodal framework takes advantage of a
variety of target-related data, such as the target’s physical position, lip movements, and voice
characteristics. Within the framework, robust and efficient multimodal fusion methods are
presented and studied. Experiments were evaluated on a large-scale audio–visual dataset
obtained from YouTube, and the findings demonstrated that the proposed multimodal
framework outperformed both single and bimodal speech separation techniques.
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In [16], Blind Source Separation (BSS) approaches were adopted, namely the Singular
Spectrum Analysis (SSA) algorithm, to solve the challenge of eliminating drone noise
from single-channel audio recordings. This work introduced an algorithm optimization
with an O(nt) spatial complexity where n was the number of sources to reconstruct and
t was the signal length. Several tests were carried out to validate the technique, both in
terms of accuracy and performance. The suggested method was successful at effectively
separating the sound of the drone and the sound of the source. Furthermore, the Wavesplit
is presented in [17], which is a neural network for source separation. This system derives
a representation for each source from the input mixed signal and estimates the separated
signals based on the inferred representations. In addition, Wavesplit uses clustering to infer
a collection of source representations, which solves the separation permutation issue. In
comparison to previous work, the suggested sequence-wide speaker models enable a more
robust separation of long, difficult recordings. On clean mixes of two or three speakers,
in addition to noisy and reverberated situations, Wavesplit redefines the state-of-the-art
techniques. Moreover, On the new LibriMix dataset, a modern benchmark was established.

The authors of [18] suggested the use of the ICA approach based on time–frequency
decomposition in order to decouple a single-channel source from a single mixed signal.
The paper introduced a novel concept of integrating the statistically independent time–
frequency domain (TFD) components of the mixed signal generated by ICA in order to
reconstruct real sources. The evaluations showed that automatic signal separation necessi-
tates qualitative information about the constituent signals’ time–frequency properties. The
authors of [19] proposed an unsupervised speech separation algorithm based on a mix of
Convolutional Non-Negative Matrix Factorization (CNMF) with the Joint Approximative
Diagonalization of Eigenmatrix (JADE). Furthermore, an adaptive wavelet transform-based
speech enhancement approach is presented, which can improve the separated speech signal
adaptively and effectively. The goal of the suggested technique is to produce a generic
and efficient speech processing technique that can be used on the data collected by speech
sensors. According to the findings of the experiments, the suggested approach can be used
to successfully extract the target speaker from mixed speech after a small training sample of
the TIMIT speech sources is used. The algorithm is very generic and robust and capable of
processing speech signals obtained by most speech sensors in a technically sound manner.

In [20], SCSS was used to separate multi-instrument polyphonic music that was con-
ditioned by external data. In [21], a Discriminative Non-Negative Matrix Factorization
(DNMF) is suggested for a single-channel audio source separation task. In [22], the under-
determined single-sensor Blind Source Separation (BSS) issue with discrete uniform sources
with known finite support and complicated normal noise is discussed. In addition, the
DNN approach was also exploited in [23–25] to be employed for single- and multichannel
speech and audio source separation. However, other researchers [26–29] have adopted
different algorithms in terms of speech separation.

3. Overview of the System

The proposed system is depicted in Figure 1 and is divided into four phases: DNN
training, multiview spectral embedding, ELM classification, and global optimization. To
provide the training data, raw acoustic features were extracted from source signals. This
was then used to train each DNN in each frequency channel individually. MVSE was
then used to merge the penultimate layer’s learned features into a complementary features
vector. The acquired features vector was then input into the second module, which extracted
more robust and discriminative information, before classifying each TF unit into the speech
domain or nonspeech domain with the ELM classifier. Finally, in order to optimize the
parameters globally, a genetic approach was developed. The optimal ensemble system
was used to classify each TF unit of the mixed signal in order to create binary masks (BM)
for testing. By weighting the mixed cochleagram via the mask and correcting the phase
shifts produced through Gammatone filtering, the predicted time-domain sources were
resynthesized by applying the method described in [30].
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The following is a description of the proposed framework’s architecture: On the
equivalent rectangular bandwidth rate scale, the mixed signal with a sampling frequency of
16 kHz is put into a Gammatone filter bank with a 64 channel [31], with center frequencies
evenly spread from 50 Hz to 8000 Hz. Each filter channel’s output is split into time frames
with an overlap of 50% between successive frames.

A Gammatone filter bank is often used in single-channel audio separation tasks to
model the cochlear filtering that occurs in the human ear. The cochlea in the inner ear
contains thousands of hair cells that are sensitive to different frequencies of sound. These
hair cells act as bandpass filters that decompose the incoming sound into its constituent
frequency components. A Gammatone filter bank is a set of bandpass filters that are
designed to mimic the frequency selectivity of the cochlear hair cells. The filters are based
on the Gammatone function, which is a mathematical model of the impulse response of
the auditory system. By applying a Gammatone filter bank to the mixed audio signal, we
can decompose the signal into a set of frequency components that correspond to different
regions of the cochlea [32].

This frequency decomposition can be useful in audio separation tasks because it allows
us to isolate specific frequency components that correspond to different sources of sound.
For example, if we are trying to separate a speech signal from a noisy background, we
can use a Gammatone filter bank to isolate the frequency components that correspond to
the speech signal and attenuate the components that correspond to the background noise.
Overall, the Gammatone filter bank is a powerful tool for modeling the human auditory
system and can be used to improve the performance of single-channel audio separation
algorithms. The cochleagram [32] is formed by establishing the TF units of all the filter
outputs. Then, we can classify each TF unit to its identical domain in order to estimate the
BM, which is our aim.

However, the spectral characteristics of the source signals in various channels might
be quite varied. As a result, we trained a subband classifier for each channel to make the
decision. Because of its low computational complexity and high classification performance,
we chose the ELM classifier [33–36]. For each TF unit, several features were extracted in
order to conduct the classification. 15-Dimensions (15-D) of an Amplitude Modulation
Spectrogram (AMS), 13-D of the Relative Spectral Transform and Perceptual Linear Predic-
tion (RASTA-PLP), and 31-D of the Mel-Frequency Cepstral Coefficients (MFCCs) make up
the feature set.

A features vector was created by concatenating the extracted features. We propose
pooling many DNNs and establishing an ensemble system of DNNs to learn more dis-
criminative and robust representations instead of sending the features vector straight into
the classifier. Additionally, each individual DNN’s penultimate layer was embedded to
investigate the complementary nature of the learned representation in order to increase
the classification robustness, and as a result, the separation performance is also improved.
At the top of the first module, a second module was stacked to extract more robust and
discriminative representations for the classification. A genetic method was also created to
identify the best coefficients for all DNNs and ELMs, resulting in more consistent estimates.
We used the traditional frame-level acoustic feature extraction for each Gammatone filter
channel’s output to gain the features of each TF unit, and the concatenated features vectors
were used as the raw acoustic feature set, which was input into the DNN ensemble system.

The envelope of the mixture signal was calculated by using full-wave rectification and
then decimated by a factor of four to generate the 15-D AMS. To create a 256-point Fast
Fourier Transform (FFT), the decimated envelope was split into overlapping segments, and
then Hanning windowing and zero padding were applied. To create the 15-D AMS [37],
the FFT magnitudes were multiplied by uniformly spaced 15 triangular-shaped windows
across the 15.6–400 Hz band. The spectral amplitude was compressed by using a static non-
linear transformation to create the 13-D RASTA-PLP. Each converted spectral component’s
temporal trajectory was filtered and extended again, and then a traditional PLP analysis
was performed [38,39]. A short-time Fourier transform with a Hamming window was
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used to obtain the 31-D MFCC, which was then warped to the Mel scale; after that, a log
operation with a discrete cosine transform was used [40–43].

In addition, the delta features of the RASTA-PLP were also exploited to benefit the
speech separation [38]. As a result, the original features of the RASTA-PLP were concate-
nated with their first- and second-order delta features (which are denoted by4 and44)
to generate a combined features vector in order to learn features and classification. Finally,
85-dimensional raw acoustic features were produced from a collection of the following
features: 15-D AMS, 13-D RASTA-PLP, 13-D4 RASTA-PLP, 13-D44 RASTA-PLP, and
31-D MFCC.

Figure 1. The architecture of the proposed work.

4. The Proposed Ensemble System Using DNN

Two modules with DNNs are introduced in this part. In the case of a mixed signal, the
acoustic features are extracted for each TF unit in the cochleagram represented as {xn}N

n=1,
where N is the number of frames.

4.1. DNN Ensemble Embedding (DEE)

Assume there are M DNNs in the DEE, where M is greater than one. An output layer,
as well as a number of nonlinear hidden layers, are present in each DNN.

4.1.1. DNN Training

The m-th DNN learns a mapping function that can be expressed as in Equation (1).

Fm = fm

(
wmΞgm(Ξ−1)

(
. . . wmξ gm(ξ−1)

(
. . . wm2gm1

(
wm1{(xn)

N
n=1}

))))
(1)

where ξ = 1, . . . , Ξ indicates the number of hidden layers; wmξ is the weight linking the
ξ-th hidden layer and the one above it; f m(·) indicates the output activation function; and
gmξ(·) indicates the activation function of the ξth hidden layer.

The activation function that we chose is the sigmoid function. It is worth noting that
each DNN in the same module had a different weight parameter W = {wm}M

m=1. The
network was pretrained by utilizing the Restricted Boltzmann Machine (RBM) in a greedy
layer-wise style, followed by back-propagation finetuning. We used the raw acoustic
features that were extracted as the training data. The Gaussian–Bernoulli RBM (GBRBM)
was used to train the first layer, and its energy function can be defined as
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EGBRBM(v, h) = ∑
φ∈vis

(vφ − bφ)2

2 σ2
φ

− ∑
v∈hid

cv hv −∑
φ,v

wφv hv
vφ

σφ
(2)

where hv and vφ are both vth and φth units of the hidden layer and visible layer, respectively;
cv denotes the bias of the vth hidden unit; bφ denotes the bias of the φth visible unit and the
weight between the φth visible units; and the vth hidden unit is wφv. For all the remaining
layers, Bernoulli–Bernoulli RMBs are used:

EGBRBM(v, h) = ∑
φ∈vis

bφvφ − ∑
v∈hid

cv hv −∑
φ,v

wφv hv vφ (3)

The RBM is a generative model in which the parameters are improved by using a
stochastic gradient descent on the training data’s log likelihood [44].

∂ logp(v)
∂ wij

≈
〈
vihj

〉
x0 −

〈
vihj

〉
x∞ (4)

where 〈·〉 indicates the expected outcomes under the distribution provided by the following
subscript. x∞ denotes the equilibrium distribution defined by the RBM while x0 indicates
the distribution of the data. The DNN is initialized by using the learned parameters
from a stack of RBMs. This empirical approach of initialization has been created to assist
the subsequent backpropagation finetuning, and it is often crucial when training a deep
network with numerous hidden layers [45]. Finally, the back-propagation method is used
to finetune the whole network. After the network has been adequately finetuned, the
penultimate layer activations represented as Pm are regarded as the learned intermediate
representations instead of the final layer activations of the DNN [46–49].

4.1.2. Spectral Embedding in Multiple Views

In M DNNs, the learned intermediate representations P = {Pm ∈ < dm× n}M
m=1 are fed

into a Laplacian multispectral graph to investigate the complimentary characteristics [4].
Varying representations have different strengths, which might lead to different mistakes in
the separation system [5].

MVSE is a technique used to take advantage of complementary representations and ex-
ploit the strengths of specific representations. Assume that P = [Pm1, Pm2, . . . , Pmn] < dm× n}
is the m-th learned representation, and consider pmj as an arbitrary point and that its k associ-
ated points are in the same features set (for example, nearest neighbors) pmj1, pmj2, . . . , pmjk;
the patch of pmj is defined as Pmj = [pmj, pmj1, pmj2, . . . , pmjk] ∈ < dm× (k+1), where v rep-
resents the dimension of the intended embedding and is a predetermined number. The
component optimization for the jth patch on the mth feature set is used in the projected
low-dimensional space to preserve the locality. This part is

arg min
Rmj

k

∑
i=1
‖rmj − rmji ‖2 (µmj)i (5)

where µmj is a column vector that has a k-dimension and is weighted by (umj)i =

(exp−||pmj−pmji ||2/γ), and the width of the neighborhoods is controlled by γ; as a result, we
can reformulate the part optimization to

arg min
Rmj

tr

((rmj − rmj1)
· · ·

(rmj − rmjk)

 × [rmj − rmj1,·, rmj − rmjk]diag(µmj)

)
= arg min

Rmj

tr (rmj Lmj (Rmj)
T) (6)

where the trace operator is tr(·) and Lmj =

[
∑k

i=1 (µmj)i −(µmj)
T

−µmj diag(µmj)

]
∈ <(k+1)× (k+1)

encodes the jth patch’s objective function on the mth learned representation.
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A suitably smooth, low-dimensional-embedding R mj can be constructed by maintain-
ing the inherent structure of the jth patch on the mth learned representation. The DNN
ensemble extracts multiple features with varying mapping parameters that may contribute
differently to the final low-dimensional embedding. A collection of non-negative weights
α = [α1, · · · , αm] is imposed on the portion optimizations of various DNNs independently
to investigate the complementary characteristics of different extracted features. The Pmj
plays a more important role in learning how to obtain the low dimensional embedding Rmj
as αm grows larger. The component optimization for the jth patch is represented as the sum
of all the m-th learned representations and can be formulated as

arg min
RJ={Rmj}M

m=1,α

M

∑
m=1

αmtr(RmjLmj(Rmj)
T) (7)

There is a low-dimensional embedding Rmj for each patch Pmj. By supposing that the
coordinate for Rmj =

[
rmj, rmj1, rmj2, · · · , rmjk

]
is chosen from the global coordinate R =[

r1, r2, r3, · · · , rn
]
, all Rmj can be integrated as one, i.e., Rmj = RVmj, where Vmj ∈ <n× (k+1)

is the matrix employed in a patch in the original high-dimensional space to encode the
spatial relation of the samples. Consequently, Equation (7) can be rewritten as

arg min
RJ ,α

m=1

∑
M

αmtr(RVmjLmj
(
Vmj
)T(R)T (8)

The global coordinate alignment is calculated by adding all the optimization parts
together and is expressed as{

arg minR,α ∑m=1
M αε

mtr
(

RLmRT)
s.t.RRT = I, ∑m=1

M αε
m = 1, αm ≥ 0

(9)

where the alignment matrix for the mth learned representations is Lm ∈ <n×n, and it is
also defined as Lm = ∑N

j=1 VmjLmj(Vmj)
T . The restriction RRT = I is used to determine

R in a unique way. The coefficient for managing the interdependency between various
perspectives is the Exponent ε , which should satisfy ε ≥ 1. We constructed a symmetric
and positive semidefinite normalized graph Laplacian Lsys by conducting a normalization
on Lm. Lsys is defined as

Lsys = Dm
− 1

2 LmDm
− 1

2 = I − Dm
− 1

2 QmDm
− 1

2 (10)

where Qm = <n×n and
[
Qm
]

ij = exp(− ‖ pmi − pmj ‖2 /γ) if pmi is one of the pmj’s

k-nearest neighbors or vice versa; L(α, λ) = ∑M
m=1 αε

m tr
(

RLsysRT)− λ
(

∑M
m=1 αm − 1

)
oth-

erwise. Dm is a diagonal matrix with the degrees
[
Dm
]

jj = ∑l
[
Qm
]

jl , and it is called a
degree matrix.

Equation (9) is a nonconvex nonlinear optimization problem with nonlinear con-
straints, and the best solution can be found by using an iterative technique such as the
Expectation Maximization (EM) technique [50]. Both R and α are updated iteratively in an
alternating style by the optimizer.

Step 1: Fix R to update α
By using a Lagrange multiplier λ and taking into account the restriction ∑M

m=1 αε
m = 1,

the Lagrange function can be written as

L(α, λ) =
M

∑
m=1

αε
m tr
(

RLsysRT
)
− λ

(
M

∑
m=1

αm − 1

)
(11)
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The solution for αm can be obtained by

αm =

(
1/ tr

(
RLsysRT))1/(ε−1)

∑M
m=1

(
1/ tr

(
RLsysRT

))1/(ε−1)
(12)

When R is fixed, then Equation (12) gives the global optimal α.
Step 2: Fix α to update R
The optimization problem in Equation (9) is equivalent to

min
R

(RLRT) s.t.R.RT = I (13)

where L = ∑M
m=1 αε

mLsys. When α is fixed, Equation (9) has a global optimum solution
according to the Ky-Fan theorem [51]. The optimal R is given as the eigenvectors related to
the lowest d eigenvalues of the L matrix. After obtaining the embedded feature R, then
the raw acoustic features will be concatenated with it to produce a new feature vector, as
the raw acoustic features can offer global information that can aid in mask estimation. The
updated feature vector will be sent into the ensemble stacking in the second module.

4.1.3. DNN Ensemble Stacking (DES)

A second DNN ensemble is stacked on top of the first in this module. The first DNN
ensemble is considered a lower module, whereas the second ensemble is considered a
higher module. As input to the upper module, the embedded features of the lower module
with the raw features are concatenated. This enables the extraction of higher-order and
more robust discriminative features. DES is a masking-based module, unlike the previous
module, in which DNNs are trained by using pretraining, and then supervised finetuning
is applied. In order to learn feature encoding, DES includes training Z > 1 DNNs, which is
indicated as φZ at this stage. The z-th DNN’s learning procedure can be represented as

φz = fz(gzI(· · · gz1(σ))), z = 1, 2, · · · , Z (14)

where φ is the result of concatenating the embedded and raw acoustic features of the lower
module. In DES, each single DNN learns a masking function. In the output layer, linear,
softmax, and sigmoid functions are common activation functions. We selected the softmax
function for the output layer because the training objective was the IBM, which has a value
of either 0 or 1, and the softmax function is an extension of the logistic function, whose
output reflects a categorical distribution:

p(y = j | x) =
exTwj

∑K
k=1 exTwk

(15)

where p(y = j | x) indicates the predicted probability for the jth class given a sample
vector x and a weighting vector w. The combined features set is utilized as training data
for the first GBRBM, whose hidden activations are subsequently used as new training data
for the second RBM and so on. To obtain the internal discriminative representations, the
pretrained GBEBM, RBMs, and softmax layer are merged and finetuned with labeled data.
The softmax classifier is trained during the first 10 iterations of the module while it is being
finetuned. The outputs of the DES’s penultimate layer are then sent into a multispectral
graph Laplacian to investigate the complementary property once the network has been
finetuned. In the following stage, ELM is used to classify the concatenation for both the
embedded features with raw features.
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4.1.4. ELM-Based Classification

We utilized ELM [33] to classify the TF units into the target domain or interference
domain at this step by using the concatenated features. For a single-layer feed-forward
neural network, ELM is suggested. With K hidden nodes, the ELM model may be written as

tφ =
K

∑
k=1

S(xφ, uk, vk)βk, φ = 1, · · · , Φ (16)

where xφ is the input vector and tφ denotes the output. The parameters of the activation
function of the kth hidden node are uk and vk, and the output of the kth hidden node with
respect to the kth input is S(xφ, uk, vk). The output weight of the kth hidden node is βk. The
Equation (16) can be formulated as

T = Sβ (17)

where T =
[
t1, · · · , tΦ

]T , β =
[
β1, · · · , βK

]T , and the hidden output matrix S can be
written as

S =

 s(x1, u1, v1) · · · s(x1, uK, vK)
...

. . .
...

s(xΦ, u1, v1) · · · s(xΦ, uK, vK)


Φ×K

(18)

The parameters are learned in two phases by using an ELM: random feature mapping
and linear parameter solution. By using the activation function s

(
·
)

with randomly
initialized parameters, the input data are projected into a feature space in the first step.

The ability of the randomly initialized parameters to approximate any continue func-
tion has been demonstrated [33,36]. As a consequence, the output weight β is the lone
parameter that has to be computed, which can be estimated by using the following formula:

β̂ = S♠T (19)

where S♠ is the Moore–Penrose generalized inverse.

4.1.5. Global Optimization with a Genetic Algorithm

The last stage in this research involved using a genetic algorithm to optimize the
weights α =

[
α1, · · · , αM

]
and τ =

[
τ1, · · · , τZ

]
globally based on the estimation error,

as shown in Figure 1. Essentially, a genetic algorithm includes a population containing
a certain number of people. Every individual in a population has the potential to solve
the optimization problem. As a result, a new generation is created by the use of selection,
crossover, and mutation among individuals. This procedure is performed numerous times
until a new individual offers the best solution to the problem. Based on our research,
the generated DNN ensemble and stacking system were finetuned by employing genetic
algorithms in the next steps:

(i) Defining the fitness function
The developed genetic algorithm’s fitness function in this step was to reduce the mean
square error between the real TF unit value T and the estimated value Sβ̂:

arg min 1
N ∑N

(
T − Sβ̂

)2

{αm}M
m=1, {τz}Z

z=1

s.t. ∑M
m=1 αε

m = 1, αm ≥ 0

∑Z
z=1 τε

z = 1, τz ≥ 0

(20)
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(ii) Determining the initial population of chromosomes L0
For both steps, the initial population size was selected as 1000 chromosomes (indi-
viduals) for this genetic algorithm. These initial chromosomes represent the first
generation.

(iii) Encoding
Each chromosome in the population was encoded by using binary strings of 0 s and
1 s. Every αm was represented as a 10-bit string of binary numbers (0 s and 1 s) in the
DEE step. Similarly, each chromosome (individual) refers to Z weights in the DES
step. As a consequence, each chromosome was represented by Z× 10 bit strings.

(iv) Boundary conditions

The boundary conditions were set in both stages such that every element
{

αm
}M

m=1,{
τz
}Z

z=1 had a positive value.
(v) Reproduction of next generations

(
L1, L2, L3, · · ·

)
The fitness function was used to test each chromosome in the first generation (L0)
to calculate how effectively it solved the optimization issue. The chromosomes that
performed better or were more fit were passed on to the next generations. They were
wiped out otherwise. Crossover occurred when two chromosomes swapped some
bits of the same region to produce two offspring, whereas mutation occurred when
the bits in the chromosome were turned over (0 to 1 and vice versa). The occurrence
of mutation was determined by the algorithm’s mutation probability (ρ) as well as a
random number generated by the computer (ω). We set the ρ value to 0.005 in this
stage. The mutation operator can be defined as follows:

mutation =

{
1
(
occurs

)
ρ ≥ ω

0
(
notoccur

)
ρ < ω

(21)

(vi) Until the best chromosome was attained, the processes of selection, crossover, and
mutation were repeated.

Finally, with regard to the input data, a binary mask was created, and by weighting
the mixture cochleagram, the estimated time-domain sources were resynthesized by using
the mask.

5. Experimental Results and Discussion

The proposed separation technique is evaluated with recorded audio signals in this
section. The simulation was achieved by using the MATLAB codes that were running on a
PC with an Intel Core i5 processor running at 3.20 GHz and 8 GB of RAM. We used voice
data from the ‘CHiME’ database [52], which has data from 34 speakers, and each speaker
has 500 utterances. For the training data, ten utterances were chosen at random and mixed
with music [53] at 0 dB. The test set was made up of 25 different utterances from the same
speaker’s training data mixed with the same music at 0 dB. Unless otherwise specified, we
used data from the same speaker for both training and testing, i.e., a speaker-dependent
setup. We started by extracting each channel’s basic acoustic features. Then, before being
fed into the system, we applied normalization to the extracted features until we achieved a
mean and unit variance of zero [54]. As the first layer, the GBRBM was trained between
the visible layer and the first hidden layer for each DNN in the system, whereas the higher
layers were built by using RBM pretraining data. For pretraining, we used 50 epochs of
gradient descent, and to finetune the whole network, we used 50 epochs of gradient descent.
The GBRBM’s learning rate was set to 0.001, whereas RBM’s learning rate was set to 0.01.
The first 5 epochs’ momentum was set to 0.5, while the rest of the epochs’ momentum
was set to 0.9. A somewhat modest DNN with two hidden layers was used because of
its performance and computational complexity. The small number of adjustable network
parameters allows for fast, scalable training with a satisfactory performance. The size of
the nearest neighbors in the MVSE was set to be 10. The embedded feature dimension was
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set at 50. When training the ELM classifier, the embedded features were always mixed with
raw acoustic features. The proposed system was compared with different machine learning
approaches, such as Support Vector Machine (SVM)-based, ELM-based, DNN-based, and
DNN-ELM-based approaches.

The fusion technique was exploited via concatenation to merge the raw acoustic
features with their first and second delta features, which were used to train the SVM and
ELM for the SVM-based and ELM-based techniques. A total of 50 epochs were used for
both minibatch gradient descents for the RBM pretraining and for network finetuning to
train the DNN-based approach. The output of the DNN’s final hidden layer was used to
train an ELM by using DNN-ELM-based approaches. By using the raw acoustic features of
each TF unit, all four approaches were used to train a classifier for each channel. In addition,
as a comparison approach, we used the Itakura–Saito NMF (IS-NMF) [5] and NMF2D [32]
algorithms. IS-NMF has already been proven to accurately capture the semantics of audio
and to be more appropriate for representation than the regular NMF [55]. MGD IS-NMF-
2D [32], which was recently presented, delivers promising separation results for music
mixtures and is regarded as a competitive solution to solving separation difficulties, where
MGD is the Multiplicative Gradient Descent (MGD).

5.1. Optimizing the Number of DNNs

The ensemble of DNNs is the initial module. We compared the separation performance
according to the number of DNNs to calculate the number of DNNs in each module. We
initially evaluated the separation performance for the set 1 DNN in DEE and DES (referred
to as 1DEE-1DES). Then, we evaluated the performance of the set 2 DNNs in DES and
1 DNN in DEE (2DES-1DEE). The experiments were carried out until all the settings (5DEE-
5DES) were evaluated. Figure 2 depicts the separation findings. In the trials, we trained
a different number of DNNs by using the same training data. The Short-Time Objective
Intelligibility (STOI) [56] is an evaluation metric that is used to evaluate the Objective Speech
Intelligibility (OSI) of time-domain signals. The STOI scores are closely associated with
speech intelligibility scores, according to empirical evidence. The expected intelligibility
improves as the STOI value rises. Adding a second DNN in DEE and DES increases the
separation performance over employing a single DNN in each module, as seen in Figure 2.
When one DNN is added to each module, the performance increases dramatically when
compared to when only one DNN is used in each module. Not only that, but after adding
the DNNs, it was observed that the improvement became more significant. With more
DNNs in the DES module, this is amplified even further. With 4 DNNS and 3 DNNs from
the first and second modules, respectively, the greatest attainable STOI is 0.82. However,
with five DNNs or more, the improvement in the separation performance becomes less
significant. This might be because more DNNs cannot extract additional discriminative
features that would increase the separation performance. We employed various metrics to
evaluate the proposed learning system, such as a Perceptual Evaluation of Speech Quality
(PESQ) and Signal-to-Distortion Ratio (SDR), to further study the usefulness of the number
of DNNs in the learning system.



Information 2023, 14, 352 13 of 24

Figure 2. The performance of Short-Time Objective Intelligibility (STOI).

Figure 3a,b depicts the results. The separation performance when the 4DEE-3DES
was used improved when compared to when the 4DEE-2DES and 3DEE-3DES were used,
as shown in Figure 3a. Although 5DEE-5DES had the greatest PESQ, the improvement
was less substantial when compared to 4DEE-3DES. Figure 3b shows that the separation
performance of 4DEE-3DES was 11.82 dB, which was much superior to the performance
of a single DNN in each network module. To summarize, the separation performance
improved as the number of DNNs in each module increased; however, the improvement
was less noticeable after 4 DNNs were in each module, which means that using 4 DNNs
in DEE and 3 DNNs in DES is a decent decision given the computational complexity of
the network.

Figure 3. The performance of Perceptual Evaluation of Speech Quality (PESQ) (a) and Signal-to-
Distortion Ratio (SDR) (b).

5.2. Speech Separation Performance

We compared the separation performance of our proposed strategy with the perfor-
mance of selected approaches for various mixtures in order to demonstrate its effectiveness.
A total of 10 utterances were selected randomly from males and females to create the
training set. At 0 dB, the selected utterances from the SNR training data were mixed with
guitar and bass music. For the testing data, 30 utterances were created differently than the
training data mixed with guitar and bass music at 0 dB SNR in order to test our system.
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From each TF unit, a feature set of 85 dimensions (85-D) was extracted from the training
and testing data for preprocessing. In this experiment, the Signal-to-Distortion Ratio (SDR),
which includes the Signal-to-Interference Ratio (SIR) and Signal-to-Artifacts Ratio (SAR),
was used to evaluate the separation performance. The following methods were selected for
comparison: Itakura–Saito Non-Negative Matrix Factorization (IS-NMF), Non-Negative
Two-Dimensional Matrix Factorization (NMF2D) based on an Extreme Learning Machine
(ELM) and based on a deep neural network (DNN), and Ideal Binary Mask (IBM). The
IS-NMF was used in conjunction with a clustering approach, whereby the mixed signal
was factorized into ℵ = 2, 4, · · · , 10 components and then the ℵ components were clustered
to each source by using a grouping method. For comparison, the best value of the outcome
of each case of the ℵ different configurations was kept. The mixed signal spectral and
temporal features were factorized in the nonuniform TF domain created by the Gammatone
filter bank for MGD IS-NMF-2D, where the MGD is the Multiplicative Gradient Descent.
To separate the mixed signal, the obtained features were employed to produce a binary
mask. The mask was produced directly from the speech and music by using the IBM
technique. According to Figure 4, the SDR performance varied significantly depending
on the separation approaches used. The ELM-based technique had an average SDR of
7.47 dB for the mixtures, whereas the NMF-2D method had an average SDR of 8.37 dB,
and the DNN delivered an average SDR of 9.83 dB. However, our proposed method had
an average SDR of 11.09 dB, and the IBM had an average SDR of 12.66 dB. It is worth
noting that the DNN-based techniques and our proposed system’s outcomes outperformed
the ELM-based approach. This is attributed to the deep architecture’s classified features,
which are more discriminative than shallow networks. It is also worth noting that both the
DNN and the proposed system had a high SDR performance. Furthermore, the proposed
technique consistently outperformed the DNN in terms of the performance. This supports
our findings that the proposed system can extract more complementary features than a
single DNN. It also demonstrated that the higher layers of deep architecture represent more
abstract and discriminative features than the lower ones.

Figure 4. Signal-to-Distortion Ratio (SDR) performance for different mixture.

To further analyze the separation performance of the proposed approach, an experi-
ment was conducted with a mixture of a female voices mixed with guitar music at 0 dB.
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Figure 5 depicts the original speech, music, mixture, and separation results. The speech
had an SDR of 11.69 dB, whereas the music had an SDR of 9.16 dB.

Figure 5. Time domain separation results. (a) Mixture of guitar and female utterance. (b) Female
utterance. (c) Recovered speech. (d) Music. (e) Recovered music.

5.3. Generalization under Different SNR

This section describes the experiments that were performed to evaluate the effective-
ness of the proposed method under different SNR conditions. The training set comprised
mixtures at a single input SNR, and the system was evaluated on mixtures with various
SNRs to generalize the SNR. To create the test data, 10 utterances of a speaker were chosen
and mixed with the music at 0 dB SNR, whereas 20 utterances of the same speaker were
chosen and combined with the same music at SNRs ranging from−6 dB to 6 dB with a 3 dB
increase. ELM-based, SVM-based, DNN-based, and DNN-ELM-based algorithms were
selected for comparison purposes. Figure 6 shows a comparison of several separation ap-
proaches in terms of the output of the Short-Time Objective Intelligibility (STOI). There were
several observations to consider. Originally, deep architectures such as DNN, DNN-ELM,
and the proposed technique significantly outperformed shallow architectures such as the
ELM and SVM across a wide range of input SNRs. When compared to ELM, the proposed
technique resulted in an average STOI improvement close to 24%. The proposed technique
achieved a 29% improvement, especially at −6 SNR. This was due to the ability of deep
architecture to extract the features by using a multilayer distributed feature representation,
with higher levels representing more abstract and discriminative features. As a result, the
Binary Mask (BM) created by deep architectures was more precise than those generated by
shallow architectures. In addition, DNN-ELM produced higher SNR results than the DNN.
This was because of the assistance of the ELM classifier. Although the outputs of the DNN
already created an estimated BM, the ELM could produce additional features extracted
from the DNN outputs and categorize them to their corresponding domain with a higher
accuracy. Finally, among the deep architectures, the proposed technique produced the
best STOI result. It is also worth noting that the separation performance was not affected
dramatically by the SNR. The proposed approach showed increased robustness when
compared to other techniques, as the STOI index changed relatively slightly because DNN
ensembles with multiview spectral embedding can extract more beneficial complementary
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and robust features. In addition, the embedded features in the stacking module were more
discriminative than in the lower module. Moreover, the genetic algorithm was utilized to
globally improve the parameters in order to obtain a higher level of classification accuracy.
The SDR performance was plotted in order to further analyze the effectiveness of the
proposed technique. To compare, we used deep architectures to learn and categorize the
input signals, including the DNN and DNN-ELM.

Figure 6. Short-Time Objective Intelligibility (STOI) under different SNRs.

Figure 7 depicts the findings of the comparison and shows that our proposed method
outperformed the DNN and DNN-ELM over a wide range of input SNRs. The ability
of the proposed approach to extract more discriminative features than a single DNN
was demonstrated.

Figure 7. Signal-to-Distortion Ratio (SDR) performance under different SNRs.
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5.4. Generalization to Different Input Music

We conducted tests to show the generalization capabilities of our proposed system. In
the testing set, the interfering music differed from that in the training set, but the testing
speech (which differed from the training speech) was from the same speaker. The system
was evaluated by using a blend of speech and unseen music, whereby the training set
included signals mixed with a piece of music at 0 dB. To train the proposed system, we
randomly selected 10 male and female utterances from the ‘CHiME’ dataset and mixed
them with guitar music at 0 dB SNR in order to produce the training set. The features
set included 85-D raw acoustic features. To evaluate our system, 30 male and female
utterances that were different from those in the training data were selected and mixed
with bass and piano music at 0 dB. During the preprocessing, for each TF unit, the feature
set with 85-D of the testing data was extracted and then normalized to a mean and unit
covariance of zero. The ELM-based, DNN-based, and IBM approaches were selected
for comparison. Figure 8 depicts the comparative result. First, despite the fact that the
proposed approach was trained with the selected music, its applicability to different music
mixtures resulted in a good performance, as shown in Figure 8. The bass and female
mixture’s SDR performance was 10.67 dB. It should also be highlighted that the proposed
technique outperformed the ELM-based method substantially. The reason for this is that the
deep architecture could extract more separable features, which increased the classification
accuracy when estimating the binary mask. The proposed approach also outperformed
the DNN-based technique, which implied that the DNN ensembles and stacking could
give more comprehensive information than a single network. Although the IBM approach
produced the highest overall outcomes, the proposed technique produced results that
were almost as good as the IBM method. In terms of the SDR performance, the proposed
technique achieved 10.12 dB, while ELM achieved 5.23 dB, DNN achieved 7.06 dB, and
IBM achieved 12.67 dB. Figure 9 shows the time-domain findings for a blend of recovered
speech and recovered bass music.

Figure 8. Signal-to-Distortion Ratio (SDR) with unmatched Bass and Piano music.
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Figure 9. Separation performance based on different input music.

5.5. Generalization to Different Speaker

We conducted trials with different speakers to further evaluate the efficacy of the
proposed technique. The training data came from one speaker, while the testing data came
from another speaker. Speech was mixed with music for the training set, and the system
was evaluated by using mixtures of speeches from different speaker mixed with the same
music. The training dataset comprised 10 utterances from a speaker mixed with guitar
music at 0 dB, whereas the testing dataset comprised another 10 utterances from a different
speaker mixed with the same music at 0 dB. It is worth noting that the selected speeches by
various speakers were also different. Figure 10 depicts the SDR performance. Although the
proposed system was trained with different speeches, the separation performance stayed
robust with little fluctuation. When music and utterances from speaker 2 were mixed,
the SDR performance was 9.97 dB. The DNN, on the other hand, provided 6.85 dB. The
original speech and recovered speech are displayed in Figure 11 to further demonstrate
the separation performance of the proposed technique. When compared to the original
speech, it can be noted that the recovered speech was quite similar to it, demonstrating the
capabilities of our proposed technique.
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Figure 10. Signal-to-Distortion Ratio (SDR) with unmatched Guitar music.

Figure 11. Original speech and recovered speech.

5.6. Comparisons with the Baseline Result

Table 1 shows the comparison of the suggested approach’s computational effectiveness
and efficiency when the MLP was trained by using the back-propagation methodology
and the DNN was trained by using the Restricted Boltzmann Machine (RBM) pretraining
method. Since the hierarchical structure allows for the extraction of higher-order correla-
tions between the input data, the MLP was chosen as the baseline for the deep architecture.
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The MLP may, however, become trapped at local minima quite readily. By using the
layer-wise pretraining strategy, the DNN has made promising progress when compared to
the MLP [57]. The DNN is, however, supplemented by a high computational complexity
and significant time consumption. The Deep Sparse Extreme Learning Machine (DSELM)
discussed before is an alternative, and its performance will be contrasted in terms of its
training duration and testing precision. In order to train the deep frameworks, we chose
400 utterances from each man and female together with guitar and bass music [53], whereas
50 utterances that were not part of the training set were chosen as the testing data. The
input data were standardized to a mean and unit variance of zero before being used to
train the MLP and DNN. A total of 50 epochs were used for the back-propagation training
of MLP. For the DNN, we employed 50 iterations of gradient descent to pretrain the RBM,
which serves as the network’s fundamental building block, and 50 iterations to finetune
the whole network. We utilized a learning rate of 0.001 to train the first Gaussian–Bernoulli
RBM and a learning rate of 0.01 to train the previously mentioned Bernoulli–Bernoulli RBM.

The findings shown in Table 1 show how the DSELM compared to the MLP and DNN
in terms of the training time and testing accuracy. The frame of the magnitude spectrogram
of the speech and music was the input for these designs. It should be noted that when
using the same training data, the DSELM executed far more quickly than the MLP and
DNN. This is mostly attributable to the DSELM’s straightforward training process without
gradual finetuning. This is in contrast to the MLP and DNN, which require repetitive
backpropagation algorithm training and repeated finetuning before the network is ready
for use, respectively. Additionally, before training and testing the MLP and DNN, the
input data have to be normalized to a mean and unit covariance of zero. Our proposed
approach, on the other hand, does not require additional data preprocessing, which is
one of its advantages over the MLP and DNN. Data preprocessing may introduce bias
in the estimation of the mixing gains. Referring to Table 1, it is generally noted that the
DSELM not only outperformed the MLP and DNN in terms of the training time, but also
in terms of the testing accuracy. For all types of mixtures, the MLP and DNN delivered
average accuracies of 93.57% ± 0.4% and 97.02% ± 0.2% while the DSELM had an average
accuracy of 98.78% ± 0.2%. In addition, the proposed method had a high learning speed
and high accuracy and lower computational complexity, and the separation performance
was improved.

In addition, Single-Channel Source Separation (SCSS) is a challenging problem in
signal processing. It involves separating multiple sources that are mixed together in a
single channel. One of the main challenges in SCSS is dealing with interference, which
refers to the presence of other sources in the same channel that can make it difficult to
separate the desired source. Reducing interference response times can be important in
some SCSS research, especially in applications where real-time processing is required. For
example, in speech enhancement applications, reducing the interference response times
can help improve the quality of the separated speech signal by reducing the delay between
the original speech signal and the processed signal.

However, for other SCSS research, reducing the interference response times may not
be as important. For example, in some music-source separation applications, the goal
may be to separate the sources offline without the need for real-time processing. In this
case, the processing time is less important than the quality of the separated sources. In
short, the importance of reducing interference response times in SCSS research depends
on the specific application and the requirements of the system. Furthermore, the real-time
processing of audio signals requires low latency and efficient algorithms. However, this
may not be the primary concern in all applications of Single-Channel Source Separation.
For example, in some offline applications such as audio restoration or audio forensics, the
processing time is less critical compared to the quality of the separated sources. In this
work, the interference response time was not a priority.
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Table 1. The comparative result between the proposed approach and the baseline result.

Method Training Time (s) Testing Accuracy (%)

Guitar and Male

MLP 3335 93.8 ± 0.4

DNN 5667 97.4 ± 0.2

DSELM 8.84 98.7 ± 0.3

Guitar and
Female

MLP 3146 94.1 ± 0.5

DNN 5326 97.2 ± 0.2

DSELM 8.39 99.2 ± 0.2

Bass and Male

MLP 3261 92.5 ± 0.4

DNN 5438 96.4 ± 0.3

DSELM 8.21 98.3 ± 0.3

Bass and Female

MLP 3094 93.9 ± 0.4

DNN 5296 97.1 ± 0.2

DSELM 8.36 98.9 ± 0.2

6. Conclusions

The motivation for this study was the fact that although the machine learning algo-
rithms used to estimate the optimum binary mask have had considerable success at tackling
single-channel audio separation difficulties, their performance level remains undesirable.
An ensemble system of DNNs with stacking was proposed in this paper. By using varying
initializations of each DNN in the module, the DNN ensemble system extracted various
features. Furthermore, by analyzing each DNN’s complementary attribute, the system
could extract the most discriminative features, which consequently improved the binary
mask estimate accuracy. The activation of the penultimate layer of each DNN enabled
the learning of distributed and hierarchical representations. Our experiments revealed
that the proposed technique resulted in a considerably better separation performance
compared with conventional methods. The proposed method had a high learning speed
and high accuracy and lower computational complexity, and the separation performance
was improved.

In future work, we will try to investigate areas such as informed source separation
and deep reinforcement learning.
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Abbreviations
The following abbreviations are used in this manuscript:

m Number of DNN in DEE
n Number of frames
Fm Output of m-th DNN
f , g Activation function
w Weight parameter
ξ Number of hidden layers
E Energy function
v Visible layer
h Hidden layer
b, c Bias
ϕ, v ϕ unit and vth unit
Pm m-th matrix contains features of n frames
σ2 Variance
σ Standard deviation
pmj m-th feature set j-th feature point
k Number of nearest features
H Part mapping of patch Pmj
Rmj Part embedding of patch Pmj
v Dimension of embedded features
µmj k-dimensional column vector of jth patch on the mth feature set
γ Width of the neighborhoods
α Weights of embedding
Lsys Normalized graph Laplacian
D Degree matrix
ε Coefficient for controlling the interdependency
λ Lagrange multiplier
L Lagrange function
Z Number of DNN in DES
φz Output of z-th DNN
tφ φ-th output of ELM
k Number of hidden nodes
S Activation function of ELM
Xφ φ-th input vector
u, v Parameters of activation function
β Output weight of ELM
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