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Abstract: Uncertainty approximation in text classification is an important area with applications in
domain adaptation and interpretability. One of the most widely used uncertainty approximation
methods is Monte Carlo (MC) dropout, which is computationally expensive as it requires multiple
forward passes through the model. A cheaper alternative is to simply use a softmax based on a single
forward pass without dropout to estimate model uncertainty. However, prior work has indicated
that these predictions tend to be overconfident. In this paper, we perform a thorough empirical
analysis of these methods on five datasets with two base neural architectures in order to identify the
trade-offs between the two. We compare both softmax and an efficient version of MC dropout on
their uncertainty approximations and downstream text classification performance, while weighing
their runtime (cost) against performance (benefit). We find that, while MC dropout produces the best
uncertainty approximations, using a simple softmax leads to competitive, and in some cases better,
uncertainty estimation for text classification at a much lower computational cost, suggesting that
softmax can in fact be a sufficient uncertainty estimate when computational resources are a concern.

Keywords: text classification; uncertainty quantification; efficiency

1. Introduction

The pursuit of pushing state-of-the-art performance on machine learning benchmarks
often comes with an added cost of computational complexity. On top of already complex
base models, such as transformer models [1,2], successful methods often employ additional
techniques to improve the uncertainty estimation of these models, as they tend to be over-
confident in their predictions. Though these techniques can be effective, the overall benefit
in relation to the added computational cost is under-studied.

More complexity does not always imply better performance. For example, trans-
formers can be outperformed by much simpler convolutional neural nets (CNNs) when
the latter are pre-trained as well [3]. Here, we turn our attention to neural network un-
certainty estimation methods in text classification, which have applications in domain
adaptation and decision making, and can help make models more transparent and explain-
able. In particular, we focus on a setting where efficiency is of concern, which can help
improve the sustainability and democratisation of machine learning, as well as enable use
in resource-constrained environments.

Quantifying predictive uncertainty in neural nets has been explored using various
techniques [4], with the methods being divided into three main categories: Bayesian
methods, single deterministic networks, and ensemble methods. Bayesian methods include
Monte Carlo (MC) dropout [5] and Bayes by back-prop [6]. Single deterministic networks
can approximate the predictive uncertainty by a single forward pass in the model, with
softmax being the prototypical method. Lastly, ensemble methods utilise a collection of
models to calculate the predictive uncertainty. However, while uncertainty estimation can
improve when using more complex Bayesian and ensembling techniques, efficiency takes
a hit.
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In this paper, we perform an empirical investigation of the trade-off between choosing
cheap vs. expensive uncertainty approximation methods for text classification, with the
goal of highlighting the efficacy of these methods in an efficient setting. We focus on one
single deterministic and one Bayesian method. For the single deterministic method, we
study the softmax, which is calculated from a single forward pass and is computationally
very efficient. While softmax is a widely used method, prior work has posited that the
softmax output, when taken as a single deterministic operation, is not the most depend-
able uncertainty approximation method [5,7]. As such, it has been superseded by newer
methods such as MC dropout, which leverages the dropout function in neural nets to
approximate a random sample of multiple networks and aggregates the softmax outputs of
this sample. MC dropout is favoured due to its close approximation of uncertainty, and
because it can be used without any modification to the applied model. It has also been
widely applied in text classification tasks [8,9].

To understand the cost vs. benefit of softmax vs. MC dropout, we perform experiments
on five datasets using two different neural network architectures, applying them to three
different downstream text classification tasks. We measure both the added computational
complexity in the form of runtime (cost) and the downstream performance on multiple
uncertainty metrics (benefit). We show that by using a single deterministic method like
softmax, instead of MC dropout, we can improve the runtime by 10 times while still
providing reasonable uncertainty estimates on the studied tasks. As such, given the already
high computational cost of deep-neural-network-based methods and recent pushes for more
sustainable ML [10,11], we recommend not discarding efficient uncertainty approximation
methods such as softmax in resource-constrained settings, as they can still potentially
provide reasonable estimations of uncertainty.

Contribution In summary, our contributions are: (1) an empirical study of an efficient
version of MC dropout and softmax for text classification tasks, using two different neural
architectures, and five datasets; (2) a comparison of uncertainty estimation between MC
dropout and softmax using expected calibration error; and (3) a comparison of the cost vs.
benefit of MC dropout and softmax in a setting where efficiency is of concern.

2. Related Work
2.1. Uncertainty Quantification

Quantifying the uncertainty of a prediction can be performed using various
techniques [4,12,13], such as single deterministic methods [14,15], which calculate the
uncertainty on a single forward pass of the model. They can further be classified as internal
or external methods, which describe if the uncertainty is calculated internally in the model
or post-processing the output. Another family of techniques are Bayesian methods, which
combine NNs and Bayesian learning. Bayesian neural networks (BNNs) can also be split
into subcategories, namely variational inference [16], sampling [17], and Laplace approxi-
mation [18]. Some of the more notable methods are Bayes by backprop [6] and Monte Carlo
dropout [5]. One can also approximate uncertainty using ensemble methods, which use
multiple models to better measure predictive uncertainty, compared to using the predictive
uncertainty given by a single model [9,19,20]. Recently, we have seen uncertainty methods
being used to develop methods for new tasks [8,9], where mainly Bayesian methods have
been used. We present a thorough empirical study of how uncertainty quantification
behaves for text classification tasks. Unlike prior work, we do not only evaluate based on
the performance of the methods, but perform an in-depth comparison to much simpler
deterministic methods based on multiple metrics.

2.2. Uncertainty Metrics

Measuring the performance of uncertainty approximation methods can be performed
in multiple ways, each offering benefits and downsides. Niculescu-Mizil and Caruana [21]
explore the use of obtaining confidence values from model predictions to use for supervised
learning. One of the more widespread and accepted methods is using expected calibra-
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tion error (ECE, Guo et al. [22]), while ECE measures the underlying confidence of the
uncertainty approximation, we have also seen the use of human intervention for text classi-
fication [8,9]. There, the uncertainty estimates are used to identify uncertain predictions
from the model and ask humans to classify these predictions. The human-classified data
are assumed to have 100% accuracy and to be suitable for measuring how well the model
scores after removing a proportion of the most uncertain data points. Using metrics such as
ECE, the calibration of models is shown, and this calibration can be improved using scaling
techniques [22,23]. We use uncertainty approximation metrics like expected calibration
error and human intervention (which we refer to as holdout experiments) to measure the
difference in the performance of MC dropout and softmax compared against each other on
text classification tasks.

3. Uncertainty Approximation for Text Classification

We focus on one deterministic method and one Bayesian method of uncertainty
approximation. Both methods assume the existence of an already-trained base model, and
are applied at test time to obtain uncertainty estimates from the model’s predictions. In the
following sections, we formally introduce the two methods we study, namely MC dropout
and softmax. MC dropout is a Bayesian method which utilises the dropout layers of the
model to measure the predictive uncertainty, while softmax is a deterministic method that
uses the classification output. In Figure 1, we visualise the differences between the two
methods and how they are connected to base text classification models.

Figure 1. MC dropout (left) and softmax (right). In the version of MC dropout tested in this paper, a
test input x∗ is passed through model f to obtain a representation z∗, which is then subsequently
passed through a dropout layer multiple times, and passed through the final part of the network to
obtain prediction y∗. For softmax, dropout is disabled and a single prediction is obtained.

3.1. Bayesian Learning

Before introducing the MC dropout method, we quickly introduce the concept of
Bayesian learning. We start by comparing Bayesian learning to a traditional NN. A traditional
NN assumes that the network weights ω ∈ Rn are real but of an unknown value and can be
found through maximum-likelihood estimation, and the input data (x, y) ∈ D are treated
as random variables. Bayesian learning instead views the weights as random variables, and
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infers a posterior distribution p(ω|D) over ω after observing D. The posterior distribution
is defined as follows:

p(ω|D) = p(ω)p(D|ω)

p(D) =
p(ω)p(D|ω)∫
p(ω)p(D|ω)dω

(1)

Using the posterior distribution, we can find the prediction of an input of unseen data x∗

and y∗ as follows:

p(y∗|x∗,D) =
∫

p(y∗|x∗, ω)p(ω|D)dω. (2)

However, the posterior distribution is infeasible to compute due to the marginal likelihood
in the denominator, so we cannot find a solution analytically. We therefore resort to
approximating the posterior distribution. For this approximation, we rely on methods such
as Bayes by backpropagation [6] and Monte Carlo dropout [5].

3.2. Monte Carlo Dropout

At a high level, MC dropout approximates the posterior distribution p(ω|D) by
leveraging the dropout layers in a model [5,24]. Mathematically, it is derived by introducing
a distribution q(ω), representing a distribution of weight matrices whose columns are
randomly set to 0, to approximate the posterior distribution p(ω|D), which results in the
following predictive distribution:

q(y∗ | x∗,D) =
∫

p(y∗|x∗, ω)q(ω)dω. (3)

As this integral is still intractable, it is approximated by taking K samples from q(ω) using
the dropout layers of a learned network f , which approximates p(y∗|x∗, ω). As such,
calculating p(y∗|x∗, ω)q(ω) amounts to leaving the dropout layers active during testing,
and approximating the integral amounts to aggregating predictions across multiple dropout
samples. For the proofs, see Gal and Ghahramani [5].

MC dropout requires multiple forward passes, so its computational cost is a multiple
of the cost of performing a forward pass through the entire network. As this is obviously
more computationally expensive than the single forward pass required for deterministic
methods, we provide a fairer comparison between softmax and MC dropout by using
an efficient version of MC dropout which caches an intermediate representation and
only activates the dropout layers of the latter part of the network. As such, we obtain a
representation z∗ by passing an input through the first several layers of the model, and
pass only this representation through the latter part of the model multiple times, reducing
the computational cost while approximating the sampling of multiple networks.

Combining Sample Predictions

With multiple samples of the same data point, we have to determine how to combine
them to quantify the predictive uncertainty. We test two methods that can be calculated
using the logits of the model, requiring no model changes. The first approach, which we
refer to as mean MC, is averaging the output of the softmax layer from all forward passes:

ui =
1
K

K

∑
k=1

Softmax
(

f (zk
i )
)

, (4)

where zk
i is a representation of the i’th data point of the k’th forward pass, and f is a

fully-connected layer. The second method we use to quantify the predictive uncertainty is
dropout entropy (DE) [8], which uses a combination of binning and entropy:
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bi =
1
K

BinCount(argmax( f (zi))) (5)

ui = −
C

∑
j=1

bi(j) log bi(j) (6)

where BinCount is the number of predictions of each class and b is a vector the probabilities
of a class’s occurrence based on the bin count. We show the performance of the two
methods in Section 4.3.2.

3.3. Softmax

Softmax, a common normalising function for producing a probability distribution
from neural network logits, is defined as follows:

ui =
ezi

∑C
j=1 ezi(j)

, (7)

where zi are the logits of the i’th data point. The softmax yields a probability distribu-
tion over the predicted classes. However, the predicted probability distribution is often
overconfident toward the predicted class [5,7]. The issue of softmax’s overconfidence can
also be exploited [5,25]—in the worst case, this leads to the softmax producing imprecise
uncertainties. However, model calibration methods like temperature scaling have been
found to lessen the overconfidence to some extent [22]. As temperature scaling also incurs
a cost in terms of runtime in order to find an optimal temperature, we choose to compare
raw softmax probabilities to the efficient MC dropout method described previously, though
uncertainty estimation could potentially be improved by scaling the logits appropriately.

4. Experiments and Results

We consider five different datasets and two different base models in our experi-
ments. Additionally, we conduct experiments to determine the optimal hyperparameters
for the MC dropout method, particularly the optimal amount of samples which affects
the efficiency and performance of MC dropout. In the paper, we focus on the results
of the 20 Newsgroups dataset; the results of the other four datasets are shown in the
Appendices B and C. We further find the optimal dropout percentage in Appendix A.3.

4.1. Data

To test the predictive uncertainty of the two methods, we use five datasets for diverse
text classification tasks. We use the following five datasets: The 20 Newsgroups dataset [26]
is a text classification consisting of a collection of 20.000 news articles. The news articles are
classified into 20 different classes. The Amazon dataset [27] is a sentiment classification task.
We use the ‘sports and outdoors’ category, which consists of 272.630 reviews ranging from 1
to 5. The IMDb dataset [28] is also a sentiment classification task. However, compared to the
Amazon dataset, this is a binary problem. The dataset consists of 50.000 reviews. The SST-2
dataset [29] is also a binary sentiment classification dataset, consisting of 70.042 sentences.
Lastly, we also use the Wiki dataset [30], which is a citation needed task, i.e., we predict if a
citation is needed. The dataset consists of 19.998 texts. For the 20 Newsgroups, Amazon,
IMDb, and Wiki datasets, we use a split of 60, 20 and 20 for the training, validation and
test data, the data in splits have been selected randomly. We used the provided splits
for the SST-2 dataset, but due to the test labels being hidden, we used the validation set
for testing. We select these datasets as they are large, the tasks are diverse, and they
cover multiple domains of text. Additionally, they represent well-studied and standard
benchmarks in the field of text classification, which helps with the reproducibility of the
results and comparison with baselines.
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4.2. Experimental Setup

We use two different base neural architectures with two different embeddings in our
experiments. To recreate baseline results, the first model is the same model as proposed
in [8], which is a CNN using pre-trained GloVe embeddings (Glove-CNN) with a dimension
of 200 [31]. The second model uses a pre-trained BERT model [32] fine-tuned as a masked
language model on the dataset under evaluation to obtain contextualised embeddings,
which are then input to a CNN with 4 layers (BERT-CNN). The selection of these models
allows us to compare the established baseline architecture from [8] with a more modern
version of it which takes advantage of large language models. For both models, we use
the final dropout layer for MC dropout. Both models are optimised using Adam [33] and
are trained for 1000 epochs, with early stopping after 10 iterations if there have been no
improvements, and we set the learning rate to 0.001.

MC Dropout Sampling

To make full use of MC dropout, we first determine the optimal number of forward
passes through the model needed to obtain the best performance while maintaining high
efficiency. This hyper-parameter search is imperative because the MC dropout performance
and efficiency are correlated with the number of samples generated. To make a fair
comparison against the already cheap softmax method, we want to find the minimum
number of samples needed to approximate a good uncertainty. In Table 1, we show the
performance, using the F1 score, of the MC dropout method with the BERT-CNN model on
the 20 Newsgroups dataset for the following number of samples: [1, 5, 10, 25, 50, 100, 1000].
The table shows how the performance of the uncertainty approximation increases, given
the number of samples. However, the performance gained by the number of samples falls
off at 50. Given this, we use 50 MC samples in our experiments in order to balance good
performance and efficiency.

Table 1. This table shows how the number of samples affect the performance of the MC dropout
method, on the 20 Newsgroups dataset, using the BERT-CNN model. The results are reported using
macro F1.

1 10 25 50 100 1000

0.8212 0.8623 0.8540 0.8591 0.8559 0.8573

4.3. Evaluation Metrics

We use complementary evaluation metrics to benchmark the performance of MC
dropout and softmax. Namely, we measure how well each of the methods identify uncertain
predictions as well as the runtime of the methods.

4.3.1. Efficiency

To quantify efficiency, we measure the runtime of each of the methods during inference
and the calculation of the uncertainties. Since we do not calculate uncertainties during
training, this is only performed on the test sets. Training the model is independent of the
uncertainty estimation methods, since we only use them to quantify the uncertainty of the
predictions of the model. We therefore only calculate the runtime of each of the methods
based on the test data.

4.3.2. Performance Metrics

We use two main uncertainty metrics: test data holdout and expected calibration error
(ECE). These metrics give us an estimation of the epistemic uncertainty of the model, i.e.,
the lack of certainty inherent in the model and its predictions. We do not cover metrics of
aleatoric uncertainty in this paper, which focus on the inherent randomness of the data itself
and which could be tested through the introduction of, e.g., label noise. For base model
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performance, we record the macro F1 score on the 20 Newsgroups, IMDb, Wiki, and SST-2
datasets, and the accuracy on the Amazon dataset.

Test data holdout: This metric ranks all samples based on the predictive uncertainty,
and calculates the F1 and accuracy scores on a percentage of the samples by removing
those which the model is least certain about. In other words, a method is better if it
achieves a greater improvement in performance metrics (e.g., F1) when removing the
most uncertain samples. As such, this metric expresses the relationship between model
calibration and accuracy. We choose to remove 10%, 20%, 30% and 40% of the least certain
samples for our experiments. This metric shows how well the two methods can identify
uncertain predictions of the model, as reflected by improvements in performance when
more uncertain predictions are removed [8]. In our experiments, we use the aforementioned
mean MC, DE, and softmax method to calculate the uncertainties; we further add the
penultimate layer variance (PL-Variance), where the PL-Variance utilises the variance of
the last fully-connected layer as the uncertainty [34].

Expected calibration error: As a second uncertainty estimation metric, we use the
expected calibration error (ECE, Guo et al. [22]), which measures, in expectation, how
confident the predictions for both correct and incorrect predictions are. This tells us
how well each of the MC dropout and softmax methods estimate the uncertainties at the
level of probability distributions, as opposed to the holdout method which only looks at
downstream task performance. ECE works by dividing the data into m bins, where each
bin in B contains data that is within a certain range of probabilities, using the probability of
the predicted class. Formally, ECE is defined as:

ECE =
M

∑
m=1

|Bm|
n
|acc(Bm)− con f (Bm)| (8)

where M is the size of the dataset and acc and con f is the accuracy and mean confidence
(i.e., predicted class probabilities) of the bin Bm.

Finally, to visualise the difference between the MC dropout and softmax, we create
both confidence histograms and reliability diagrams [22]. The reliability diagrams show
how close the models are to perfect calibration, where perfect calibration means that the
models accuracy and confidence is equal to the bins confidence range. In all cases, we
show reliability diagrams by comparing histograms of accuracy and confidence across
confidence bins; as such, when confidence exceeds accuracy in a given bin, that indicates
how overconfident the model is for that bin. The reliability diagrams help us visualise the
ECE, by showing the accuracy and mean confidence of each bin, where each bin consists of
the data which have a confidence within the range of the bin. To complement the reliability
diagrams, we also use confidence histograms, which show the distribution of confidence.

4.4. Efficiency Results

In Table 2, we display the runtime of the different model and method combinations.
The runtime for the forward passes is calculated as a sum of all the forward passes on
the entire dataset, and the runtime for the uncertainty methods are calculated for the
entire dataset. Observing the results, we see that softmax is overall faster, and is approxi-
mately 10 times faster when only looking at the forward passes, and using more complex
aggregation methods in MC dropout, like DE, can be computationally heavy.
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Table 2. Runtime measured in seconds for both MC dropout (top) and softmax (bottom). The times
are on the full datasets split into the runtime of the forward passes and the runtime of calculating the
uncertainty.

Forward Passes Mean MC DE

20 Newsgroups 1.0876 0.0003 12.3537
IMDb 1.386 0.0018 216.11
Amazon 4.9126 0.0017 194.08
WIKI 1.1149 0.0010 15.8467
SST-2 1.0076 0.0003 3.4785

Forward Passes Softmax PL-Variance

20 Newsgroups 0.0130 0.0002 0.0001
IMDb 0.0387 0.0003 0.0003
Amazon 0.4067 0.0004 0.0002
WIKI 0.0149 0.0002 0.0001
SST-2 0.0037 0.0002 0.0001

4.5. Test Data Holdout Results

Table 3 and the table in Appendix B show the performance of the two uncertainty
approximation methods using the different datasets and models. The tables show the macro
F1 score and accuracy (depending on the datasets), and the ratio of improvement from
holding out data in parentheses. We observe that, in most cases, either dropout entropy
(DE) or softmax has the highest score and improvement ratio. However, in most cases
the two are close in performance and improvement ratio. We further observe that mean
MC also performs well and is almost on par with DE; however, mean MC is a much more
efficient method compared to DE, so the slight trade-off in performance could be beneficial
in resource-constrained settings or non-critical applications.

Table 3. Macro F1 score and improvement rate for the 20 Newsgroups dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.8591 0.8985 (1.0459) 0.9225 (1.0739) 0.9406 (1.0949) 0.9487 (1.1043)
DE 0.8591 0.9050 (1.0534) 0.9390 (1.0930) 0.9584 (1.1156) 0.9703 (1.1294)
Softmax 0.8576 0.9072 (1.0578) 0.9452 (1.1021) 0.9620 (1.1216) 0.9742 (1.1360)
PL-Variance 0.8576 0.9006 (1.0501) 0.9246 (1.0781) 0.9403 (1.0964) 0.9484 (1.1058)

GloVe

Mean MC 0.7966 0.8450 (1.0608) 0.8674 (1.0888) 0.8846 (0.1104) 0.8960 (1.1248)
DE 0.7966 0.8469 (1.0631) 0.8855 (1.1116) 0.9155 (1.1492) 0.9416 (1.1820)
Softmax 0.7959 0.8465 (1.0636) 0.8846 (1.1115) 0.9149 (1.1496) 0.9402 (1.1813)
PL-Variance 0.7959 0.8436 (1.0599) 0.8667 (1.0891) 0.8848 (1.1118) 0.8966 (1.1266)

4.6. Model Calibration Results

To further investigate the differences between MC dropout and softmax, we utilise the
expected calibration error (ECE) to observe the differences in the predictive uncertainties. In
Table 4, we show the accuracy and ECE on the three datasets using the BERT embeddings.

The results from our holdout experiments in Table 3 and in Appendix B, combined
with the results from our ECE calculations in Table 4, all point in the direction of the efficient
MC dropout used in this study and softmax performing on par to each other, but with a
large gap in runtime as shown in Table 2. To obtain a better understanding of if and where
the two methods diverge, we plot the reliability diagrams and confidence histograms as
described in Section 4.3.2.
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Table 4. Accuracy and ECE of the two uncertainty approximation approaches on the three selected
datasets.

Accuracy ECE

20 Newsgroups—Mean MC 0.8655 0.0275
20 Newsgroups—Softmax 0.8642 0.0253

IMDb—Mean MC 0.9354 0.0061
IMDb—Softmax 0.9364 0.0043

Amazon—Mean MC 0.7466 0.0083
Amazon—Softmax 0.7474 0.0097

WIKI—Mean MC 0.9227 0.0370
WIKI—Softmax 0.9230 0.0279

SST-2—Mean MC 0.7408 0.0535
SST-2—Softmax 0.7442 0.0472

Plot description: In Figures 2 and 3, we show the reliability diagrams and the confi-
dence histograms on the 20 Newsgroups dataset using both our BERT-CNN and GloVe-
CNN with both the MC dropout method and softmax. We create the reliability diagrams
using 10 bins and the confidence histograms with 20. The reliability diagram’s and con-
fidence histogram’s bins are an interval of confidence. We use 20 bins for the confidence
histograms to obtain a more fine-grained view of the distribution. In the reliability diagram,
the x-axis is the confidence and the y-axis is the accuracy. For the confidence histogram
the x-axis is again the confidence and the y-axis is the percentage of the samples in the
given bin.

Expectations: While ECE can quantify the performance of the models on a somewhat
lower level than our other metrics, the metric can be deceived, especially in cases where
models score high in accuracy. It will favour overconfident models; therefore, we expect
the results to favour softmax. Looking at the ECE, we can observe that it will favour an
overconfident method when the model achieves high accuracy. With this in mind, we
expect the results to be skewed towards the softmax.

Observations reliability diagram: From the reliability diagram, we observe that the
difference in confidence and outputs are small. The difference between the two uncertainty
methods is also minimal, including both BERT and GloVe embeddings, suggesting minimal
potential gains from using MC dropout in an efficient setting while still incurring a high cost
in terms of runtime. We determine that there is minimal difference by visually inspecting
the plots, and by observing the ECE displayed in Table 4. We further observe that in both
MC dropout and softmax that the model worsens when we use the GloVe embeddings.

Figure 2. Reliability diagram (left, displayed as a stacked bar chart comparing accuracy and con-
fidence) and confidence histogram (right) of 20 Newsgroups using BERT-CNN. Softmax and the
efficient version of MC dropout tested in this paper are relatively similar in their calibration (a higher
value for confidence than accuracy in any bin indicates overconfidence in that bin). At the same time,
as indicated by the confidence histogram, softmax still produces more confident estimates on average.
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Figure 3. Reliability diagram (left, displayed as a stacked bar chart comparing accuracy and confi-
dence) and confidence histogram (right) of 20 Newsgroups using GloVe-CNN. Comparing the plots
of the figure to Figure 2, we see slight differences in both the reliability diagram and the confidence
histogram. Most noticeably, we see slight differences in the reliability diagram, where we see more
significant gaps between the confidence and the outputs, which indicates a less calibrated model due
to the GloVe embeddings.

Observations confidence histogram: As mentioned earlier, we know that the softmax
tends to be overconfident, which can be seen in the percentage of samples in the last bin.
The MC dropout method, on the other hand, utilises the probability space to a greater extent.
We include reliability diagrams and confidence histograms for the two other datasets in
Appendix C.

Noise experiment: Inspecting both Table 4 showing the ECE values, and the perfor-
mances in Tables 3, A2 and A3, we observe that using our two uncertainty estimation
methods, we achieved very high F1 scores and accuracies and low ECEs. We hypothesised
that high performance could lead to softmax achieving high ECE, due to naturally hav-
ing high confidence, compared to MC dropout. We added zero-mean Gaussian noise to
the 20 Newsgroups test embeddings and reperformed our ECE experiments to test our
hypothesis. In Figure 4, we show the reliability diagram of the experiment with added
noise, which shows the MC dropout outperforming softmax. To further build on the theory,
we also inspect the confidence histogram, showing that softmax is still overconfident and
the difference between the accuracy and mean confidence is high. This suggests that MC
dropout is more resilient to noise and, in cases where the performance of a model is low,
MC dropout could potentially obtain more precise predictive uncertainties.

Figure 4. Reliability diagram of 20 Newsgroups dataset (displayed as a stacked bar chart comparing
accuracy and confidence) using the BERT-CNN model, with added zero-mean Gaussian noise to the
BERT embeddings. Softmax is highly overconfident compared to MC dropout (despite the efficient
setting in this paper where only the final layers of the model are used for dropout), as indicated by
the large gap between average confidence and accuracy in each bin of the histogram.

5. Discussion and Conclusions

In this paper, we perform an in-depth empirical comparison of using the MC dropout
method in an efficient setting and the more straightforward softmax method. By doing
a thorough empirical analysis of the two methods, shown in Section 4.3.2, using various
metrics to measure their performance on both efficiency and performance levels, we see
that in our holdout experiments in Table 3, the two methods perform approximately the
same. Looking at the expected calibration error (ECE) experiments, the results again
show that the MC dropout and softmax method perform somewhat equally, which we
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have shown in Section 4.6. We observe differences in the results as we observe a lower
accuracy score, which we show in our noise experiment, which is also shown in Section 4.6.
Prior research [7] investigated out-of-distribution analysis and found that softmax, both
for sentiment classification and text categorisation tasks, can detect out-of-distribution
data points efficiently. It further showcases that in these two tasks, the softmax can also,
to some extent, perform well as a confidence estimator. While we show that the two
methods perform almost equally, when comparing the predictive performance, the cost of
using MC dropout is at a minimum 10 times that of running softmax, even in the efficient
setting where only the final layer is dropped out, depending on the post-processing of
the uncertainties, as we show in Section 4.4. The post-processing cost of MC dropout can
quickly explode when used on larger datasets or if a more expensive method like dropout
entropy is used instead of simpler approaches.

Given this, when could it be appropriate to use the more efficient softmax over MC
dropout for estimating predictive uncertainty? Our results suggest that when the base
accuracy of a model is high, the differences in uncertainty estimation between the two
methods is relatively low, likely due to the higher confidence of the softmax method.
In this case, if latency or resource efficiency is a concern such as on edge devices, it
may be appropriate to rely on a quick estimate using softmax as opposed to a more
cumbersome method. However, when model accuracy is expected to be low, softmax is
still overconfident compared to MC dropout, so estimates using a single deterministic
softmax may be unreliable. The downstream application may also impact this; in critical
scenarios such as health care, it may still be more appropriate to use an inefficient method
with better predictive uncertainty for improved decision-making. In low-risk applications
where models are known to be accurate and efficiency is of concern, we have demonstrated
that softmax can potentially be sufficient.

6. Limitations

We highlight a few key limitations of the study to further contextualise the work.
First, we note that the study is restricted to neural-network-based methods, while other
methods in ML may be useful to study for uncertainty estimation as well. Second, we
note that we test a plain softmax method without temperature scaling—while calibrating a
useful temperature could induce a cost in terms of time, it would potentially lead to better
uncertainty estimation. Finally, we note that we also test an efficient form of MC dropout
which only drops out a portion of the network; while this demonstrates that in an efficient
setting, softmax can be as good or better at uncertainty estimation than MC dropout, full
MC dropout still may have better uncertainty estimation when efficiency is not a concern.
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Appendix A. Reproducibility

Appendix A.1. Computing Infrastructure

All experiments were run on a Microsoft Azure NC6-series server. With the following
specifications: 6 Inter Xeon-E5-2690 v3, NVIDIA Tesla K80 with 12 GB RAM and 56 GB
of RAM.
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Appendix A.2. Hyperparameters

We used the following hyperparameters for training our CNN model and CNN GloVe
model: epochs: 1000; batch size: 256 for 20 Newsgroups, IMDb SST-2 and Wiki, and 128
for Amazon; early stopping: 10; learning rate: 0.001. For fine-tuning BERT, we used the
following set of hyperparameters: epochs: 3; warm-up steps 500; weight decay 0.01; batch
size 8; masked language model probability: 0.15. All hyperparameters are set without
performing cross-validation.

Appendix A.3. Dropout Hyperparameters

The performance of the MC dropout method is correlated with the dropout probability.
We therefore run our CNN model using BERT embeddings on the 20 Newsgroups dataset
with the following dropout probabilities [0.1, 0.2, 0.3, 0.4, 0.5]. In Table A1, we show the
results using the five different dropout probabilities, where we see that it stops improving
at 0.4 and 0.5 percentage dropout. As such, we use a dropout of 0.5 for our experiments.

Table A1. We test how the dropout probabilities correlate with the performance of MC dropout,
using the BERT-CNN model. The results are reported in terms of macro F1.

0% 10% 20% 30% 40%

0.1 0.8598 0.9010 0.9255 0.9408 0.9483
0.2 0.8599 0.9005 0.9256 0.9408 0.9502
0.3 0.8596 0.9007 0.9245 0.9412 0.9491
0.4 0.8601 0.8996 0.9253 0.9425 0.9502
0.5 0.8591 0.8985 0.9225 0.9406 0.9487

Appendix B. Result Tables

Table A2. Macro F1 score and improvement rate for the IMDb dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.9354 0.9668 (1.0335) 0.9829 (1.0508) 0.9901 (1.0585) 0.9930 (1.0616)
DE 0.9354 0.9679 (1.0347) 0.9789 (1.0465) 0.9787 (1.0463) 0.9798 (1.0475)
Softmax 0.9364 0.9691 (1.0349) 0.9847 (1.0516) 0.9913 (1.0586) 0.9940 (1.0615)
PL-Variance 0.9364 0.9678 (1.0335) 0.9837 (1.0506) 0.9901 (1.0574) 0.9933 (1.0608)

GloVe

Mean MC 0.8825 0.9170 (1.0391) 0.9416 (1.0670) 0.9614 (1.0894) 0.9730 (1.1025)
DE 0.8825 0.9183 (1.0406) 0.9430 (1.0686) 0.9449 (1.0707) 0.9455 (1.0714)
Softmax 0.8824 0.9154 (1.0374) 0.9406 (1.0660) 0.9598 (1.0878) 0.9724 (1.1020)
PL-Variance 0.8824 0.9162 (1.0383) 0.9415 (1.0670) 0.9611 (1.0892) 0.9736 (1.1034)

Table A3. Accuracy score and improvement rate for the Amazon (Sports and Outdoors) dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.7466 0.7853 (1.0518) 0.8137 (1.0898) 0.8392 (1.1240) 0.8605 (1.1526)
DE 0.7466 0.7850 (1.0513) 0.8191 (1.0871) 0.8492 (1.1374) 0.8684 (1.1631)
Softmax 0.7474 0.7875 (1.0537) 0.8225 (1.1005) 0.8562 (1.1456) 0.8845 (1.1834)
PL-Variance 0.7474 0.7856 (1.0510) 0.8144 (1.0896) 0.8404 (1.1244) 0.8610 (1.1520)

GloVe

Mean MC 0.6979 0.7369 (1.0559) 0.7675 (1.0998) 0.7962 (1.1408) 0.8214 (1.1770)
DE 0.6979 0.7366 (1.0555) 0.7716 (1.1056) 0.8019 (1.1490) 0.8102 (1.1610)
Softmax 0.6984 0.7374 (1.0559) 0.7730 (1.1068) 0.8067 (1.1550) 0.8359 (1.1969)
PL-Variance 0.6984 0.7358 (1.0536) 0.7676 (1.0990) 0.7961 (1.1398) 0.8209 (1.1753)
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Table A4. Macro F1 score and improvement rate for the Wiki dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.9227 0.9569 (1.0370) 0.9742 (1.0557) 0.9824 (1.0646) 0.9878 (1.0705)
DE 0.9227 0.9566 (1.0367) 0.9743 (1.0559) 0.9767 (1.0585) 0.9762 (1.0579)
Softmax 0.9230 0.9561 (1.0358) 0.9745 (1.0558) 0.9834 (1.0655) 0.9869 (1.0692)
PL-Variance 0.9230 0.9566 (1.0364) 0.9748 (1.0561) 0.9827 (1.0647) 0.9869 (1.0693)

GloVe

Mean MC 0.8559 0.8958 (1.0466) 0.9168 (1.0712) 0.9325 (1.0896) 0.9379 (1.0958)
DE 0.8559 0.8914 (1.0415) 0.9146 (1.0686) 0.9269 (1.0830) 0.9319 (1.0889)
Softmax 0.8539 0.8941 (1.0471) 0.9181 (1.0752) 0.9312 (1.0906) 0.9393 (1.1001)
PL-Variance 0.8539 0.8958 (1.0491) 0.9209 (1.0785) 0.9322 (1.0918) 0.9366 (1.0969)

Table A5. Macro F1 score and improvement rate for the SST-2 dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.7407 0.7706 (1.0403) 0.7907 (1.0674) 0.8149 (1.1001) 0.8432 (1.1383)
DE 0.7407 0.7744 (1.0454) 0.8008 (1.0811) 0.8265 (1.1158) 0.8472 (1.1437)
Softmax 0.7442 0.7706 (1.0354) 0.8006 (1.0758) 0.8246 (1.1080) 0.8451 (1.1355)
PL-Variance 0.7442 0.7719 (1.0372) 0.7964 (1.0701) 0.8100 (1.0884) 0.8339 (1.1205)

GloVe

Mean MC 0.7397 0.7658 (1.0354) 0.7853 (1.0354) 0.8013 (1.0833) 0.8202 (1.1088)
DE 0.7397 0.7648 (1.0339) 0.7940 (1.0735) 0.7998 (1.0812) 0.8204 (1.1091)
Softmax 0.7442 0.7686 (1.0328) 0.7918 (1.0639) 0.8023 (1.0780) 0.8217 (1.0141)
PL-Variance 0.7442 0.7686 (1.0328) 0.7918 (1.0639) 0.8023 (1.0780) 0.8204 (1.1023)

Appendix C. Model Calibration Plots

Figure A1. Reliability diagram (left) and confidence histogram (right) of IMDb using BERT-CNN.

Figure A2. Reliability diagram (left) and confidence histogram (right) of IMDb using GloVe-CNN.
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Figure A3. Reliability diagram (left) and confidence histogram (right) of Amazon using BERT-CNN.

Figure A4. Reliability diagram (left) and confidence histogram (right) of Amazon using GloVe-CNN.

Figure A5. Reliability diagram (left) and confidence histogram (right) of WIKI using BERT-CNN.

Figure A6. Reliability diagram (left) and confidence histogram (right) of WIKI using GloVe-CNN.

Figure A7. Reliability diagram (left) and confidence histogram (right) of SST-2 using BERT-CNN.
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Figure A8. Reliability diagram (left) and confidence histogram (right) of SST-2 using GloVe-CNN.
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