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Abstract: With the increasing growth of data dimensionality, feature selection has become a crucial
step in a variety of machine learning and data mining applications. In fact, it allows identifying the
most important attributes of the task at hand, improving the efficiency, interpretability, and final
performance of the induced models. In recent literature, several studies have examined the strengths
and weaknesses of the available feature selection methods from different points of view. Still, little
work has been performed to investigate how sensitive they are to the presence of noisy instances in
the input data. This is the specific field in which our work wants to make a contribution. Indeed, since
noise is arguably inevitable in several application scenarios, it would be important to understand
the extent to which the different selection heuristics can be affected by noise, in particular class
noise (which is more harmful in supervised learning tasks). Such an evaluation may be especially
important in the context of class-imbalanced problems, where any perturbation in the set of training
records can strongly affect the final selection outcome. In this regard, we provide here a two-fold
contribution by presenting (i) a general methodology to evaluate feature selection robustness on class
noisy data and (ii) an experimental study that involves different selection methods, both univariate
and multivariate. The experiments have been conducted on eight high-dimensional datasets chosen
to be representative of different real-world domains, with interesting insights into the intrinsic degree
of robustness of the considered selection approaches.

Keywords: feature selection; high-dimensional and imbalanced data; noisy data; robustness to noise

1. Introduction

In recent years, the dimensionality of data has grown exponentially, and with it,
the need to use sophisticated computational techniques for the extraction of meaningful
patterns from data. In this scenario, the process of feature selection, which involves
decreasing the number of features by choosing a subset of them, plays a crucial role in
reducing the dimensionality and complexity of the problems at hand [1]. Indeed, it allows
the selection of an appropriate subset of features while preserving all the most predictive
information. By removing irrelevant and redundant features, it may significantly facilitate
the learning process, with important benefits in terms of computational efficiency, model
interpretability, and domain understanding.

On the other hand, in a variety of application areas, high dimensionality often comes
with other issues embedded in the nature of the data, including noise [2,3]. In the context
of supervised learning tasks, in particular, the presence of incorrectly labeled instances can
strongly affect the model induction process and the resulting generalization performance.
In turn, the outcome of a feature selection process can be affected by noisy data values
introduced in a random, and sometimes unpredictable, way into the dataset [4,5]. Since
these errors often cannot be identified and corrected later, it is very important to study
the impact of noise on the algorithms used at each stage of the learning process, including
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feature selection, in order to understand which techniques can be more reliable and robust,
i.e., less sensitive to noise.

Actually, several research works have investigated the intrinsic robustness of different
classification approaches, both on real-world and synthetic datasets, with a main focus
on class noise [6–10]. Conversely, a limited amount of research has been performed to
study the extent to which the available feature selection algorithms can be affected by
common data quality issues such as noise. In the context of feature selection studies,
indeed, attention has been mainly devoted to identifying small subsets of features that
can maximize the final predictive performance, and only recently the overall robustness
of the feature selection process, with respect to both variations in the input data and data
quality issues, has been pointed out as a crucial aspect for real-world applications [11–14].
Although this topic is unquestionably relevant, investigations on the robustness of feature
selection methods are limited. Recent studies have addressed this issue by exploring the
robustness of feature selection in relation to the change of the input data; for instance, due
to the random variations introduced by the sampling procedure, or by proposing some
methods and metrics for assessing how much feature selection can produce consistent
results. Additional experimental research investigated the stability of feature selection
on training data with different compositions in various application scenarios, giving the
foundation and methodological insights for researching the stability of feature selection in
the presence of noise.

This work aims to give a contribution to this field by presenting an evaluation of
feature selection robustness on class noisy data. In this research, we intended noise as the
distortion of the class label instances. Specifically, our study focuses on the impact of noise
on both (a) the composition of selected feature subsets, and (b) the final performance of
models induced using these subsets. To conduct such an evaluation, a methodology has
been devised that involves injecting artificial noise into the training data in a random but
controlled manner; specifically, the class labels of part of the records are perturbed without
modifying the overall class distribution, i.e., the fraction of records that belong to each class
(proportional random corruption). The noise injection process is repeated several times in
order to assess the average impact of noise on the selected feature subsets: the more robust
the selection method, the more similar the subsets selected from the perturbed data will be
to those selected from the original data. The differences in the composition of the selected
subsets will also impact the final performance of the prediction model, although such a
performance may also be highly dependent on the intrinsic robustness of the learning
algorithm used to induce the model itself.

In the context of different experimental protocols (specifically, simple holdout and
cross-validation), the proposed methodology has been applied to eight high-dimensional
datasets representative of learning scenarios with different characteristics in terms of
dimensionality, instances-to-features ratio, and distribution of classes. In particular, we
considered seven feature selection methods well known in the literature, both univariate
approaches (that evaluate every single feature independently of the others) and multivariate
ones (that can capture the inter-dependencies among the features). For each of them, the
selection robustness was evaluated for different levels of data perturbation, as well as for
feature subsets of different cardinalities, in order to achieve a better understanding of their
behavior and practical applicability in the presence of noise.

Despite the specificity of each application domain and of every single dataset, the
results of our study provide interesting insights into the noise robustness of the different
methods considered, paving the way for deeper investigations in this field.

The remainder of this paper is structured as follows. Section 2 briefly presents some
background concepts and related works relevant to our research. The adopted method-
ology is described in Section 3, while Section 4 illustrates all the materials and methods
involved in our study, including the feature selection methods and the datasets consid-
ered for the experimental evaluation. The results of our analysis are summarized and
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discussed in Section 5. Finally, Section 6 gives some concluding remarks and outlines future
research directions.

2. Background and Related Work

Most machine learning works are conducted with the implicit assumption that the
input data is noise-free or that noise in the data is negligible. Such an assumption, however,
is often highly optimistic since real-world datasets may be affected by several data quality
problems, including noise, that may significantly impact the models induced from the
data [3]. The term noise, in general, is used to refer to any random error introduced in the
values measured for the attributes that characterize the data at hand. Specifically, in the
context of supervised learning tasks, we usually distinguish between noise in the attributes
used for prediction (attribute noise) and noise in the target attribute (label or class noise).
Compared to class noise, attribute noise is typically less harmful [2,10], but it may still
bring problems to data modeling and analysis.

Two main approaches have been investigated in the literature to address the issue of
noise: (i) data cleaning and (ii) the use of robust learning techniques. As regards data cleaning,
it involves the identification of instances that present noisy values and their subsequent
correction or elimination [15–18]. In many real-life datasets, however, the identification
of noisy values may be problematic, especially in the case of incorrectly assigned class
labels, due to the different potential sources of such kinds of errors [10]. On the other hand,
several research efforts have focused on studying the robustness of different classification
approaches in a variety of problem settings [8,19–21] in order to understand which of
them can perform reliably even in the presence of noise. Despite the contributions in this
field, however, noise remains a critical issue, especially when the data presents an inherent
complexity due to factors such as class imbalance and high dimensionality [9,22].

In particular, very few works have investigated the impact of noise on dimensionality
reduction techniques, such as feature selection, that are almost indispensable in several
application scenarios. In this respect, Zhang et al. [23] showed that label noise can strongly
affect the outcome of feature selection for microarray data. In the same domain, the
robustness of feature selection with varying levels of noise was explored in [13,24]. A
feature selection approach for classification tasks polluted by class noise is presented
in [4], based on a probabilistic label noise model combined with a nearest neighbors-based
entropy estimator. Similarly, He et al. [22] proposed an ensemble selection approach to
select reliable features in the presence of label noise.

However, an in-depth investigation of the degree of robustness of different feature
selection heuristics with respect to noise is still lacking, despite the undoubted relevance
of this issue in knowledge discovery tasks [1]. From a slightly different perspective,
recent literature has explored the robustness of feature selection with respect to changes
in the input data, e.g., due to random variations introduced by the sampling procedure
or the specific experimental protocols used to build the training data. In this respect,
a number of methodologies and metrics have been proposed to evaluate the extent to
which feature selection can lead to stable outcomes [12,25,26]. Also, in various application
scenarios, a number of experimental studies have investigated the stability of feature
selection on training data with varying composition [27–32]. These stability studies provide
methodological insights and practical guidelines, which could also be useful for studying
the robustness of feature selection to noise. This is indeed the context in which our study is
grounded, as detailed in what follows.

3. Methodology

As in most studies devoted to investigating the impact of noise on the adopted learning
algorithms, our methodological framework involves a binary classification setting, with
a positive and a negative class. Note that this does not imply a loss of generality since a
multi-class problem can always be reduced to a set of binary subproblems. Basically, our
approach involves corrupting a given set of training instances, with multiple iterations



Information 2023, 14, 438 4 of 19

of noise injection, and then evaluating the average impact of noise on the composition of
the selected feature subsets: the less the selected subsets change in the presence of noise,
the higher the stability of the selection process. Also, the feature subsets selected from the
original and the corrupted data are compared in terms of predictive performance by using
them to train a proper classifier. Note that the overall study focuses on the impact of class
noise, which is recognized as the most influential and harmful noise source in supervised
learning tasks.

3.1. Noise Injection

The noise injection procedure consists in randomly modifying the class label of a
certain number of training instances. Specifically, we adopt the proportional random
corruption approach devised by Zhu et al. [33]. Thanks to this approach, we can perturb
the input data without changing the original distribution of the classes, i.e., the fraction of
positive and negative instances, allowing us to evaluate the impact of noise on the outcome
of feature selection without it being affected by other factors introduced by the perturbation
such as a different level of class imbalance.

Specifically, following the notation commonly adopted in the literature, we denote
the minority class as positive and the majority class as negative. The total number of
records to be perturbed is determined based on the number numP of positive instances.
More precisely, chosen a noiseP fraction of positive instances to be corrupt, a number
noiseP · numP of positive instances are randomly selected from the input dataset, whose
class is made negative. To keep the original distribution of the classes unchanged, the same
number noiseP · numP of negative instances, chosen randomly, is made positive. The total
number of perturbed instances is therefore given by 2 ·noiseP · numP. Note that, with an
equal noiseP, the overall fraction of noise introduced into the dataset (i.e., the ratio between
the number of perturbed instances and the total number of instances) depends on the level
of imbalance of the dataset itself.

3.2. Evaluating the Impact of Noise on Feature Selection

Regardless of the specific algorithm adopted for feature selection, the methodology
used to evaluate the impact of noise on the selected feature subsets and on the overall
learning process involves the following steps.

• The original training data (TR) are perturbed according to the noise injection mecha-
nism described in Section 3.1. Being such a mechanism completely random, the noise
injection procedure is repeated several times (Z iterations), resulting in different per-
turbed training sets TRnoisej, j = 1, . . . , Z. The considered feature selection method is
then applied to the original training set TR as well as to each perturbed training set
TRnoisej, as shown in Figure 1. The feature subset selected from the original and the
perturbed data are denoted, respectively, as FS and FSnoisej, j = 1, . . . , Z.

• To evaluate the impact of noise on the composition of the selected subsets, a proper
consistency index is applied to compute the similarity [34] between each FSnoisej and
FS, resulting in Z similarity scores Simj, j = 1, . . . , Z, which are finally averaged to
obtain an overall stability measure: the more similar the selection outcome obtained
with and without noise injection, the more stable (robust) the selection process.

• Finally, to also evaluate the impact of noise on the final classification performance, a
suitable learning algorithm is applied to the original training data TR, filtered to retain
only the features in FS, as well as to each perturbed training set TRnoisej, in turn,
filtered to retain only the features in FSnoisej. The induced models are evaluated on the
same noise-free test set TS in order to compare the resulting performance (see Figure 2).
Specifically, the average performance over the Z noise injection iterations is measured:
the more similar it is to the performance without noise, the lower the overall impact
of noise on the learning process.
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Figure 1. Evaluation of feature selection stability in the presence of noise.

Figure 2. Evaluation of classification performance with and without noise injection.

The methodology detailed above is meant to be general enough to be implemented
with different selection algorithms and different classifiers. The specific methods included
in our experimental study are introduced in the next section.

4. Materials and Methods

All materials and methods involved in our investigation are presented in the following,
including the metrics used for evaluating the impact of noise in terms of selection stability
and predictive performance (see Section 4.1), as well as the algorithms and datasets chosen
for the experiments (see Sections 4.2 and 4.3, respectively).

4.1. Stability and Performance Metrics

Evaluating the robustness of the feature selection process, as schematized in Figure 1,
involves comparing the feature subsets obtained after noise injection (FSnoisej, j = 1, . . . , Z)
with the one (FS) selected from the original training data. For such a comparison, we
leveraged the Kuncheva measure [35], which has proved to be a suitable choice for high-
dimensional datasets such as those considered in this study. More precisely, a similarity
score is computed as follows:

Simj =
|FS ∩ FSnoisej| − n2/N

n− n2/N
(1)
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where |FS ∩ FSnoisej| is the number of features common to FS, and FSnoisej, N represents
the dimensionality of the data at hand, i.e., the original number of features, and n is the
cardinality of the selected subsets (note that the experimental analysis was performed for
feature subsets of different cardinalities, as detailed later in Section 5). Essentially, Simj
expresses the amount of overlap between the compared subsets, properly corrected by the
probability that a feature is included in both subsets simply by chance (this probability
grows as n approaches N). The overall stability of the selection process is then obtained as

Stability =
1
Z

Z

∑
j=1

Simj (2)

i.e., as the average similarity across the Z noise injection iterations.
On the other hand, to evaluate the impact of noise injection on the quality of the

selected subsets, i.e., on their ability to produce good classification models, we employed
a well-known metric, namely the F-measure, widely used in the presence of imbalanced
data distributions:

F-measure =
2 · precision · recall
precision + recall

(3)

where the recall (sensitivity) represents the rate of true positives, i.e., the fraction of positive
instances classified correctly, while the precision represents the fraction of instances that
are actually positive among those classified as positive.

More precisely, as schematized in Figure 2, we compared the average F-measure
computed over Z iterations of noise injections with that obtained without data perturbation.

4.2. Selection and Classification Methods

As previously introduced in Section 1, the feature selection adopted in this study
involves decreasing the number of features by choosing a subset of them following a
ranking strategy.

A large variety of feature selection methods have been proposed and discussed in
the literature [1], exploiting different search strategies to build candidate solutions as well
as different heuristics to evaluate them. In this paper, we focus on a simple yet effective,
ranking-based approach that is commonly employed when the dimensionality of the
problem makes the use of more sophisticated techniques infeasible. Basically, we build
a ranking of the N original features by ordering them based on their predictive power,
as measured by a suitable relevance criterion; then, a subset containing the n top-ranked
features is selected. Note that, if needed, this subset can be further refined through wrapper
approaches that make a fine selection tuned to a specific classifier [36,37] (and which often
require a preliminary dimensionality reduction due to their computational cost).

Specifically, we experimented with different criteria to rank the features, both univariate
approaches that assign a relevance score to each feature, independently of the others, and
multivariate approaches that also consider the inter-dependencies among the features to
derive the final ranking.

Among the univariate approaches, we chose:

• Pearson’s Correlation (Correl): evaluates the importance of each feature by measuring
its linear correlation with the target class [38]. The stronger the correlation, the more
relevant the feature is for prediction. More in detail, it is defined as:

ρ(X, Y) =
σXY

σXσY
(4)

where X is a generic feature, Y is the class label, σXY is the covariance of X and Y
while σX and σY are, respectively, the standard deviations of X and Y.
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• Information Gain (InfoG): assesses the extent to which we can reduce the entropy of the
class (i.e., the degree of uncertainty about its prediction) by observing the value of a
given feature [39]:

In f oG(X) = H(Y)− H(Y|X) (5)

where H(Y) and H(Y|X) represent the entropy of the class Y before and after observ-
ing the feature X, respectively.

• Gain Ratio (GainR): basically, this is a variant of InfoG that attempts to compensate for
its inherent tendency to favor features with more values [39]. Specifically, the InfoG
definition is changed as follows:

GainR(X) =
In f oG(X)

SplitIn f o(X)
(6)

i.e., through a normalization factor expressing how broadly X splits the data:

SplitIn f o(X) = −
r

∑
i=1

|Xi|
R

log2
|Xi|
R

(7)

where |Xi| is the number of instances in which X assumes the value Xi, r is the number
of distinct values of X, and R is the total number of training instances.

• One Rule (OneR): is a representative of embedded feature selection methods [40], which
exploit a classifier to derive a relevance score for the features. Basically, for each feature
in the training data, a one-level decision tree is generated based on that feature: this
involves creating a simple classification rule by determining the majority class for
each feature value. The accuracy of each rule is then computed, and the features are
ranked based on the quality of the corresponding rules.

Furthermore, among the multivariate approaches, we considered the following:

• ReliefF: evaluates the relevance of the features based on their ability to distinguish
between data instances that are close to each other [41]. More in detail, the algorithm
iteratively draws a sample instance Ri from the training set in a repeated process, as
per its original two-class formulation. Then, its nearest neighbors are considered, one
from the same class (nearest hit H) and one from the opposite class (nearest miss M).
For each feature X, a weight W(X) is then computed as follows:

W(X) =
m

∑
i=1

[
di f f (X, Ri, M)

m
− di f f (X, Ri, H

m

]
(8)

where m is the number of sample instances considered (which may coincide with the
size of the training set), while di f f (X, Ri, M) represents the difference between the
values of X in Ri and M, and di f f (X, Ri, H) is the difference computed for Ri and H.
The rationale is that “good” features should have the same value for instances that
belong to the same class and different values for instances of different classes.

• SVM-AW: exploits a linear SVM classifier to assign a weight to each feature, thus
relying on the embedded feature selection paradigm [42]. In particular, a feature Xj is
ranked based on the weight wj given to the feature in the hyperplane function induced
by the classifier:

f (X) = w · X + b (9)

where X = (X1, . . . , XN) is the N-dimensional feature vector, b is a bias constant, and
w = (w1, . . . , wN) is the weight vector (note that the absolute value of each weight,
AW, is considered for feature ranking).

• SVM-RFE: also uses a linear SVM classifier to assign a weight to the features but adopts
a recursive feature elimination (RFE) strategy that consists of removing the features
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with the lowest weights and repeating the evaluation on the remaining features, as
originally proposed in [43]. The ranking process involves multiple iterations, in
each of which a fixed percentage p of features is removed: the lower p, the higher
the computational cost of the method (since more iterations occur). Given the high
dimensionality of the datasets involved in our analysis, we set p = 50% to keep the
computational cost contained.

In this field of study, all of the aforementioned feature selection techniques are widely
used. Correlation, Information Gain, Gain Ratio, One Rule, ReliefF, and SVM-RFE in particular,
were chosen with the importance of these methods to the state of the art [27–30]. We
also chose to introduce the SVM-AW method in order to conduct a thorough examina-
tion. As mentioned in Section 3.1, the stability analysis included a study on the predictive
performance. Random Forest is an ensemble classifier obtained by the bagging of deci-
sion trees [44]. In particular, the construction of each tree involves using diverse training
data, which is derived by partitioning the original training set using the bootstrap algo-
rithm, i.e., an approach for resampling with replacement. As highlighted in the work of
Breiman et al. [44], utilizing an ensemble of multiple trees yields superior performance
compared to relying on a single decision tree. Regarding the classification process, each
decision tree produces its own class prediction. The model’s final prediction is determined
by selecting the class that is most frequently predicted across the ensemble of trees.

4.3. Datasets

For our experiments, we chose eight high-dimensional datasets from different bench-
marks, which characteristics are summarized in Table 1. In particular, the renowned Reuters-
21,578 corpus serves as a prominent benchmark in the field of text categorization, and it
encompasses datasets such as Earning and Earnings Forecasts (Earn), Mergers/Acquisitions
(Acq), and Money/Foreign Exchange (Money). These datasets are utilized for the automatic
assignment of predefined categories or labels to textual documents based on their content.

Table 1. Datasets used in this study. The table lists their names, the number of features and instances,
and their respective types.

Datasets Number of Features Number of Instances Type of Datasets

Earn 9499 12,897 text categorization
Acq 7494 12,897 text categorization
Money 7756 12,897 text categorization
Leukemia 7129 72 microarray
Lymphoma 7129 77 microarray
Lung 7129 96 microarray
Ovarian 15,155 253 proteomics
Lsvt 310 126 biomedical

In the domain of genomics research, we chose three microarray datasets Leukemia [45],
DLBCL Tumor (Lymphoma) [46] and Lung Cancer (Lung) [47], which comprise gene expres-
sion data obtained from experiments conducted using microarray technology.

The dataset Ovarian-Cancer (Ovarian) [48] consists of proteomic spectra obtained
through mass spectrometry, enabling the identification of distinctive proteomic patterns in
serum that differentiate between ovarian cancer and non-cancerous conditions.

Lastly, the LSVT Voice Rehabilitation (LSVT) dataset was the result of a study con-
ducted on patients with Parkinson’s disease [49]. This dataset is employed to assess the
effectiveness and the level of acceptability of vocal rehabilitation treatment.

5. Experimental Analysis

This section describes the experimental investigation, following the methodology
outlined in Section 3. We aimed to examine the stability of the feature selection techniques
described in Section 4.2 when applied to datasets subjected to varying degrees of perturba-
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tion. The experimental setup is outlined in Section 5.2, while Sections 5.3–5.5 present and
describe the results obtained on the different dataset types. Finally, a discussion is drawn
in Section 5.6.

5.1. Methodological Implementation

The experiments were conducted with the packages available in the WEKA machine
learning workbench [50]. Specifically, we utilized the packages for the implementation of
feature selection methods, dataset sampling, attributes filter, and classification algorithm.
Due to the WEKA versatility, we were able to create a customized software package to
overcome the limitations of WEKA in handling all the specified methodology phases
mentioned in Section 3. Specifically, our software package focuses on three main aspects:

• The implementation of an algorithm to introduce perturbations in the training set;
• The creation of procedures for applying iterative protocols such as simple holdout,

repeated holdout, and cross-validation;
• The implementation of methods to calculate and generate output for stability and

performance measures.

This package was created in the Eclipse (https://www.eclipse.org/ide/, accessed
on 31 July 2023) environment using the JAVA (https://www.java.com/) programming
language.

5.2. Settings

The experimental settings in our work varied depending on the benchmark datasets.
Text categorization. We opted to solely use the univariate feature selection methods
(Correlation, Information Gain, Gain Ratio, and One Rule) for the text categorization datasets
(Earn, Acq, and Money) because of their lower computational cost and wide use within this
benchmark [51].

To evaluate stability, we examined different thresholds ranging from 0.5% to 10%.
However, when analyzing performance, we only considered 1% of the original features, as
the datasets in this benchmark had a large number of attributes.

In the case of these datasets, it is common practice to use a standard dataset split into
training and test sets. Therefore, we chose the simple holdout experimental protocol, which
uses only one set each for training and testing. Due to the large number of instances in
these datasets, repetition is unnecessary. Specifically, we performed a ModApte split [52],
which is a common practice in the field of text categorization. More details in Table 2.

Table 2. Datasets ModApte split for the text categorization benchmark.

Datasets Number of Total
Instances

Number of Training
Instances

Number of Test
Instances

Earn 12,897 9598 3299

Acq 12,897 9598 3299

Money 12,897 9598 3299

We followed a protocol involving five rounds of noise injection, with two rumor
levels introduced: 10% and 20%. In our implementation, we referred to the percentage
of positive instances that needed to be perturbed in the training set as noiseP. At the
same time, the term noiseT represented the overall perturbation level in the dataset. These
perturbation levels were selected based on the typical percentage of noise found in datasets.
It is important to note that the degree of class imbalance affects the overall perturbation
level when the same noise level is applied to the positive class. In datasets with higher
imbalance, where the number of positive instances is lower than the negatives, the overall
noise level (noiseT) is consequently lower. The total degree of perturbation for each dataset
from this benchmark is documented in Table 3.

https://www.eclipse.org/ide/
https://www.java.com/
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Table 3. Number of instances and perturbation levels for each dataset of the text categorization
benchmark.

Datasets Number of Instances
(Training Set)

Number of Positive
Instances (Training Set) noiseP noiseT

Earn 9598 2877 10%
20%

6%
12%

Acq 9598 1650 10%
20%

3.5%
7%

Money 9598 538 10%
20%

1%
2%

Microarray. A distinctive characteristic of microarray datasets is the presence of a limited
number of instances in a high-dimensionality space. To address this condition, it is essential
to use a repeated evaluation protocol.

For the purpose of this work, we employed a 5-fold cross-validation protocol (80% of
instances for the training set and 20% for the test) and conducted five iterations of noise
injection with noise levels of 10% and 20% for each training set. Analogously with Table 3,
Table 4 shows how the level of total perturbation in each dataset depends on the level of
class imbalance. Instead, Table 5 shows the datasets split.

Table 4. Number of instances and perturbation levels for each dataset of the microarray benchmark.

Datasets Number of Instances
(Training Set)

Number of Positive
Instances (Training Set) noiseP noiseT

Leukemia 57 20 10%
20%

7%
14%

Lymphoma 61 15 10%
20%

6%
10%

Lung 76 8 10%
20%

2.5%
5%

In this benchmark, we employed a total of seven feature selection methods, including
four univariate approaches (Information Gain, Correlation, Gain Ratio and One Rule) and three
multivariate approaches (ReliefF, SVM-AW, SVM-RFE).

Consistent with the previous benchmark, the stability analysis in this study involved
thresholds ranging from 0.5% to 10% for feature selection. Similarly, for the performance
analysis, we focused on feature selection subsets comprising 1% of the original features.

Table 5. 5-fold dataset split for the microarray benchmark.

Datasets Number of Total
Instances

Number of Training
Instances

Number of Test
Instances

Leukemia 72 57 15

Lymphoma 77 61 16

Lung 96 76 20

Others. Despite the intrinsic diversity of the remaining two datasets (Ovarian and LSVT),
we utilized the same settings adopted for the microarray datasets due to the small number
of instances in relation to the number of features. However, because the LSVT dataset has
fewer features than the other datasets, we had to select 2% of the original features for the
performance tests to ensure sufficient coverage and to avoid performance degradation,
as empirically evaluated. Table 6 illustrates each dataset’s total perturbation level, while
Table 7 shows the datasets split.
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Table 6. Number of instances and perturbation levels for each dataset of the other benchmark.

Datasets Number of Instances
(Training Set)

Number of Positive
Instances (Training Set) noiseP noiseT

Ovarian 201 72 10%
20%

7%
14%

LSVT 100 33 10%
20%

6%
13%

Table 7. 5-fold dataset split for the “others” benchmark.

Datasets Number of Total
Instances

Number of Training
Instances

Number of Test
Instances

Ovarian 253 201 52

LSVT 126 100 26

5.3. Results on Text Categorization Datasets

Stability results. The results in terms of stability are summarized in Figure 3.

Figure 3. Stability results obtained with different thresholds ranging from 0.5% to 10% using Correla-
tion, Information Gain, Gain Ratio and One Rule as selectors in the text categorization benchmark.

In the case of the Earn dataset, it is evident that the feature selection methods of
Correlation and Information Gain exhibit the highest stability, and Gain Ratio and One Rule
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have the worst stability of all the approaches. Notably, One Rule demonstrates good stability
at smaller thresholds, while Gain Ratio does not. However, this behavior reverses with larger
thresholds, where Gain Ratio becomes more stable than One Rule. It is worth noting that the
robustness of One Rule tends to decrease as the number of selected features increases.

Considering the dataset Acq, the previously made observations are reaffirmed apart
from minor fluctuations. Correlation and Information Gain consistently exhibit a high level
of stability. In contrast, the behavior of Gain Ratio and One Rule remains unvaried. The
observed trend from previous cases is also confirmed in the Money dataset.

After taking into account all the considerations mentioned above, a clear pattern
can be extrapolated from this benchmark. In particular, both Correlation and Information
Gain exhibit almost identical stability curves for the two levels of perturbation (10% and
20%), indicating a consistent and reliable response in terms of stability. As previously
mentioned, Gain Ratio and One Rule methods are more sensitive to increasing perturbation,
with significantly different values for very low thresholds (<5%).
Performance results. Table 8 summarizes the performance achieved in the experiments.
The metric used to evaluate the model’s effectiveness is the F-measure.

Table 8. The analysis of the text categorization benchmark using the Random Forest classifier
produced results at varying noise levels, with the F-Measure as the evaluation metric. The subsets
were created by selecting 1% of the original set of features using four different feature selection
techniques (Correl, InfoG, GainR, OneR) and compared with the results obtained without feature
selection (NO FS).

Dataset 1% of Features NO FS Correl InfoG GainR OneR

Earn
clean 0.96 0.98 0.97 0.96 0.97
noiseP = 10% (noiseT = 6%) 0.96 0.97 0.97 0.95 0.96
noiseP = 20% (noiseT = 12%) 0.95 0.94 0.95 0.94 0.93

Acq
clean 0.84 0.86 0.86 0.77 0.80
noiseP = 10% (noiseT = 3.5%) 0.74 0.83 0.83 0.51 0.77
noiseP = 20% (noiseT = 7%) 0.58 0.78 0.79 0.17 0.70

Money
clean 0.36 0.62 0.66 0.33 0.49
noiseP = 10% (noiseT = 1%) 0.33 0.56 0.60 0.17 0.41
noiseP = 20% (noiseT = 2%) 0.28 0.49 0.54 0.13 0.32

Analyzing the Earn dataset results, the noise influences high performance in a con-
tained way. Indeed, the F-measure values are not inferior to 0.93. Notice that with the
Information Gain, there are no differences between the selector’s performances when applied
to the clean and the perturbed dataset with noiseP = 10%. The other cases have minimal
variations in the F-measure values (max 0.04). Correlation and Information Gain are the
feature selection methods with the best performances, which confirms their good stability
shown in Figure 3.

The aforementioned selectors demonstrate efficiency even when applied to the Acq
dataset. However, there is a slight degradation in the performance of the One Rule selector
and a substantial decline in the performance of the Gain Ratio, which reaches an F-measure
value of 0.17 where the dataset is perturbed with noiseP = 20%.

The class imbalance of Money dataset led to degraded performance for all feature
selectors. In this case, too, Correlation and Information Gain resulted in the most efficient
selectors while Gain Ratio had the worst performances.

To sum up, the feature selection methods Correlation and Information Gain have strong
stability with good performance and are minimally affected by the presence of noise. The
stability of One Rule is notable at lower thresholds; however, its performances may not
be satisfactory in specific classification contexts, such as for the Money dataset where the
F-measure value arrives at 0.41. In addition, Gain Ratio is susceptible to noise with low
thresholds, especially with Acq and Money datasets where it has an F-measure value inferior
to 0.20.
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5.4. Results on Microarray Datasets

Stability results. The stability of the selected feature selection methods in this benchmark
is depicted in Figure 4.

Figure 4. Stability results obtained with different thresholds ranging from 0.5% to 10% using Cor-
relation, Information Gain, Gain Ratio, One Rule, SVM-AW, SVM-RFE and ReliefF as selectors in the
microarray benchmark.

Among the univariate approaches, Correlation demonstrates the highest stability, al-
though its results do not match those of the text categorization benchmark. Information Gain
exhibits good stability, comparable to Correlation, particularly at lower thresholds and with
less imbalanced datasets such as Leukemia and Lymphoma. Alternatively, the stability of the
Gain Ratio and One Rule varies depending on the dataset, generally yielding lower results.

Regarding multivariate feature selection, ReliefF is the most robust. In contrast, SVM-
AW and SVM-RFE obtained the worst stability, consistently scoring below 0.4 on the
Kuncheva index.
Performance results. The results of the experiments are summarized in Table 9, where the
performance of the models is evaluated using the F-measure metric.
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Table 9. The analysis of the microarray benchmark using the Random Forest classifier produced
results at varying noise levels, with the F-Measure as the evaluation metric. The subsets were created
by selecting 1% of the original set of features using seven different feature selection techniques
(Correl, InfoG, GainR, OneR, SVM-AW, SVM-RFE, and ReliefF) and compared with the results
obtained without feature selection (NO FS).

Dataset 1% of Features NO FS Correl InfoG GainR OneR SVM-AW SVM-RFE ReliefF

Leukemia

clean 0.78 0.94 0.91 0.96 0.91 0.89 0.95 0.96
noiseP = 10%
(noiseT = 7%) 0.70 0.91 0.92 0.90 0.93 0.86 0.87 0.90

noiseP = 20%
(noiseT = 14%) 0.63 0.86 0.87 0.82 0.81 0.59 0.78 0.85

Lymphoma

clean 0.47 0.83 0.70 0.75 0.74 0.84 0.91 0.78
noiseP = 10%
(noiseT = 6%) 0.34 0.75 0.63 0.56 0.66 0.55 0.66 0.73

noiseP = 20%
(noiseT = 10%) 0.25 0.71 0.62 0.49 0.46 0.44 0.42 0.72

Lung-cancer

clean 0.67 1.00 1.00 1.00 1.00 0.93 0.93 1.00
noiseP = 10%
(noiseT = 2.5%) 0.51 0.93 0.91 0.84 0.88 0.74 0.80 0.94

noiseP = 20%
(noiseT = 5%) 0.13 0.81 0.87 0.74 0.85 0.48 0.59 0.85

When analyzing the Leukemia dataset, it is observed that the performances of the
feature selection methods applied to the clean dataset and the noise dataset do not exhibit a
significant difference. The presence of perturbances significantly affected the performance
of the Gain Ratio, SVM-AW, and SVM-RFE selectors. With a noise level of 20%, they
underwent considerable performance degradation. For example, SVM-AW achieved an
F-measure value of 0.59 with noise, much lower than the value of 0.89 obtained without
any noise.

Considering the Lymphoma dataset, the noise impact can be observed on the less stable
feature selection methods, such as Gain Ratio and One Rule for univariate methods, as well
as SVM-AW and SVM-RFE for multivariate methods.

The perturbations heavily influence the performance with the Lung dataset, particu-
larly the SVM-based selectors. In conclusion, we can state that in this domain, Correlation,
Information Gain, and ReliefF demonstrate consistent performance even in the presence of
noises.

5.5. Results on Others Dataset

Stability results. The stability trends of the last two datasets can be observed in Figure 5.
Due to the different nature of these datasets, the stability tendencies also differ.

For the Ovarian dataset, similar considerations can be made as for the microarray
benchmark. Specifically, among the univariate methods, Correlation exhibits the highest
level of robustness across all considered thresholds. ReliefF emerges as the most stable
method when considering the multivariate approaches, while the SVM-based methods
demonstrate the lowest stability.

Regarding the results obtained with the LSVT dataset, fluctuations are observed
depending on the number of selected features. Overall, Correlation and ReliefF are the most
robust methods in this context. Nevertheless, One Rule and the SVM-based selectors are the
most vulnerable for all thresholds.
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Figure 5. Stability results obtained with different thresholds ranging from 0.5% to 10% using Correla-
tion, Information Gain, Gain Ratio, One Rule, SVM-AW, SVM-RFE and ReliefF as selectors in the others
benchmark.

Performance results. The summarized results of the experiments conducted on the last
two datasets can be found in Table 10. The evaluation of feature selection methods in
combination with random forest with a clean and perturbed dataset was carried out using
the F-measure metric.

Table 10. The analysis of the “others” benchmark using the Random Forest classifier produced results
at varying noise levels, with the F-Measure as the evaluation metric. The feature subsets of the
Ovarian dataset consist of 1% of the original set of features, whereas the feature subsets of the LSVT
dataset comprise 2% of the original features. For this benchmark, we used seven different feature
selection techniques (Correl, InfoG, GainR, OneR, SVM-AW, SVM-RFE, and ReliefF) and compared
them with the results obtained without feature selection (NO FS).

Dataset Setting NO FS Correl InfoG GainR OneR SVM-AW SVM-
RFE ReliefF

Ovarian (1% of features)

clean 0.93 0.98 0.98 0.98 0.98 0.98 0.99 0.98
noiseP = 10%
(noiseT = 7%) 0.89 0.97 0.98 0.98 0.97 0.93 0.97 0.97

noiseP = 20%
(noiseT = 14%) 0.88 0.94 0.95 0.96 0.93 0.81 0.92 0.95

LSVT (2% of features)

clean 0.77 0.70 0.64 0.60 0.77 0.63 0.71 0.75
noiseP = 10%
(noiseT = 6%) 0.72 0.70 0.66 0.58 0.66 0.59 0.68 0.66

noiseP = 20%
(noiseT = 13%) 0.63 0.64 0.60 0.55 0.61 0.52 0.58 0.66

The performance of the Ovarian dataset demonstrates strong results with high F-
measure values. However, the impact of noise becomes apparent when using the SVM-
based selectors. Indeed, the F-measure value decreases by 0.17. This result demonstrates
that these selectors are unstable when employed with perturbed datasets.

For the LSVT dataset, there are no selectors superior to others; generally speaking,
they all exhibit a reasonable sensitivity to noise. The One Rule and SVM-RFE selectors,
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which were discovered to be the most unstable, have an explicit dependency on the
perturbation level.

5.6. Discussion

In this study, an extensive experimental study was conducted on three benchmarks
with distinct characteristics. The datasets for text categorization have numerous instances
in a high-dimensionality space, while microarray datasets exhibit a scarcity of instances
described by a substantial number of features. This condition also characterizes the Ovarian
dataset, framed within the “others” datasets. In the latter category, the LSVT dataset, on
the other hand, has a limited number of instances and features.

We examined different levels of class balance in various contexts. We found that
perturbations significantly impact feature selection, especially in situations where using a
limited number of features is essential, such as in the medical field. Our research shows
that selectors like the univariate One Rule and Gain Ratio, along with multivariate SVM-
based methods, are highly dependent on perturbations (see Figure 4 and Table 9). These
observations emphasize the need for careful consideration when using feature selection
methods in scenarios where stability is crucial.

Our analysis found that the most reliable method for selecting individual features
from a dataset is the Correlation. This method consistently performed well across various
datasets, including Earn, Acq, Leukemia, Ovarian, and LSVT. The Information Gain method
also showed good stability in these datasets.

Among the multivariate methods, ReliefF was consistently the most stable. Gain Ratio
and One Rule were generally found to be less reliable than the other univariate methods.
Interestingly, our study revealed that the SVM-based selectors, specifically SVM-AW and
SVM-RFE, were highly sensitive to noise and therefore performed poorly in terms of
stability in datasets such as Lung, Leukemia, and Ovarian. Based on the experimental results,
the stability of a selector is closely associated with its performance. Additionally, the
level of class imbalance in a dataset affects the impact of noise on the selector. These
observations suggest that a stable selector tends to exhibit better performance, and the
impact of noise on this selector may vary based on the imbalance of classes in the dataset.
For instance, we observed that the Correlation selector, known for its high stability, exhibited
its lowest performance when applied to the Money dataset, which has the highest level of
class imbalance among all the datasets in our study.

Additionally, using a selection in conjunction with a classifier is more reliable than
using a classifier alone in seven of eight datasets. This condition is demonstrated clearly
in the microarray benchmark. Regardless of the specific conditions or combinations,
we consistently found that the classifier’s performance was always better when used in
conjunction with any selector, as shown in Table 9.

6. Conclusions and Future Work

In this work, we presented an evaluation of feature selection robustness on class
noisy data. We defined a methodology that examines how noise affects the composition of
feature subsets and the performance of models created using those subsets. To conduct the
experiments, we implemented software that enabled an extensive comparative study of
different datasets based on their domain, dimensionality, instances-to-features ratio, and
distribution of classes. In particular, we used three different cases of study, represented by
three benchmarks (text categorization, microarray and others) for a total of 8 datasets (Earn,
Acq, Money, Leukemia, Lymphoma, Lung, Ovarian, and LSVT).

Considering the results reported and discussed in Sections 5.3–5.6, it can be deduced
that specific feature selection methods exhibit natural robustness, regardless of the domain’s
characteristics. In particular, the univariate methods Correlation and Information Gain,
as well as the multivariate approach ReliefF, consistently demonstrate their robustness.
Conversely, the performance of methods like Gain Ratio and One Rule varies depending on
the dataset’s structure. Among the feature selection methods, the multivariate SVM-based
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selectors, namely SVM-AW and SVM-RFE, show high sensitivity to noise across all domains
considered. Despite performing well without perturbations, these methods exhibit weak
robustness when exposed to noise. Numerous experiments have also shown that using a
selector-classifier combination offers more noise resistance than using a single classifier
(i.e., trained without feature selection).

On the one hand, these results align with the few studies published in the literature
on this particular topic. On the other hand, this topic still requires further research and
in-depth comparative studies on a wide range of case studies. However, our study provides
a new and interesting perspective by analyzing how noise affects selection stability and
performance in two dimensions (selection stability and performance). The results are
encouraging for dealing with high-dimensional data.

Our research has the potential for expansion in several areas. One such area is the
inclusion of new feature selection methods to facilitate a more thorough analysis of different
techniques’ performance. Currently, the performance evaluation of the feature selection
methods with or without the presence of perturbation has been limited to a single classifier.
Indeed, an important improvement regards the inclusion of multiple classifiers to broaden
and enrich our research.

Additionally, it would be beneficial to explore the integration of alternative noise
injection methods and different similarity metrics. This would enable a more thorough
investigation of the impact of noise on feature selection by providing a broader set of
perturbation techniques.

Another potential limitation concerns the examination of feature selection stability
using artificial noise rather than natural noise. Nevertheless, it is essential to acknowledge
that obtaining datasets containing only one type of noise, such as class noise in our study,
can be challenging. Finally, to validate the patterns identified in our study, it would be
useful to expand the analysis by including other datasets from various benchmarks to test
the generalizability of our results and provide further robustness to the insights found in
this work.
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