
Citation: Duan, L.; Wang, J.; Luo, B.;

Sun, Q. Simple Knowledge Graph

Completion Model Based on

Differential Negative Sampling and

Prompt Learning. Information 2023,

14, 450. https://doi.org/10.3390/

info14080450

Academic Editors: Tudor Groza and

Ralf Krestel

Received: 29 May 2023

Revised: 4 August 2023

Accepted: 4 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Simple Knowledge Graph Completion Model Based on
Differential Negative Sampling and Prompt Learning
Li Duan 1, Jing Wang 1,*, Bing Luo 1 and Qiao Sun 1,2

1 College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
* Correspondence: m21181005@nue.edu.cn

Abstract: Knowledge graphs (KGs) serve as a crucial resource for numerous artificial intelligence
tasks, significantly contributing to the advancement of the AI field. However, the incompleteness
of existing KGs hinders their effectiveness in practical applications. Consequently, researchers
have proposed the task of KG completion. Currently, embedding-based techniques dominate the
field as they leverage the structural information within KGs to infer and complete missing parts.
Nonetheless, these methods exhibit limitations. They are limited by the quality and quantity of
structural information and are unable to handle the missing entities in the original KG. To overcome
these challenges, researchers have attempted to integrate pretrained language models and textual
data to perform KG completion. This approach utilizes the definition statements and description
text of entities within KGs. The goal is to compensate for the latent connections that are difficult
for traditional methods to obtain. However, text-based methods still lag behind embedding-based
models in terms of performance. Our analysis reveals that the critical issue lies in the selection process
of negative samples. In order to enhance the performance of the text-based methods, various types of
negative sampling methods are employed in this study. We introduced prompt learning to fill the gap
between the pre-training language model and the knowledge graph completion task, and to improve
the model reasoning level. Simultaneously, a ranking strategy based on KG structural information is
proposed to utilize KG structured data to assist reasoning. The experiment results demonstrate that
our model exhibits strong competitiveness and outstanding inference speed. By fully exploiting the
internal structural information of KGs and external relevant descriptive text resources, we successfully
elevate the performance levels of KG completion tasks across various metrics.

Keywords: natural language processing; knowledge graph completion; prompt learning; positive
unlabeled learning

1. Introduction

Large-scale knowledge graphs such as FreeBase [1], YAGO [2], and DBpedia [3] have
been instrumental in supporting various artificial intelligence systems. These systems in-
clude semantic search [4], recommendation systems [5] and question-answering systems [6].
They have been widely applied in numerous domains, such as finance and healthcare,
benefiting human life and society.

Due to technical problems and explosive information growth, existing KGs often
suffer from data incompleteness. This issue has inspired the task of knowledge graph
completion (KGC), which aims to evaluate the plausibility of potential triples and enrich
the KG. Many studies have focused on KGC, with one common approach being knowledge
graph embedding (KGE). KGE maps entities and relations to low-dimensional vectors and
evaluates triples using these vectors [7]. Typical models include TransE [8], TransH [9], Ro-
tatE [10] and TuckER [11]. Text-based methods [12–14] utilize available textual information
uses the available text information of KGC to learn semantic relations, so as to complete
the knowledge graph. The fundamental difference between these two methods can be
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seen in Figure 1. Intuitively, text-based methods should outperform embedding-based
methods due to the additional information they incorporate. However, experiments on
some datasets show that text-based methods lag behind structure-based methods.
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Figure 1. Different KGC methods. (a) A traditional embedding-based method learns the embedded
representation of entities and relations in the knowledge graph through the structural information of
the knowledge graph, so as to complete the KG. This approach suffers from the lack of information
about the structure of the knowledge graph. (b) A text-based method overcomes the constraints of
structural information by using text information in the knowledge graph and pretrained language
models to make triplet judgment to complete the KG. However, due to the similarity of the text, the
inference effect in some relations needs to be strengthened.

We found that the introduction of text information increases the similarity between
entities of the same category. For example, in the FB15K-237 dataset, the relation “/peo-
ple/person/languages” has tail entities as languages, and their entity descriptions show a
certain similarity, which interferes with the model’s inference effect. Therefore, we believe
that this similarity increases the difficulty of model learning and is the reason for the poor
performance of text-based methods.

It is necessary to use a proper negative sampling method to help the model distinguish
between similar entities. In order to improve the effect of negative sampling, we divided
the relations in the KGs into three types according to the structure of the KGs. We chose
different negative sampling methods based on different types of relations and constructed
appropriate negative samples to improve model learning effectiveness.

Recently, prompt learning has received more and more scholars’ attention because
of its superior performance [15]. At the same time, it has achieved good performance
in many natural language processing (NLP) downstream tasks. To further improve the
training effectiveness of the model, we introduced prompt learning. In this process, the
triples of positive and negative samples and their related entity descriptions were filled
into templates. These were then input into a pretrained language model (PLM) for training
after introducing labels. To optimize the training results, we incorporated Focal loss. This
adjusts the impact of the positive and negative sample ratio imbalance and the influence
of hard/easy-to-distinguish samples on the model. The trained model was then used to
predict the plausibility of triples. This method exhibits strong performance in multiple
KGC tasks. The contributions of this paper are summarized as follows:

• We proposed a KGC method based on pretrained language models, which combines
KG structure to solve the negative sampling problem;

• Results from multiple benchmark datasets demonstrate that our method achieves
competitive performance in link prediction tasks;
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• Compared to models with similar accuracy, our model significantly reduces infer-
ence time.

2. Related works
2.1. Knowledge Graph Completion

Knowledge graph completion aims to model multi-relational data to help fill in missing
information in existing knowledge graphs. Traditional approaches typically employ struc-
tural information from knowledge graphs for reasoning, such as TransE [8] and TransH [9].
They treat triples (h, r, t) as specific relation transformations from head entity h to tail
entity t. Complex [16] introduces multiple embeddings to enhance model expressiveness,
while RotatE [10] simulates triple relation rotations in complex space. Complex relation
patterns are encoded by some researchers using two vectors per relation and adaptively
adjusting margin parameters in the loss function [17]. Recently, additional textual infor-
mation has been utilized to assist knowledge graph completion. DKRL [18] encodes text
using CNN [19] and continuous bag of words(CBOW). KG-BERT [12], StAR [13], BLP [20]
and simKGC [14] computing entity embeddings using pretrained language models. Al-
though these methods improve performance, they still underperform embedding-based
approaches on some datasets. Some scholars have used descriptive text and language mod-
els to derive knowledge embeddings. This approach not only enriches the representation
of long-tail entities, but also solves the problem based on prior description methods. It
achieves better performance than previous embedding-based models [21].

2.2. Pretrained Language Models

Pretrained language models, having demonstrated immense potential in various NLP
tasks [22], are typically pretrained on large-scale corpora, thereby storing vast amounts of
general knowledge. Most of these models are derived from the Transformer design [23],
which comprises encoder and decoder modules enhanced by a self-attention mechanism.
Depending on the architectural structure, pretrained language models are categorized into
three groups: encoder-only models, encoder-decoder models and decoder-only models.

Encoder-only models, such as BERT [24], ALBERT [25] and RoBERTa [26], utilize the
encoder to comprehend the relations between words within a sentence. An additional
prediction head is usually required for these models to resolve downstream tasks. They are
particularly effective for tasks necessitating a comprehensive understanding of an entire
sentence, such as text classification [27] and named entity recognition [28].

Encoder-decoder models, on the other hand, incorporate both the encoder and decoder
modules. The encoder module encodes the input sentence into a hidden space, while the
decoder generates the target output text. These models, including T5 [29], UL2 [30] and
ST-MoE [31], offer more flexible training strategies.

Decoder-only large language models exclusively use the decoder module to generate
the target output text. Their training paradigm involves predicting the subsequent word
in a sentence. These large-scale models can generally perform downstream tasks from a
few examples or simple instructions without the need for additional prediction heads or
finetuning [32]. Many state-of-the-art Pretrained language models (e.g., Chat-GPT [33] and
GPT-4) follow the decoder-only architecture.

2.3. Prompt Learning

Prompt learning, unlike conventional supervised learning, trains language models
based on direct text probability modeling. In this approach, models receive input x and
predict output y. To adapt these models for predictive tasks, templates transform the
original input x into a text string prompt with fillable slots. These slots are then populated
to obtain the final string Pt, which is inputted into the pretrained language model to
generate the output y. This framework is powerful and attractive for several reasons. It
allows for the pre-training of language models on vast amounts of raw text. By defining a
new prompt function, the model can perform few-shot or even zero-shot learning. This
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adaptability enables the model to adjust to new scenarios with minimal or no labeled
data. Prompt learning has achieved impressive results in natural language processing tasks
such as text classification [34], relation extraction [35], named entity recognition [36] and
question-answering systems [37].

2.4. Positive Unlabeled Learning

Positive unlabeled (PU) learning is based on scenarios where researchers can access
only positive examples and unlabeled data. This scenario has gained increasing attention
as it naturally occurs in applications such as medical diagnosis and knowledge graph com-
pletion. The objective of PU learning is the same as general binary classification: training a
classifier capable of classifying based on target attributes. Most methods can be divided
into three categories: two-step approaches [38], biased learning [39] and class prior inte-
gration methods. Two-step techniques involve two steps: (1) identifying high-confidence
negative examples, and (2) learning based on labeled positive and high-confidence negative
examples. Biased learning methods treat unlabeled data as negative examples with class
label noise. Class prior integration includes postprocessing, preprocessing and model
modification methods. Its idea is to introduce class priors to modify traditional learning ap-
proaches.

3. Methods
3.1. Framework

We propose a new KGC completion method. This method uses the structural infor-
mation in KGs to solve the negative sampling problem and introduces prompt learning to
improve the model training effect. The methods complete the knowledge graph by learning
the text information in the knowledge graph, combining the implicit knowledge in PLM
and the structural information in KGs. The framework of the method is shown in Figure 2.
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In the training stage, we initially leverage structural information of the knowledge
graph to generate negative samples. Subsequently, we merged positive and negative
samples, text information and set templates to generate the necessary training data for
prompt learning. These data are then incorporated into a pretrained language model
for training.

During the inference phase, we commence by generating a collection of candidate
entities to be linked in the missing triplets. The candidate entity set, along with the missing
triples and text information, are imported into the template for processing. These processed
inputs are then fed into the trained model to yield scores. To enhance the reasoning effect,
we utilize the structural information of the knowledge graph to perform re-ranking. Finally,
the triplet with the highest score is integrated into the knowledge graph for completion.

The following sections go into great detail about how to obtain negative samples
(Section 3.2) and design strategies for prompts (Section 3.3). In addition, Section 3.4
explains how the proposed model is trained, and Section 3.5 introduces the reranking
method based on knowledge graph structure information.

3.2. Negative Samples

In knowledge graph completion, training data consist solely of positive triplets. Given
a positive triplet (h, r, t), negative sampling requires sampling one or more negative triplets
for training the discriminative model. Existing methods primarily involve randomly
replacing parts of the correct triplet to form negative examples or manually annotating
negative examples. These approaches do not consider the influence of different relation
types on negative sampling and the introduced negative examples cannot effectively
help discriminate between entities within the tail entity’s class. Our method significantly
improves training results without incurring substantial computational overhead.

3.2.1. Relation Category Definition

Because the relation types of triples are different, the corresponding distribution of
error triples is also different. Therefore, it is not appropriate to use the same negative
sampling method for all triples. Therefore, we divide the triples in the knowledge graph
into three categories based on the structural information of the triples: to-one relations,
to-class relations and to-many relations.

Definition 1. To-one relations refers to the relation in the knowledge graph where a given related
head entity has only one corresponding tail entity.

For example, ‘people/person/place_of_birth’ is a typical to-one relation, for any given
head entity (person), there is only one corresponding tail entity (place).

Definition 2. To-class relation refers to the relation in the knowledge graph where, for a given
related head entity, the corresponding tail entities are all entities under a category.

“/soccer/football_team/current_roster./soccer/football_roster_position/position” refers
to the football position corresponding to the football club, which is a typical to-class relation.
For a given header entity, the corresponding tail entity is the tail entity in an entire category.

Definition 3. To-many relation refers to the relation in the knowledge graph that for a given related
head entity, the corresponding tail entities belongs to a category, but does not include all entities
under the category.

‘language/human_language/countries_spoken_in’ is a to-many relation, that is, its
tail entities all belong to a category (country), but for a given head entity (language), there
may be more than one tail entity, but not all entities under that category.
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3.2.2. Negative Samples Strategy

For negative sampling of to-one relations, the focus should be on finding the correct en-
tity in the possible class for a given relation. For instance, in the “/location/country/capital”
relation, which is a typical to-one relation, connecting a given correct head entity to a specific
city is relatively easy, while linking it to other entities like “dollar” is absurd. Identifying
the correct city, however, is challenging. Therefore, for this type of negative sampling, the
emphasis should be on replacing the tail entity with entities from the possible class. The
specific details are available in Algorithm 1.

Algorithm 1: Generate negative samples for to-one relations

Input: To-one triplet set T, entity set E, validation triplet set T′, integer k.

1. Initialize a new triplet set N
2. for each triplet (head_entity, relation, tail_entity) in T do
3. num← 0
4. Find the entity set E′ where the tail_entity belongs form E
5. while num ≤ k do
6. Randomly select an entity new_tail_entity from E′

7. generating a new triplet (head_entity, relation, new_tail_entity)
8. if the new triple not in T and t′ is not in T′ then
9. Add the new triple to N
10. num← num + 1
11. end if
12. end while
13. end for

Output: The negative samples set N.

For negative sampling of to-class relations, the focus should be on learning the relation
between the entity and the entities within the class. Hence, for this type of negative
sampling, the emphasis should be on entities outside the possible class. The specific details
are available in Algorithm 2.

Algorithm 2: Generate negative samples for to-class relations

Input: To-class triplet set T, entity set E, validation triplet set T′, integer k.

1. Initialize a new triplet set N
2. for each triplet (head_entity, relation, tail_entity) in T do
3. num← 0
4. Find the entity set E′ where the tail_entity not belongs form E
5. while num ≤ k do
6. Randomly select an entity new_tail_entity from E′

7. generating a new triplet (head_entity, relation, new_tail_entity)
8. if the new triple not in T and t′ is not in T′ then
9. Add the new triple to N
10. num← num + 1
11. end if
12. end while
13. end for

Output: The negative samples set N.

For the negative sampling of to-many relations, the distinction between the target
entity and the class and the difference from entities outside the class should be learned at the
same time. For this type of entity, we randomly replace the tail entity with multiple entities
in the knowledge graph. In addition, we incorporate them into a pretrained language model
for inference and select the K triplet with the lowest correctness as a negative example. The
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above methods can be regarded as a two-step technique in PU learning. The specific details
are available in Algorithm 3.

Algorithm 3: Generate negative samples for to-many relations

Input: To-many triplet set T, entity set E, validation triplet set T′, integer j, integer k, Triplet
classification model M.

1. Initialize a new triplet set N
2. Initialize a new triplet set N2
3. Initialize a new triplet set N3
4. Training model M with To-many triplet set T and validation triplet set T′

5. for each triplet (head_entity, relation, tail_entity) in T do
6. num← 0
7. while num ≤ j do
8. Randomly select an entity new_tail_entity from E
9. generating a new triplet (head_entity, relation, new_tail_entity)
10. if the new triple not in T and t′ is not in T′ then
11. Add the new triple to N
12. num← num + 1
13. end if
14. end while
15. for each triplet (head_entity, relation, new_tail_entity) in T do
16. Eval (head_entity, relation, new_tail_entity) with Traing model M to get eval_soccer
17. Add (new_tail_entity, eval_soccer) to N2
18. end for
19. Sort N2 by eval_soccer
20. for i = 1 to k do
21. Add the (head_entity, relation, new_tail_entity) to N3
22. N← []
23. N2← []
24. end for

Output: The negative samples set N3.

3.3. Prompts

To take advantage of the implicit knowledge within the PLM, each triple is transformed
into prompt sentences. For each relation, a hard template is manually designed to represent
the semantics of the associated triples. For the triple “[X], language, [Y]”, the [X] and [Y]
are first replaced with the exact name of the head and tail entities to get a judgment prompt
PJ0. In this case, PJ0 is “Mukri language Hindi Language”. A soft prompt is added to the
relation to finally form the more expressive judgment sentence PJ.

To make the inference effect more accurate, text descriptions of the head and tail
entities are included in the judgment sentence. Entity definitions or attribute sentences
associated with relations are typically used for the text description. To ensure inference
accuracy and prevent redundant information interference, the text description is limited to
a single sentence that is not overly long. To ensure the accuracy of incoming text description,
we use hard prompts instead of soft prompts to form PThead and PTtail. We also add an
assist prompt PA about the task to create the more expressive judgment sentence, which
results in the final prompt sentence.

The process of prompts design is shown in Figure 3, and we use (Mukri, language,
Hindi Language) as an example to illustrate it.
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3.4. Training

In this paper, the model is trained on a triple set as a triple classification. The negative
sample generation method is presented in Section 3.3. After comparison, the setting of 1:10
can ensure both low training time and good training effect. Given a triple τ (h, r, t), the
classification fraction of the triple can be defined as

sτ = So f tmax(Wc) (1)

where c ∈ Rd is the output vector of the input token [CLS], and W ∈ R2× d is a linear
neural network. Since the proportion of positive and negative samples is unbalanced, the
optimization function in this paper is set as the focus loss.

FL(sτ) = −ατ(1− sτ)
γlog(sτ) (2)

Parameter ατ can suppress the imbalance between the number of positive and negative
samples. We make it consistent with the distribution of positive and negative samples in
the training dataset. Parameter γ can control the difficulty to identify sample number imbal-
ance, and it is set to 2 in this paper to reduce the influence of easily distinguishable samples.

In order to accelerate training speed and prevent overfitting, we introduce the early
stopping. We set the patient of the early stop method to 7 to ensure that the model is
fully trained.

3.5. Structure-Based Reranking

Knowledge graphs tend to be spatially relevant. For some relations, there is a multi-
hop association between the head-tail entities. The text-based knowledge graph completion
model is good at capturing semantic correlation, but not structural correlation. We propose
a simple reordering strategy based on the structure of the knowledge graph: for a set of
triplet τ (h, r, t) model scores that exceed the threshold and the tail entity is in the n-hop
neighbor of the head entity, the score of the tail entity is increased by α ≥ 0. Therefore, for
a given τ (h, r, ti), the reasoning score after re ranking is

s′τ
ti

= sτ
ti

+ α(ti ∈ εk(h), sτ ≥ s0) (3)

4. Experiments
4.1. Evaluation Protocol

The task of link prediction in KGs involves predicting the missing triples when the KG
is incomplete. Specifically, for each triple (h, r, t) in the test set, the model performed tail
entity prediction. This process involves determining the likelihood of all possible entities
being t given h and r, and then ordering them. In this work, an inverse triple (t, r−1, h) is
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added for each triple (h, r, t), with r−1 being the inverse relation of r. As a result, only tail
entity prediction is required to deal with in this paper.

Regarding inference time, the most expensive component is the forward pass of the
model. Inference and evaluation of triplets typically require replacing head and tail entities
with other entities for comparison. We find that replacing triplets with all entities for
inference is highly time-consuming. Therefore, we propose leveraging existing structural
information within knowledge graphs to reduce the scope of inference and comparison.
We cluster entities based on their associated relations. Ultimately, for a given triplet, we
only need to replace its head and tail entities with those within their respective classes
for comparative analysis. This approach not only substantially accelerates the inference
process but also enhances its accuracy.

To assess the model’s performance, we used four automatic evaluation indices: mean
reciprocal rank (MRR) and Hits@k (H@k) for k∈{1,3,10}. MRR was calculated as the mean
reciprocal rank of all test triples, while H@k calculated the proportion of correct entities
appearing in the top k positions of the ordered rank list. MRR and H@k were reported
under filter settings, which ignored the fractions of all known true triples in the training,
validation and test sets.

4.2. Experimental Settings
4.2.1. Datasets

The evaluation in this study employs the WN18RR and FB15k-237 datasets, which
are presented in Table 1. The WN18 and FB15k datasets were initially proposed by Bordes,
Usunier, Garcia-Duran, Weston and Yakhnenko [8], but later works [40,41] revealed that
these datasets suffer from test set leakage. To address this issue, the WN18RR and FB15k-
237 datasets were created by removing reverse relations. The WN18RR dataset comprises
41k entities and 11 relations from the WordNet, while the FB15k-237 dataset includes 15k
entities and 237 relations from the Freebase.

Table 1. Statistics of the datasets used in this paper.

Dataset Entity Relation Train Valid Test

WN18RR 40,943 11 86,835 3034 3134
FB15k-237 14,541 237 272,115 17,535 20,466

For text description, the WN18RR and FB15k-237 datasets provided by the KG-
BERT [12] are used in this paper. The Wikidata5M dataset already contains descriptions of
all entities and relations. For the WN18RR dataset, the first sentence is chosen as the text
description. For FB15K-237, the first sentence or the sentence related to triples is chosen as
the text description.

4.2.2. Hyper-Parameter

The encoder is initialized with T5-base. Using an appropriate PLM can further improve
performance. Most hyper-parameters are shared across all datasets to avoid specific
dataset tuning. The AdamW optimizer is used with linear learning rate attenuation. After
comparison, α = 0.05 is empirically set. In addition, early stopping is used to balance the
training effect and training time.

4.3. Main Results

In this study, we employed the numerical values reported by Wang et al. [42] for
TransE and DKRL, while the results for RotatE were obtained from the official GraphVite
4 benchmark. For SimKGC, we utilized a model incorporating batch-wise negative, pre-
batch negative and self-negative samples. The results for C-LMKE are cited from the
literature reports.

In Table 2, we can clearly see that only a small number of text-based methods outper-
form structure-based methods on the WN18RR or FB15K-237 datasets. Regardless of our
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approach, only C-LMKE outperforms the structure-based approach on both datasets. This
validates the necessity of our research.

Table 2. Main results for WN18RR and FB15k-237 datasets.

Methods WN18RR FB15K-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Embedding-based methods

TransE 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1

DisMult 44.4 41.2 47 50.4 28.1 19.9 30.1 44.6

RotatE 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3

TuckER 47 44.3 48.2 52.6 35.8 26.6 39.4 54.4

text-based methods

KG-BERT 21.6 4.1 30.2 52.4 - - - 42

MTL-KGC 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8

StaR 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2

SimKGC 66.6 58.7 71.7 80 33.6 24.9 36.2 51.1

C-LMKE 59.8 48.0 67.5 80.6 40.4 32.4 43.9 55.6

SimPKGC 62.6 56.2 65.1 76.3 41.2 33.7 44.3 55.4

In the WN18RR dataset, all four indicators of our proposed model are in the top three,
and two of them are in second place. On the data set FB15K-237, all three indexes are better
than other models, and the remaining index reaches the second place. At the same time,
our models all outperform the structure-based methods. It can be seen that our model has
achieved competitive performance in link prediction tasks.

4.4. Analyses

On the WN18RR dataset, our model outperforms embedding-based models and is
highly competitive with text-based models. On the FB15K-237 dataset, our model exceeds
most of the baseline models and achieves the best on three metrics. In summary, our model
is highly competitive. Especially in the FB15K-237 dataset, where most text-based models
perform poorly, our model achieves outstanding performance. This definitively shows that
the text-based model performs better than the embedding-based model, and also verifies
the rationality of our starting point. The training time of the model using 4 × 3070 on the
FB15K-237 dataset in this paper is about 44 h. Compared to other text-based methods, it
takes very little time and fully demonstrates the superiority of our model.

We analyzed the gap between the optimal metrics of our model indicators on the
WN18RR dataset. We believe there are the following reasons. First of all, due to the sparsity
of the WN18RR dataset, some triplets’ target entities are not present in the possible classes,
leading to the failure of link prediction for these triplets. Secondly, because some of the
entity text descriptions in the WN18RR dataset are difficult to intuitively reflect the relation
between entities, this also leads to a poor reasoning effect on some relations.

In order to explore the role of additional modules within the model and better dissect
the proposed model, we conducted additional analysis.

4.4.1. Rapid Training Method

The training time of the model using 4 × 3070 on the FB15K-237 dataset in this paper
is about 44 h. There are mainly three reasons for fast training. The ratio of positive to
negative samples in this paper is 1:10, which is a relatively low ratio. For description text,
an attempt is made to select the entity description associated with the triples; this method
can effectively reduce the cost of model training and prevent irrelevant text interference. In
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addition, the early stopping method is used to avoid additional training and produce the
best training results for the model.

In Figure 4, solid and dashed lines of the same color represent the training accuracy
and verification accuracy of the same relation, respectively. Figure 4 shows the number
of early stopping occurrences and accuracy of some relations in the FB15K-237 dataset.
The figure shows that, for most relations, training can be completed within 8 to 11 periods.
Meanwhile, it shows that as the number of experiments increases, the model undergoes
overfitting after a certain point. This fully demonstrates that introducing the early stopping
method can ensure both training speed and accuracy.
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4.4.2. Function of Negative Sampling

In order to rigorously investigate the role of our proposed negative sampling method
in the model, we conducted comparative experiments on the FB15K-237 dataset. The data
results of the complete model are consistent with those of Section 4.2. For comparison,
we remove the negative sampling function from the complete model, while the other
functions remain unchanged to form a new model (SimPKGC-nosmpling). In this model,
we randomly replaced the head or tail entity in the training set triples with other entities.
Meanwhile, we ensured that the newly generated triples were not present in the training or
test sets. These newly generated triples were used as negative samples. The ratio of positive
to negative samples was also set at 1:10. The experimental results are shown in Table 3.

Table 3. Main results for FB15k-237 dataset.

Methods MRR H@1 H@3 H@10

SimPKGC 41.2 33.7 44.3 55.4

SimPKGC-nosampling 34.2 23.7 39.0 54.4

After introducing the negative sampling method, this study found that the improve-
ment in the H@10 index was small, while the improvement in the H@1 index was significant.
This indicates that the negative sampling function can help the model to further distin-
guish the target entity among the high-scoring candidate entities. At the same time, the
overall performance of the model was significantly improved. In order to further study
and analyze, the test set was divided into three categories: to-one, to-many and to-class, as
shown in Table 4.
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Table 4. Primary results for different kinds of relations in the FB15k-237 dataset.

Methods To-One To-Many To-Class

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SimPKGC 70.8 61.7 75.7 88.5 20.4 13.6 22.4 32.5 41.7 33.1 44.7 60.3

SimPKGC-
nosampling 55.9 41.9 63.8 81.0 20.2 12.1 22.2 37.0 29.4 15.0 38.4 58.0

This study found that our negative sampling method had a significant improvement
effect on the model’s performance for to-one and to-class relations, especially for to-one
relations, where all indicators showed significant improvement, which fully proves the
rationality of the starting point of this study. For to-many relations, the improvement effect
of our method was not very obvious, which this study believes is due to the high difficulty
of reasoning for to-many relations.

For to-one relations, we selected a subset of relations for further analysis.
According to the data in Table 5, our proposed negative sampling method significantly

improved the reasoning performance for most of the to-one relations and performed well
in both frequent and non-frequent data, further proving the effectiveness of the function.

Table 5. The primary result of the FB15k-237 dataset for to-one relational data.

Serial Number Number of Test Sets
SIMPKGC SimPKGC-Nosampling

MRR h1 h3 h10 MRR h1 h3 h10

1 26 60 46.2 69.2 80.8 26.7 7.6 38.5 57.7

2 98 78.2 67.3 84.7 95.9 63.5 57.1 62.2 77.6

3 157 11.5 5.1 10.8 21.7 21.6 12.1 24.8 38.9

4 59 78.8 67.8 88.1 100 46.7 27.1 57.6 89.8

5 90 41.4 22.2 46.7 100 27.8 7.8 32.2 83.3

6 9 52.8 22.2 88.9 100 17.6 0 11.1 77.8

7 493 90.9 86.0 94.9 98.6 81.9 70.6 92.7 98.0

8 16 64.5 50.0 75.0 100 36.6 25 37.5 62.5

9 346 97.1 94.2 100 100 59.8 19.7 100 100

10 16 68.8 50.0 87.5 100 52.3 43.8 50 93.8

4.4.3. Effectiveness of Links Section

In order to eliminate the influence of extraneous text, we select a single sentence as
the descriptive statement for the entity’s textual description and input it into the model
for training. To enhance the training performance, we adopted an entity linking approach,
selecting the statement most relevant to the current triple as the entity description. In
order to verify the validity of the function, we removed the link function from the original
model and formed a new model (SimPKGC-nolink). The new model selected the entity’s
definition statement as the description, usually the first sentence. The comparative results
are shown in Table 6.

Table 6. The impact of the link section on inference.

Methods MRR H@1 H@3 H@10

SimPKGC 41.2 33.7 44.3 55.4

SimPKGC-nolink 34.8 28.1 37.1 48.1
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The comparative results demonstrate that the linking function enhances all perfor-
mance metrics. It indicates that it facilitates the target entity to achieve higher scores
and distinguishes it from similar and dissimilar entities. The incorporation of the link-
ing function significantly improves the model’s inference performance. It validates the
effectiveness of the function and highlights the crucial role of the relevant sentences in
predicting inferences.

5. Conclusions and Future Work

With the rapid advancement of pretrained language models, several PLM-based
knowledge graph completion models have emerged. However, a performance gap remains
between these models and state-of-the-art knowledge graph embedding models. In this
study, we identified the critical factor for the suboptimal performance as the negative sam-
pling process. To tackle this issue, we harnessed the structure information of the knowledge
graph for categorization. We then adopted corresponding negative sampling methods for
different categories, thereby proposing a novel PLM-based KGC model. Our experiments
demonstrate the impact of negative sample collection on inference. Furthermore, the results
indicate that our model achieves superior performance compared to previous models. In
future work, we plan to refine the entity clustering approach and explore the potential of
incorporating structural information to further enhance inference.
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