
Citation: Vlachou, E.; Karras, C.;

Karras, A.; Tsolis, D.; Sioutas, S.

EVCA Classifier: A MCMC-Based

Classifier for Analyzing

High-Dimensional Big Data.

Information 2023, 14, 451. https://

doi.org/10.3390/info14080451

Academic Editor: Qingchen Zhang

Received: 24 May 2023

Revised: 25 July 2023

Accepted: 7 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

EVCA Classifier: A MCMC-Based Classifier for Analyzing
High-Dimensional Big Data
Eleni Vlachou 1 , Christos Karras 1 , Aristeidis Karras 1,* , Dimitrios Tsolis 2 and Spyros Sioutas 1,*

1 Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece;
evlachou@ceid.upatras.gr (E.V.); c.karras@ceid.upatras.gr (C.K.)

2 Department of History and Archaeology, University of Patras, 26504 Patras, Greece; dtsolis@upatras.gr
* Correspondence: akarras@ceid.upatras.gr (A.K.); sioutas@ceid.upatras.gr (S.S.)

Abstract: In this work, we introduce an innovative Markov Chain Monte Carlo (MCMC) classifier,
a synergistic combination of Bayesian machine learning and Apache Spark, highlighting the novel
use of this methodology in the spectrum of big data management and environmental analysis. By
employing a large dataset of air pollutant concentrations in Madrid from 2001 to 2018, we developed
a Bayesian Logistic Regression model, capable of accurately classifying the Air Quality Index (AQI)
as safe or hazardous. This mathematical formulation adeptly synthesizes prior beliefs and observed
data into robust posterior distributions, enabling superior management of overfitting, enhancing
the predictive accuracy, and demonstrating a scalable approach for large-scale data processing.
Notably, the proposed model achieved a maximum accuracy of 87.91% and an exceptional recall
value of 99.58% at a decision threshold of 0.505, reflecting its proficiency in accurately identifying true
negatives and mitigating misclassification, even though it slightly underperformed in comparison to
the traditional Frequentist Logistic Regression in terms of accuracy and the AUC score. Ultimately,
this research underscores the efficacy of Bayesian machine learning for big data management and
environmental analysis, while signifying the pivotal role of the first-ever MCMC Classifier and
Apache Spark in dealing with the challenges posed by large datasets and high-dimensional data with
broader implications not only in sectors such as statistics, mathematics, physics but also in practical,
real-world applications.

Keywords: stochastic data engineering; Markov Chain Monte Carlo; big data management;
Apache Spark; Bayesian inference; Bayesian ML; high-dimensional data; environment data analysis

1. Introduction

In the realm of global public health and climate action, the pervasive issue of air pollution
looms large, as it poses significant threats to both human well-being and the environment.
Understanding the origins, patterns, and consequences of air pollution relies heavily on
the analysis of environmental data. By leveraging advanced analytical techniques, we can
extract invaluable insights into pollution trends, pinpoint areas of concern, and devise effective
strategies to mitigate its impact, thereby promoting sustainable environmental management.
This analytical endeavor assumes that facilitating well-informed decision-making processes,
policy formulation, and the protection of public health are of utmost importance [1,2].

One comprehensive solution involves the observation of the well-established AQI
Categories, as outlined in Table 1, to accurately predict the air’s safety for the general
population on an hourly basis. By utilizing these categories, we can provide the population
with clear and easily understandable information regarding air quality, thereby effectively
alerting them to potential safety concerns regarding their well-being. To delve into this
subject matter, our methodology adopts a combination of Bayesian Logistic Regression
and Markov Chain Monte Carlo (MCMC) sampling. By harnessing these sophisticated
tools, we can predict and categorize the Air Quality Index (AQI) into two distinct classes,

Information 2023, 14, 451. https://doi.org/10.3390/info14080451 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14080451
https://doi.org/10.3390/info14080451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0002-2151-3270
https://orcid.org/0000-0002-4253-7661
https://orcid.org/0000-0002-4632-6511
https://orcid.org/0000-0003-0760-4942
https://orcid.org/0000-0003-1825-5565
https://doi.org/10.3390/info14080451
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14080451?type=check_update&version=1

Information 2023, 14, 451 2 of 27

“safe” or “hazardous”, catering to the general population’s safety. This classification is
primarily based on the concentrations of pollutants. If the AQI falls within the first three
categories, it is deemed “safe” (classified as the negative class); otherwise, it is labeled “haz-
ardous” (classified as the positive class). This classification is performed for each one of the
18 stations every hour and is primarily based on the hourly concentrations of pollutants.

Table 1. AQI Categories and Index Ranges.

Pollutant Good Fair Moderate Poor Very Poor Extremely
Poor

PM2.5 0–10 10–20 20–25 25–50 50–75 75–800
PM10 0–20 20–40 40–50 50–100 100–150 150–1200
NO2 0–40 40–90 90–120 120–230 230–340 340–1000
O3 0–50 50–100 100–130 130–240 240–380 380–800

SO2 0–100 100–200 200–350 350–500 500–750 750–1250

Our analysis begins with a comprehensive sensitivity analysis performed on the
dataset from 2017. This dataset is divided into training and testing sets, maintaining an
80–20 ratio, which enables us to evaluate the model complexity and accuracy across various
features and fine-tune the MCMC sampling parameters. The model is then trained using a
dataset from 2017 by employing pymc3 for posterior distribution sampling. Predictions
on the test set are generated using user-defined functions (UDFs) within pyspark, along
with different decision thresholds. The test set comprises hourly data spanning 18 years
and is meticulously processed using Apache Spark. Finally, we compare the performance
of the Bayesian logistic regression in Spark with a Frequentist Logistic Regression model,
considering the same features, training and test sets, and threshold.

Our methodology leverages the power of Bayesian Logistic Regression and MCMC
sampling, enabling precise predictions and classifications of AQI levels. Through this
approach, valuable insights into the air quality and its associated hazards are garnered.
To enhance our understanding of the model’s performance and its suitability for air qual-
ity assessment, a comparative analysis between Bayesian and Frequentist approaches
is conducted.

The primary aim of this study is to introduce and evaluate the performance of an
innovative Markov Chain Monte Carlo (MCMC) Classifier that synergistically combines
Bayesian machine learning and Apache Spark for robust environmental data analysis. More
specifically, the study focuses on utilizing a large dataset of air pollutant concentrations in
Madrid from 2001 to 2018 to construct a Bayesian Logistic Regression model. This model
is designed to accurately classify the Air Quality Index (AQI) as either safe or hazardous,
a crucial factor in promoting public health and environmental sustainability. Through
the rigorous statistical analysis, the study seeks to validate the efficacy of the Bayesian
approach in managing big data, controlling overfitting, and enhancing the predictive
accuracy. Furthermore, it aims to illuminate the capacity of the MCMC Classifier and
Apache Spark in handling large-scale, high-dimensional data. This study concludes with a
comparison of the Bayesian model with the conventional Frequentist Logistic Regression
with a focus on the accuracy and AUC scores. The scope of this work is to demonstrate the
broader applicability of such models in the fields of statistics, mathematics, physics, and
real-world paradigms.

The subsequent sections of this paper are thoughtfully organized as follows: In
Section 2, the preliminaries for Bayesian machine learning and Markov Chain Monte Carlo
are introduced. Section 3 offers an extensive review of prior work in the realm of the Air
Quality Index, shedding light on existing studies and research contributions. It also delves
into the statistical inference of Bayesian machine learning within the framework of MCMC
methods, elucidating the fundamental principles and concepts. In Section 4, we outline the
methodology adopted for data selection and preprocessing, followed by a comprehensive
exposition of our approach based on the Bayesian Logistic Regression. In Section 5, the

Information 2023, 14, 451 3 of 27

present study elucidates the findings and outcomes derived from the implemented MCMC-
based classifier, denoted as the EVCA (Environmental Variable Classifier using Apache
Spark). This section primarily revolves around a meticulous evaluation of the classification
metrics pertaining to diverse MCMC tuning parameters as well as a comprehensive assess-
ment of the predictive performance within the Apache Spark environment. A thorough
analysis is conducted to discern the efficacy and proficiency of the classifier in accurately
classifying environmental variables, thereby shedding light on its inherent capabilities and
limitations. Consequently, in Section 6, the study culminates by encapsulating the key
discoveries and implications that have emerged from the research endeavor.

2. Preliminaries
2.1. Bayesian Machine Learning

Statistical inference provides a method for acquiring knowledge concerning unseen
elements by capitalizing on already observed data. In essence, it facilitates the drawing of
conclusions, such as precise or distributional estimates for certain random variables (causes)
in a population, based on the observed variables (effects) within this population or a sample
from it. However, before we venture into the realm of the Bayesian Machine Learning and
Markov Chain Monte Carlo (MCMC) sampling methodologies, an understanding of the
Bayesian approach to probabilities is paramount.

Two central approaches exist concerning probabilities: the Frequentist and Bayesian
perspectives. In the Frequentist paradigm, probabilities represent the occurrence frequency
of an event, with each new experiment construed as a potential repetition within an infinite
series of identical experiments. In other words, given an event x and an experiment
comprising n trials, the probability of x can be defined as:

P(x) =
nx

n
(1)

where nx is the number of times event x occurred.
Within the Bayesian framework, however, the concept of Bayes’ theorem becomes

instrumental. This theorem supplies a mathematical mechanism for refining our beliefs with
the introduction of new evidence. The mathematical representation of Bayes’ theorem is:

P(A|B) = P(B|A) · P(A)

P(B)
(2)

where P(A|B) is the posterior probability of A given B, P(B|A) represents the likelihood of
B given A, P(A) is the prior probability of A, and P(B) stands for the total probability of B.

In a Bayesian Machine Learning context, we might need to estimate the model param-
eters θ of a model M given the data D. The initial belief about the parameters is depicted
by P(θ|M). Upon data observation, we seek to update our beliefs about the parameters,
denoted by the posterior probability P(θ|D, M). Bayes’ theorem hence provides:

P(θ|D, M) =
P(D|θ, M) · P(θ|M)

P(D|M)
(3)

In this equation, P(D|θ, M) denotes the likelihood of the data given the parameters
and the model, while P(D|M) signifies the evidence or marginal likelihood.

During machine learning tasks, we typically seek parameters that maximize the
posterior probability, yielding the Maximum a Posteriori (MAP) estimate:

θ̂MAP = arg max θP(θ|D, M) (4)

By applying the logarithm to both sides of the Bayes’ equation and disregarding the
denominator (independent of θ), we obtain:

θ̂MAP = arg max θ log P(D|θ, M) + log P(θ|M) (5)

Information 2023, 14, 451 4 of 27

In this formula, the first term represents the log-likelihood of the data given the model
parameters, while the second term illustrates the prior probability of the parameters’ log [3].
This equation underpins many Bayesian Machine Learning algorithms.

The prior probability and the likelihood can be relatively easily expressed, as they
are integral components of the given model. However, the marginal knowledge about the
event, also known as the normalization factor, needs to be calculated as:

P(D) =
∫

θ
p(D|θ)p(θ)dθ (6)

This computation becomes complex when additional dimensions are incorporated
into the problem and is nearly insurmountable for extremely high dimensions. Therefore,
due to these difficulties and others, such as ensuring correlation, alternative approximation
techniques are employed. Among these is the Markov Chain Monte Carlo (MCMC) method.

In the Bayesian machine learning framework, the MCMC methodology facilitates
sampling from complex and high-dimensional distributions. Here, the goal is to gener-
ate samples from the posterior distribution P(θ|D, M) without needing to calculate the
normalization factor P(D|M).

For the purpose of MCMC sampling, let us define a Markov chain with a stationary
distribution that is equal to our desired posterior distribution P(θ|D, M). If we can construct
such a chain, then by the ergodic theorem, the state of the chain will converge to the
stationary distribution after a large number of steps, no matter what the chain’s initial state
was. Thus, the samples generated from a Markov chain in its stationary phase can be used
as samples from the posterior distribution.

Given a current state θ(t), the next state θ(t+1) in the chain is generated by a proposal
distribution q(θ(t+1)|θ(t)). Then, the Metropolis–Hastings algorithm is applied to decide
whether to accept the proposed state or stay at the current state. The decision is made
based on the Metropolis–Hastings ratio:

r =
p(D|θ(t+1), M) · p(θ(t+1)|M)

p(D|θ(t), M) · p(θ(t)|M)
· q(θ(t)|θ(t+1))

q(θ(t+1)|θ(t))
(7)

If r ≥ 1, the proposed state is accepted. If r < 1, the proposed state is accepted with a
probability of r. Otherwise, the chain remains at the current state θ(t).

The sampling process continues for a large number of iterations, and the generated
samples are used to approximate the posterior distribution and make inferences about the
model parameters θ. This procedure forms the basis of many Bayesian machine learning
algorithms that deal with complex and high-dimensional models.

2.2. Markov Chain Monte Carlo Sampling

Markov Chain Monte Carlo (MCMC) techniques represent a class of algorithms for
sampling from a probability distribution. Essentially, they enable the extraction of samples
from a probability distribution, even if it is impossible to compute directly. Therefore, they
can be used to sample from the posterior distribution of the parameter θ. A significant
advantage of MCMC is that it does not need to assume a specific model for the probability
distribution under investigation which, in the case of Bayesian inference, is the posterior dis-
tribution. Consequently, these are more objective models. However, they are characterized
by high variance, implying more accurate results, albeit at a substantial computational cost.

In statistics, the primary objective of MCMC methods is to generate samples from a
given probability distribution of multiple variables. Monte Carlo techniques pertain to the
purpose of sampling, while Markov chains relate to the method by which these samples
are drawn [4,5]. Essentially, a Markov chain is constructed, from which the stationary
distribution is to be sampled. Subsequently, a random sequence of chain states is simulated.
The sequence size is such that it reaches a steady state, after which some of the produced
states are retained as samples [6,7].

Information 2023, 14, 451 5 of 27

The Monte Carlo component of MCMC originates from the statistical techniques of the
Monte Carlo simulations, which involve repeated random sampling to estimate numerical
results. The term “Markov chain” refers to a sequence of events in which the probability
of each event depends solely on the state attained in the previous event. By combining
these two concepts, MCMC methods allow sampling from intricate, high-dimensional
distributions, which would be otherwise computationally prohibitive [8–11].

MCMC methods, although computationally expensive, have become an integral
part of Bayesian statistics due to their efficacy in handling complex models and high-
dimensional parameter spaces. They are widely used in various fields of research, including
physics, computer science, engineering, biology, and economics, to provide solutions to
complicated problems involving uncertainty and randomness. In essence, the applicability
and versatility of MCMC methods have paved the way for a more profound understanding
and application of Bayesian statistics [12–15].

2.2.1. Markov Chain

Consider a sequence of random variables θ1, θ2, . . . , θn, . . ., whose values belong to a
set S. This set represents the state space and can be either finite or countably infinite. The
aforementioned sequence constitutes a Markov chain in discrete time if, for every n ∈ N
(natural numbers), and for all possible values of the random variables, the Markov property
(also known as the property of memorylessness) is satisfied. Mathematically, this can be
expressed as:

P[Xn = j | X1 = i1, X2 = i2, . . . , Xn−1 = in−1 = i] = P[Xn = j | Xn−1 = i] (8)

In the context of this Markov property, the future state of the process (Xn = j) depends
only on the present state (Xn−1 = i) and is independent of the past states (X1 = i1,
X2 = i2, . . . , Xn−2 = in−2). This property is what characterizes a Markov chain [16].

The Markov property, also known as the memoryless property, is:

P[Xn = j | X1 = i1, X2 = i2, . . . , Xn−1 = in−1] = P[Xn = j | Xn−1 = in−1] (9)

The conditions for elements of the transition matrix are:

0 ≤ Pij ≤ 1, ∑
j∈S

Pij = 1, ∀i, j ∈ S (10)

The probability of the process being in state i at time n is:

q(n)i = P[Xn = i], ∀i ∈ S and ∀n ∈ N : q(n)i ≥ 0, ∑
i∈S

q(n)i = 1 (11)

The vector of probabilities can be written as:

q(n) = (q(n)1 , q(n)2 , . . . , q(n)n) ∈ R|S| (12)

The probabilities for the next state can be written as:

q(n+1)
j = P[Xn+1 = j] = ∑

i∈S
pij × q(n)i (13)

This can also be represented in matrix form:

q(n+1) = q(n) × P (14)

The Markov chain provides a mathematical method for dealing with systems that
follow a chain of linked events where each event in the chain depends solely on the
previous event. These models are particularly useful in the study of different types of
systems, ranging from communication and information processing systems to biological
systems and financial markets.

Information 2023, 14, 451 6 of 27

Discrete-time Markov chains are a fundamental tool used in Markov Chain Monte Carlo
methods, as they can model the sequence of states in the MCMC method, where the next
sample (or state) is drawn based on the current sample (or state). By understanding this
fundamental property of Markov chains, we can better comprehend how MCMC algorithms
function and can be utilized effectively in the context of Bayesian machine learning [17–23].

2.2.2. Metropolis–Hastings

The Metropolis–Hastings algorithm is one of the most important methods in the class of
Markov Chain Monte Carlo (MCMC) algorithms. It is used to sample from a target probability
distribution when direct sampling is computationally demanding [24,25]. The sequence of
samples generated by the Metropolis–Hastings algorithm serves a crucial purpose in ap-
proximating distributions or computing integrals. This algorithm, initially introduced by
Metropolis et al. in 1953, primarily focused on symmetric proposal distributions. However,
in 1970, Hastings extended its applicability to encompass more general cases. The funda-
mental concept underlying the Metropolis–Hastings algorithm revolves around simulating a
Markov chain with a stationary distribution, which aligns with the target distribution [26].

In the context of the Metropolis–Hastings algorithm, a proposal distribution q is
employed to sample from a target distribution f . This mechanism enables the algorithm to
efficiently explore and sample from complex distributions, contributing to a wide range of
applications across various domains. In essence, it draws samples from q and accepts them
with a certain probability; otherwise, it repeats the sampling process. To achieve this, the
algorithm employs a Markov chain that asymptotically converges to a unique stationary
distribution π(x), such that π(x) = P(x) [27].

Let us consider that, at step n, the Markov chain is in the state Xn = x. For the next
state, Xn+1, the algorithm proposes a value, denoted as x′, by sampling from the proposal
distribution q(x′|x). The proposed value x′ is accepted with the acceptance probability:

a(x′, x) = min
(

1,
f (x′)q(x|x′)
f (x)q(x′|x)

)
(15)

where

• f (x) is the target distribution (also known as the posterior distribution in Bayesian
machine learning) from which we want to sample.

• q(x′|x) is the proposal distribution, which represents the probability of proposing x′

given the current state x.
• If a(x′, x) ≥ 1, the proposed value x′ is always accepted.
• Otherwise, if a(x′, x) < 1, the proposed value x′ is accepted with the probability

a(x′, x) and rejected with the probability 1− a(x′, x).

The Metropolis–Hastings algorithm iteratively applies this process, generating a
sequence of samples from the target distribution. By running the algorithm for a sufficient
number of iterations, the samples converge to an approximation of the desired distribution.

In the context of Bayesian inference, the prior distribution embodies our initial beliefs
about the parameters before observing any data, while the likelihood function characterizes
the probability of observing the data given specific parameter values. Their combination
results in the posterior distribution, which is proportional to the product of the prior and
the likelihood function. The posterior distribution encapsulates our updated knowledge
about the parameters after incorporating the information from the observed data.

To generate a sequence of samples from the posterior distribution, the Metropolis–
Hastings algorithm is commonly employed. This algorithm involves the proposal of a
new sample from a proposal distribution and the subsequent acceptance or rejection of the
proposed sample based on a probability ratio. The ratio is calculated as the product of the
posterior distribution evaluated for the proposed sample and the proposal distribution eval-
uated for the current sample, divided by the product of the posterior distribution evaluated
for the current sample and the proposal distribution evaluated for the proposed sample.

Information 2023, 14, 451 7 of 27

Through this iterative process, the algorithm generates a Markov chain of samples
that progressively converges, in the asymptotic sense, towards the desired target distribu-
tion, i.e., the posterior distribution. The Metropolis–Hastings algorithm finds extensive
application across various disciplines, including econometrics [28–30], engineering [31–34],
and physics [35], owing to its versatility and effectiveness in estimating parameters of
interest, such as posterior means, variances, and other statistical quantities [28,36,37].

In Bayesian machine learning, we employ the principles of Bayesian inference to
reason about uncertain quantities such as model parameters. The cornerstone of Bayesian
inference is Bayes’ theorem, which relates the posterior distribution of the parameters given
the observed data to the likelihood and prior distributions. To approximate the posterior
distribution when direct sampling is computationally demanding, we turn to Markov
Chain Monte Carlo (MCMC) methods [38–40].

Among these, the Metropolis–Hastings algorithm stands out as a key technique.
It enables the generation of a sequence of random samples from a target distribution
by proposing new states and accepting or rejecting them based on a carefully designed
acceptance ratio. By harnessing the properties of a Markov chain, the algorithm achieves
asymptotic convergence to a unique stationary distribution, enabling us to approximate
the desired posterior distribution and undertake various computational tasks, including
probability estimation and integral computation. The equations associated with Bayesian
inference and the Metropolis–Hastings algorithm encapsulate the mathematical framework
underlying these powerful techniques [25,41,42].

The essence of Bayesian inference and the Metropolis–Hastings algorithm is combining
prior knowledge with observed data to obtain the posterior distribution and leveraging
Markov chains to explore the target distribution:

• Bayesian Inference of Posterior Distribution:

P(θ|D) =
P(D|θ) · P(θ)

P(D)
(16)

where θ represents the parameters, D is the observed data, P(D|θ) is the likelihood function,
P(θ) is the prior distribution, and P(D) is the evidence or marginal likelihood.

• Detailed Balance Equation:

π(x) · P(x, x′) = π(x′) · P(x′, x) (17)

where π(x) is the target distribution, P(x, x′) is the transition probability from state x
to state x′, and π(x′) is the target distribution for the proposed state x′.

• Acceptance Ratio:
α(x′, x) = min

(
1,

π(x′) · q(x|x′)
π(x) · q(x′|x)

)
(18)

where α(x′, x) is the acceptance ratio, π(x) is the target distribution, q(x|x′) is the
proposal distribution for transitioning from state x′ to state x, and π(x′) is the target
distribution for the proposed state x′.

• Transition Probability:

P(x, x′) = q(x′|x) · α(x′, x) + δ(x, x′) ·
(

1− ∑
y 6=x

q(y|x) · α(y, x)

)
(19)

where P(x, x′) is the transition probability from state x to state x′, q(x′|x) is the proposal
distribution, α(x′, x) is the acceptance ratio, and δ(x, x′) is the Kronecker delta function.

2.2.3. Gibbs Sampling

Gibbs sampling is a powerful Markov Chain Monte Carlo (MCMC) technique and a
special case of the Metropolis–Hastings algorithm. It is widely used for sampling from high-
dimensional target distributions by leveraging the knowledge of their fully conditional
distributions, which must be known in advance [43]. The key principle behind Gibbs

Information 2023, 14, 451 8 of 27

sampling is to iteratively update one element (or a subset) of the parameter vector while
keeping the remaining elements fixed, based on their conditional distribution.

At each step of Gibbs sampling, a single element Xi is updated by sampling from the
full conditional distribution of Xi, conditioned on the current values of the other elements,
denoted by X−i. This conditional distribution is derived from the joint distribution of the
variables. The beauty of Gibbs sampling lies in its simplicity and effectiveness, as it allows
us to sample from complex high-dimensional distributions by iterative sampling from
simpler, lower-dimensional, conditional distributions.

Specifically, to update the i-th element of the sample vector, say x(n), denoted as x(n+1)
i ,

we sample from the conditional distribution:

p(x(n+1)
i |x(n)1 , x(n)2 , . . . , x(n)i−1, x(n)i+1, . . . , x(n)`) (20)

This update process is repeated for each element of the vector until convergence is
achieved. The fundamental principles of Gibbs sampling are represented through a set of
key equations:

• The joint distribution of the variables of interest, denoted as p(x1, x2, . . . , x`), represents
the complete probabilistic model capturing the dependencies among the variables:

p(x1, x2, . . . , x`) (21)

• The marginal distribution p(xi) encapsulates the probability distribution of a single
variable xi, obtained by integrating the joint distribution over all other variables x−i:

p(xi) =
∫

p(x1, x2, . . . , x`), dx1dx2 . . . dxi−1dxi+1 . . . dx` (22)

• To update the i-th variable xi in the Gibbs sampling process, we sample from its condi-
tional distribution p(xi|x−i). This conditional distribution is obtained by rearranging
the joint distribution equation and dividing it by the marginal distribution of the
remaining variables x−i:

p(xi|x−i) =
p(x1, x2, . . . , x`)

p(x−i)
=

p(x1, x2, . . . , x`)∫
p(x1, x2, . . . , x`), dxi

(23)

• The updated Gibbs sampling equation states that, at each iteration, we sample a new

value x(n+1)
i for variable xi from its conditional distribution p(xi|x−i). This ensures

that the updated sample vector retains the dependencies between variables as defined
by the joint distribution.

x(n+1)
i ∼ p(xi|x−i) (sampled from the conditional distribution) (24)

• Additionally, the calculation of expectations E[f (xi)|x−i] involves integrating the
function f (xi) with respect to the conditional distribution p(xi|x−i), providing a
means to estimate various quantities of interest based on the updated sample vector:

E[f (xi)|x−i] =
∫

f (xi), p(xi|x−i), dxi (25)

• By iteratively updating the elements of the sample vector x(n+1)
1 , x(n+1)

2 , . . . , x(n+1)
`

using their respective conditional distributions, Gibbs sampling enables the explo-
ration and approximation of the target distribution, facilitating Bayesian inference and
probabilistic modeling tasks:

x(n+1)
1 , x(n+1)

2 , . . . , x(n+1)
` (26)

Each element is updated sequentially using the corresponding conditional distribution.

In light of the foregoing discussion, it is evident that Gibbs sampling possesses desir-
able convergence properties, ensuring its ability to converge to the target distribution under

Information 2023, 14, 451 9 of 27

conditions of irreducibility and aperiodicity. However, the efficacy of Gibbs sampling
critically hinges on the amenability of the conditional distributions to efficient sampling. In
practical applications, the identification and characterization of suitable conditional distri-
butions, along with their associated sampling strategies, may pose considerable challenges,
particularly in the context of intricate models characterized by complex dependencies.

In conclusion, Gibbs sampling emerges as a versatile and robust technique for sam-
pling from high-dimensional distributions by iteratively updating individual elements
according to their conditional distributions. It constitutes a powerful tool in the realm of
Bayesian inference and probabilistic modeling, enabling the comprehensive exploration of
complex parameter spaces. Nonetheless, it is crucial to meticulously address the selection
and characterization of appropriate conditional distributions to ensure the efficacy and
precision of the sampling process.

2.3. Hamiltonian Monte Carlo and The No-U-Turn Sampler

Hamiltonian Monte Carlo (HMC) is a sophisticated MCMC algorithm that overcomes
the difficulties encountered by other techniques when dealing with complex and high-
dimensional target distributions. By incorporating gradient information, HMC enables a
more efficient exploration of the parameter space, resulting in improved convergence rates
and enhanced sampling performance, especially for high-dimensional target distributions
with correlated parameters. In addition, the ability of HMC to exploit the geometry of
the target distribution makes it a valuable instrument for confronting difficult Bayesian
inference problems, according to [44,45].

HMC has exhibited an exceptional empirical performance when used for difficult prob-
lems. It does, however, require two user-defined parameters, the step size and the number
of steps, which can have a significant effect on its efficacy. The No-U-Turn Sampler (NUTS)
is an extension of HMC that addresses this problem by employing a recursive algorithm to
determine the appropriate number of steps based on the candidate points that explore the
target distribution. This eliminates the need for the user to specify a fixed number of sampling
steps, resulting in more efficient sampling [45]. Despite the practical value of HMC and its
extension, NUTS, a firm comprehension of their efficacy and the optimal application methods
requires a sound foundation in the mathematical field of differential geometry. Although this
theory is beyond the scope of this work, it is important to note that NUTS is the default MCMC
sampling method in the pymc library that is used in the following sections. Therefore, we do
not conduct a thorough analysis of the algorithm, but we acknowledge its importance to this
study. However, additional information can be discovered in [45].

To provide a more comprehensive overview, let us delve into the mathematical under-
pinnings of HMC and NUTS. Hamiltonian Monte Carlo leverages the concept of Hamilto-
nian dynamics, which combines position and momentum variables to define a joint system
known as the Hamiltonian system. In this context, the target distribution is treated as a po-
tential energy function, and the momentum variables contribute to the kinetic energy. HMC
constructs proposals that traverse the target distribution more efficiently than traditional
MCMC methods by simulating the Hamiltonian dynamics using numerical methods.

The key idea behind HMC is to utilize the gradient information of the log-density
function of the target distribution. By incorporating gradient information, HMC gener-
ates proposals that follow the contours of the target distribution, enabling more effective
exploration of the parameter space. The algorithm achieves this by introducing auxiliary
momentum variables that are decoupled from the target distribution. During each iteration,
HMC performs a Metropolis–Hastings acceptance step based on the joint Hamiltonian of
the position and momentum variables, ensuring a detailed balance is maintained.

However, the performance of HMC heavily depends on the user-specified step size
and the number of steps. Selecting inappropriate values can lead to suboptimal exploration
of the target distribution or slow convergence. This limitation is addressed by the No-U-
Turn Sampler (NUTS), an extension of HMC that automates the selection of the number
of steps. NUTS uses a recursive algorithm to dynamically construct a trajectory in the

Information 2023, 14, 451 10 of 27

parameter space, terminating when the trajectory exhibits signs of “turning back”. By
adaptively adjusting the trajectory length, NUTS overcomes the need for manual tuning
and improves the sampling efficiency [45]. The joint Hamiltonian is defined as follows:

H(q, p) = U(q) + K(p) (27)

where q represents the position variables, U(q) is the potential energy associated with the
target distribution, p denotes the momentum variables, and K(p) is the kinetic energy. The
leapfrog integration scheme is used to simulate the Hamiltonian dynamics, and it can be
described by the following equations:

pt+ ε
2
= pt −

ε

2
∇U(qt)

qt+ε = qt + εM−1
(

pt+ ε
2

)
pt+ε = pt+ ε

2
− ε

2
∇U(qt+ε)

(28)

where t denotes the iteration step, ε represents the step size, ∇U(q) is the gradient of the
potential energy, and M is a mass matrix. The NUTS algorithm dynamically determines
the number of steps to take. A recursive algorithm is used to construct the trajectory, and it
terminates when the trajectory starts turning back on itself. The NUTS recursion scheme
can be represented by the following equations:(

q−, p−
)
∼ BuildTree(q, p, u, v, d− 1) (29)(

q+, p+
)
∼ BuildTree(q, p, u, v, d− 1)

if we accept
(
q−, p−, q+, p+

)
, then we return

(
q−, p−

)
and

(
q+, p+

)
otherwise, discard

(
q−, p−

)
and

(
q+, p+

)
3. Related Work
Air Quality Index—AQI

The Air Quality Index (AQI) is an essential instrument for assessing air pollution
levels and determining their impacts on public health. The AQI relies on accurate data
collection using air quality sensors, which are influenced by a variety of factors, including
traffic, forest fires, and other pollution sources that increase air pollution levels. The general
populace can gain insights into the current air quality and evaluate its potential risks to
human health through a detailed analysis of these data.

According to the European Environment Agency, the AQI is divided into six classifica-
tions, ranging from “good” to “extremely poor”. The concentrations of five major pollutants
determine the classification: nitrogen dioxide (NO2), ozone (O3), particulate matter with a
diameter of 10 µm or less (PM10), particulate matter with a diameter of 2.5 µm or less (PM2.5),
and sulfur dioxide (SO2). This exhaustive categorization system facilitates the better compre-
hension of air quality conditions, allowing for more informed decision-making and public
health protection measures. The AQI categories and index ranges for the five key pollutants
are shown in Table 1.

For a given area and time, the final AQI classification will align with the category
in which the pollutant with the highest index value is located, according to Table 1. This
approach ensures that the AQI accurately represents the air quality status at each moni-
toring station, considering the pollutant with the most detrimental effects on health. By
adhering to the European standards, the AQI facilitates informed decision-making and
effective measures to address air pollution and mitigate its potential health risks.

4. Methodology

The objective of this research is to develop a Bayesian Logistic Regression model for binary
classification of the air quality on an hourly basis based on air pollutant concentrations. In order
to perform Bayesian Modeling, Python’s pymc3 library for probabilistic programming is

Information 2023, 14, 451 11 of 27

used. We also use Apache Spark’s Python API—Pyspark—for scalable and effective big
data analysis and machine learning. Thanks to its distributed computing engine, Apache
Spark facilitates large dataset handling, along with efficient complex computations. Spark’s
scalability is particularly valuable in the realm of environmental data analysis, where the
volume and complexity of data pose significant challenges. Here, it is essential as we will be
experimenting with a large-volume dataset containing hourly air pollutant data measured
at 18 stations over a period of 18 years.

4.1. Data Selection and Preprocessing

The dataset chosen for the experiments included in this research contains the hourly
air pollutant concentrations in Madrid from January 2001 to April 2018, available through
Madrid’s Open Data website and through Kaggle [46]. The analysis of this dataset is of
great practical and environmental importance, as Madrid is one of the cities in Europe with
the worst air quality [47]. Consequently, it also exhibits the highest mortality rate attributed
to nitrogen dioxide and carbon monoxide, emphasizing the need for extensive efforts to
improve the air quality, starting from data analysis and comprehension.

The dataset consists of hourly pollutant concentrations for each year, saved in separate
CSV files. The pollutants include sulfur dioxide (SO2), carbon monoxide (CO), nitrogen
dioxide (NO2), particles smaller than 2.5 µm (PM2.5), particles smaller than 10 µm (PM10), O3
(ozone), toluene (TOL), benzene (BEN), ethylbenzene (EBE), total hydrocarbons (TCH), and
non-methane hydrocarbons or volatile organic compounds (NMHC). These measurements
were taken at 18 measurement stations in Madrid and are represented as columns in each file.

Before describing the steps followed to prepare the data for analysis, it is impor-
tant to mention that the data cleaning process involved the same preprocessing steps for
each dataset. The training set (2017 data) was preprocessed using pandas, numpy, and
scikit-learn, while the testing set (data spanning 18 years) was processed with pyspark,
utilizing pyspark.sql and pyspark.mllib for efficient handling and analysis. The raw
data can be seen in Figures 1 and 2.

The first step taken was the imputation of missing values using the interpolation
method time to account for temporal patterns and to ensure consistency in the irregularly
sampled data points. Prior to further modifications, the AQI category of each row was
added to a new column AQI_Index, where the AQI corresponds to the “worst level” for any
of the five pollutants, according to Table 1. An additional column, AQI_GenPop_Index, was
introduced to represent the binary AQI values, indicating the air quality’s suitability for the
general population. Subsequently, outliers from the pollutant columns were removed using
the interquartile range (IQR), as the data exhibited high skewness. Finally, the pollutant
columns were normalized using z-score normalization to have a mean of 0 and a standard
deviation of 1. The clean features can be seen in Figures 3 and 4. The target variable
distribution is shown in Figures 5 and 6.

Information 2023, 14, 451 12 of 27

5 10 15
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

BEN

10 20 30
Value

0

2

4

6

8

10

De
ns

ity

EBE

2 4
Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

CO

0 2 4
Value

0

2

4

6

8

10

12

14

16

De
ns

ity

NMHC

100 200 300
Value

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

De
ns

ity

NO_2

50 100 150
Value

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

O_3

0 100 200 300
Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity

PM10

0 25 50 75
Value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

De
ns

ity

PM25

25 50 75
Value

0.0

0.1

0.2

0.3

0.4

De
ns

ity

SO_2

2 4 6
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

TCH

25 50 75
Value

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

TOL

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Histogram of the raw pollutant data for 2017.

0 20 40 60
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

BEN

0 50 100 150
Value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

EBE

0 5 10 15
Value

0

1

2

3

4

5

6

De
ns

ity

CO

0 250 500 750 1000
Value

0.0

0.1

0.2

0.3

0.4

De
ns

ity

NMHC

0 200 400 600 800
Value

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

NO_2

0 50 100 150 200
Value

0.00

0.01

0.02

0.03

0.04

De
ns

ity

O_3

0 200 400 600
Value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

De
ns

ity

PM10

0 200 400
Value

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

PM25

0 1 2
Value 1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e 6 SO_2

0 50 100 150 200
Value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

TCH

0 1 2
Value 1e7

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e 6 TOL

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Histogram of the raw pollutant data over the 18-year period.

Information 2023, 14, 451 13 of 27

1 0 1 2
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

BEN

0 1 2
Value

0

1

2

3

4

5

6

7

De
ns

ity

EBE

1 0 1 2
Value

0

1

2

3

4

De
ns

ity

CO

2 0 2
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

NMHC

1 0 1 2
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

NO_2

1 0 1 2 3
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

O_3

1 0 1 2
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

PM10

1 0 1 2
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

PM25

1 0 1 2 3
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

SO_2

2 0 2
Value

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

TCH

1 0 1 2
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
De

ns
ity

TOL

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Clean 2017 data (Training Set).

2 0 2
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

BEN

2 1 0 1 2
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

EBE

2 1 0 1 2
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

CO

0 1 2 3 4
Value

0

1

2

3

4

5

6

7

8

De
ns

ity

NMHC

1 0 1 2 3
Value

0.0

0.2

0.4

0.6

0.8

De
ns

ity

NO_2

1 0 1 2 3
Value

0.0

0.5

1.0

1.5

2.0

De
ns

ity

O_3

1 0 1 2
Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

PM10

2 0 2
Value

0

1

2

3

4

5

De
ns

ity

PM25

0.5 0.0 0.5 1.0
Value

0

5

10

15

20

25

30

De
ns

ity

SO_2

4 2 0 2
Value

0

2

4

6

8

10

12

14

De
ns

ity

TCH

1 0 1
Value

0

5

10

15

20

25

De
ns

ity

TOL

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Clean data over the 18-year period (testing set).

Information 2023, 14, 451 14 of 27

Hazardous Safe
AQI Category

0

10

20

30

40

50

Pe
rc

en
ta

ge

Percentage of AQI Categories in Training Set

Figure 5. Percentage of the AQI values in the training set.

Hazardous Safe
AQI Category

0

10

20

30

40

50

Pe
rc

en
ta

ge

Percentage of AQI Categories in Testing Set

Figure 6. Percentage of AQI values in the testing dataset.

4.2. Bayesian Logistic Regression
4.2.1. Model Definition

The training and evaluation data are imported and the relevant pollutant columns
are selected as the features, while AQI_GenPop_Index is selected as the target column. This
is followed by the design of the Bayesian Logistic Regression model using pymc3 for the
prediction of the binary AQI categories. A pymc3 model object, called the AQI_model, is
initialized and used to define priors that follow the normal distribution for both the coeffi-
cients(coeffs) and the model bias, while the coeffs are set to have an initial value of 0.
The normal distribution is selected as we do not have any prior knowledge or preference
for specific values of coeffs and bias [48].

Bayesian Logistic Regression is employed to estimate the probability of a binary
variable (here, safe or hazardous) based on predictor variables (here: pollutants). The
logistic function, also known as the sigmoid function, maps the linear combination of
predictors and coefficients, along with a bias term, to a probability value between 0 and 1.
In our implementation, we use the Theano library to efficiently compute the sigmoid
function while ensuring numerical stability.

logistic(x) =
1

1 + e−x (30)

The probability of the positive class (1, representing “hazardous”) is calculated using
the logistic function. This involves taking the inner product of the feature vector X_train
and the coefficients, adding the bias term, and passing the result through the logistic
function to obtain a probability value.

p = logistic(Xtrain · coe f f s + bias) (31)

Information 2023, 14, 451 15 of 27

The resulting probability values, denoted as p, are utilized to model the observed
binary variable y_train by employing the Bernoulli likelihood function. The model aims
to estimate the probability of a sample belonging to the positive data class based on the
input characteristics, as well as the probability of observing the actual binary response
variable y_train. This concludes the model definition.

4.2.2. MCMC Sampling

After defining the model, posterior distribution sampling is performed using Markov
Chain Monte Carlo (MCMC) techniques. Several algorithms are tested, with a particular
preference for NUTS, and various tuning parameters are manually adjusted to optimize the
prediction accuracy, as shown in Tables 2 and 3. The target_accept argument determines
the desired acceptance rate for the sampler, while the tune argument specifies the number
of initial samples to be discarded before recording the results. The arguments chains
and cores specify the numbers of parallel chains and cores used for sampling. Following
sampling, a trace is generated for each model parameter using the pm.trace() function,
which contains the posterior distribution samples of the coefficients and bias.

Table 2. Classification metrics for various MCMC tuning parameters using five features.
Draws Tune Chains Time Accuracy Precision AUC ROC

1000 800 2 16 s 0.85683 0.89628 0.8419

1000 1000 2 23 s 0.85246 0.85107 0.8513

2000 1600 4 35 s 0.84532 0.867619 0.833

5000 2500 8 120 s 0.838744 0.84916 0.829

5000 5000 8 144 s 0.63898 0.64640 0.645

10,000 9000 8 226 s 0.4918 0.4944 0.4944

Table 3. Classification Metrics for various MCMC tuning parameters using 11 features.
Draws Tune Chains Time Accuracy Precision AUC ROC

1000 800 4 26 s 0.185357 0.1871 0.1859

1000 1000 2 16 s 0.4679 0.38946 0.4365

2000 2000 4 36 s 0.3448 0.33836 0.3386

2000 2000 4 39 s 0.70559 0.78998 0.6776

4000 3000 4 53 s 0.7355 0.73815 0.7397

5000 5000 4 80 s 0.74536 0.7701 0.7575

8000 8000 8 80 s 0.66774 0.673757 0.6737

4.2.3. Class Prediction on Unseen Data
Prediction for the Sensitivity Analysis

In the sensitivity analysis on the pandas data frame, predictions on unseen data are
made using a predict_proba() function, as seen in Listing 1. This function calculates the
predicted probabilities of the variable belonging to the positive class in a similar manner to
the training model by taking the inner product of X_test and the posterior mean of the
coefficients, along with the mean of the bias obtained from the MCMC trace. This result is
passed to the logistic function, resulting in the predicted probability y_test_pred_proba.
The predicted class y_test_pred is determined by selecting the class with the highest
predicted probability, as shown in Listing 1.

Information 2023, 14, 451 16 of 27

Listing 1. Predictions for Pandas Test Data.

def predict_proba (X , t r a c e) :
l i n e a r = np . dot (X , t r a c e [‘ ‘ c o e f f s ’ ’] . mean(a x i s = 0))
+ t r a c e [‘ ‘ b i a s ’ ’] . mean ()
proba = 1 / (1 + np . exp(− l i n e a r))
return np . column_stack ((1 − proba , proba))

y_test_pred_proba = predict_proba (X_test , t r a c e)
y_tes t_pred = np . argmax (y_test_pred_proba , a x i s =1)

The evaluation metrics are computed using the scikit-learn.metrics library and
can be seen in Tables 2 and 3. These results are discussed in Section 5.1.

Predictions on the 18-Year Data in Apache Spark

We follow a similar approach as in the previous chapter, where we define the Bayesian
Logistic Regression model. However, this time we train the model using the entire pandas
data frame and make predictions on new and unknown data spanning eighteen years,
utilizing the Apache Spark environment. The model definition and MCMC sampling
procedures remain unchanged.

As for the predictions, instead of using np.column_stack, like in Listing 1, we combine
the probabilities into a two-item array. To compute the linear combination of features and
coefficients, we use the sum function instead of numpy’s dot function. While numpy’s
dot function is typically used for matrix multiplication, the sum function simply adds
the elements of a matrix. In the context of the Bayesian logistic regression, the linear
combination of features and coefficients represents an inner product rather than a simple
sum. However, given that we process one line at a time in Spark, the sum function suffices
for calculating the linear combination. The above is achieved with the help of the user-
defined function predict_proba_udf, as seen in Listing 2.

Listing 2. User-defined predict_proba() function in pyspark.

@udf (returnType=ArrayType (DoubleType ()))
def predict_proba_udf (c o e f f s _ l i s t , b ias_value , * f e a t u r e s) :

l i n e a r = sum ([f e a t u r e s [i] * c o e f f s _ l i s t [i]
for i in range (len (c o e f f s _ l i s t))]) + bias_value
proba = 1 / (1 + math . exp(− l i n e a r))

return [1 − proba , proba]

In the final definition of y_pred, we explore different decision threshold values to account
for the roughly balanced nature of the classes that we aim to predict on the unknown data. It
is important to note that y_test_pred_proba, mentioned in Listing 1, is a two-dimensional
numpy array, where each row represents the predicted probabilities for each class.

By using np.argmax, we obtain the index of the highest probability along the second
axis, which corresponds to the classes. Consequently, the predicted class y_test_pred can
be either 0 or 1.

In Apache Spark, we directly calculate the probability of the positive class
(col(“proba”)[1]) and then apply a threshold to determine the predicted label, shown in
Listing 3. Although the notation might be different, the underlying concept remains the same,
as both approaches involve computing the probability of the positive class and converting it
into a binary label.

Listing 3. Predicted probabilities and classes in pyspark.

spark_df = spark_df . withColumn (‘ ‘ proba ’ ’ ,
predict_proba_udf (c o e f f s _ a r r a y , l i t (b ias_value) ,
* [c o l (c) for c in feature_columns]))
spark_df=spark_df . withColumn (‘ ‘ y_pred ’ ’ , (c o l (‘ ‘ proba ’ ’) [1]
>=threshold) . c a s t (DoubleType ()))

Information 2023, 14, 451 17 of 27

The evaluation metrics for different thresholds can be seen in Table 4 and are discussed
in Section 5.2.

Table 4. Bayesian Logistic Regression Metrics in Spark for different decision threshold
values.

Threshold TP TN FP FN Accuracy Precision Recall
Specificity AUC ROC

0.49 1,736,750 1,144,988 926,446 180,076 0.4611 0.4584 0.5526 0.5047

0.499 1,630,466 1,626,731 444,703 106,324 0.8553 0.7857 0.7851 0.8620

0.4999 1,574,588 1,738,770 332,664 162,202 0.8700 0.8255 0.8399 0.8730

0.5 1,567,495 1,750,169 321,265 169,295 0.8711 0.8708 0.8449 0.8737

0.5001 1,560,479 1,761,557 309,877 176,311 0.8723 0.8343 0.8505 0.8744

0.501 1,490,945 1,853,274 218,160 245,845 0.8781 0.8723 0.8945 0.8765

0.505 1,285,186 2,062,755 8679 451,604 0.8791 0.9932 0.9958 0.8678

0.506 1,271,575 465,215 792 2,070,642 0.8776 0.9993 0.999 0.8658

5. Experimental Results
5.1. Sensitivity Analysis

The tuning parameters that were experimented with are as follows [49]:

• Tune: MCMC samplers rely on the concept of Markov chains, which converge to the
stationary distribution of the defined model. To obtain unbiased samples, each chain
should reach convergence. By setting the tuning parameter to a value (e.g., 1000), the
chain iterates 1000 times to achieve convergence before sampling from the distribution
begins. The default value is 1000.

• Draws: This parameter determines the number of samples to be taken from the model
distribution after the tuning process. The default value is 1000.

• Chains: It is recommended that multiple chains (2–4) are run for reliable convergence
diagnostics [49]. The number of chains is set to two by default or is equal to the
number of available processors.

Tables 2 and 3 present the model evaluation metrics obtained by varying the tun-
ing parameters during MCMC sampling and using different numbers of features. The
sensitivity analysis is initially performed on a set of five features, NO2, O3, PM10, PM2.5,
and SO2 (which are used in the AQI calculation. Next, we incorporate BEN, EBE, CO,
NMHC, TCH, and TOL into the model features, encompassing all pollutants in the dataset,
resulting in a total of 11 features. By adjusting these tuning parameters and exploring
different combinations of features, we obtain a comprehensive evaluation of the model’s
performance.

Several observations can be made regarding the sampling process, model performance,
the impact of tuning parameters, and the number of features. Our key findings include:

• Sampling Efficiency: Smaller draws and a tuning value of around 75–100% of the num-
ber of samples result in improved sampling and successful predictions on unknown
data. Increasing the number of samples beyond a certain point does not provide
additional information about the posterior distribution of the model.

• Model Complexity and Feature Set: Models with a smaller feature set tend to perform
better than those with a larger set of 11 features. This is expected because sampling
from high-dimensional distributions (such as those with more features) implies a
higher model complexity and can lead to decreased performance.

• Convergence of the Sampling Algorithm: The sampling algorithm demonstrates con-
vergence for different tuning parameters, as seen in Figure 7, but this does not guaran-
tee successful predictions on unknown data. Convergence refers to the algorithm’s
stability and not necessarily to the accuracy of predictions.

Information 2023, 14, 451 18 of 27

4 3 2 1 0 1 2 3

coeffs
0

0 200 400 600 800

2.5

0.0

2.5

coeffs
0

3 2 1 0 1 2 3

coeffs
1

0 200 400 600 800

2

0

2

coeffs
1

4 3 2 1 0 1 2 3

coeffs
2

0 200 400 600 800

2.5

0.0

2.5

coeffs
2

3 2 1 0 1 2 3

coeffs
3

0 200 400 600 800

2

0

2

coeffs
3

4 3 2 1 0 1 2 3 4

coeffs
4

0 200 400 600 800

2.5

0.0

2.5

coeffs
4

3 2 1 0 1 2 3

bias

0 200 400 600 800

2

0

2

bias

Figure 7. MCMC trace KDE and samples for five features.

Based on these observations, the following conclusions can be drawn:

• Draw: The number of samples required for MCMC sampling depends on the com-
plexity of the posterior distribution being sampled rather than the number of features.
Increasing the number of features generally increases the complexity, requiring more
samples for accurate estimation.

• Tune: Larger "tune" values can prolong the adjustment phase, slowing down sampling
and potentially leading to overfitting. Higher tune values may also result in samples
with high autocorrelation, hindering accurate estimation. Conversely, a lower tune
value leads to a shorter fitting phase, incomplete sampling, and biased estimation of
the posterior distribution. Here, we check the model bias by comparing the mean of
the target and predicted labels, as seen in Table 5.

• Number of Features: The number of features in a model does not necessarily translate
to more reliable beliefs. The reliability of beliefs depends on the data themselves and
the estimates of the model parameters. While adding more features can increase the
available information, it also increases the risk of overfitting. On the contrary, using
fewer features may lead to underfitting, where the model is too simplistic and fails to
capture the data complexity.

In summary, the optimal tuning parameters and a number of features should be
carefully chosen to balance the model complexity, convergence, and prediction accuracy.
Here, we conclude that the best choice for our model is draw = 1000, tune = 800–1000, and
chains = 4 for the five-pollutant feature set.

Table 5. Model bias check: If the average value of the target column is similar to the average
value of the predicted labels, the model is unbiased.

Mean of Target Column Mean of Predicted Labels

0.45294 0.49240

Information 2023, 14, 451 19 of 27

5.2. Predictions in Apache Spark for Different Decision Thresholds

Having evaluated the model’s accuracy on small training and testing datasets, we now
proceed to the retraining of the model on the 2017 pandas data frame. The goal is to make
predictions on 18 years of unseen data using Pyspark for scalable big data management.

The evaluation metrics seen in Table 4 represent the performance of the classifier on
the unknown data. During our experiment, we explored various decision threshold values
for proba[1], as seen in Listing 3. This threshold determines the minimum probability at
which the model classifies a case as positive.

For the evaluation, we use the following metrics: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). It is worth noting that MCMC sampling
is carried out using the following parameters: draw = 1000, tune = 1000, chains = 4,
init=’advi’, n_init = 50,000, and the five feature set.

We observe that higher values of the threshold lead to a more conservative model that
makes fewer false positive predictions but more false negatives (Table 4). At the lowest
threshold, the model exhibits low precision, with a value of 0.4584, indicating a significant
number of incidents being incorrectly classified as false positives (hazardous). As the
threshold increases, both the accuracy and precision of the model improve. The maximum
values of 0.8791 and 0.9932, respectively, are achieved for a decision threshold of 0.505.
However, beyond this threshold, the model’s accuracy begins to decline again. These
findings clearly demonstrate the substantial influence of the decision threshold on the
classification model’s performance. Ultimately, the selection of an appropriate threshold
depends on the specific requirements of each problem, such as the relative costs associated
with false positives and false negatives [50].

Here, the objective is to classify the AQI as either “safe” (negative) or “hazardous”
(positive) for the general population. This means that it is crucial to minimize false neg-
atives, as misclassifying the air quality as “safe” could unknowingly subject the general
population to harmful air pollution. Hence, our primary concern lies in the metric of
recall/specificity, which quantifies the model’s ability to correctly identify safe air quality
instances (or true negatives, TN).

Upon analyzing the results, we find that, for a decision threshold of 0.505, the recal-
l/specificity metric reaches a value of 0.9958. This indicates that the model consistently and
accurately predicts the safe air quality, as evidenced by the high number of true negatives
(TN). For this reason, we consider the threshold of 0.505 to be the optimal choice. This
decision is based not only on the superior overall model performance achieved at this
threshold but also on the fact that selecting higher thresholds would lead to an increase in
false negative predictions, which is undesirable in our context.

Hence, we conclude that the threshold of 0.505 offers the best balance in terms of the
overall model performance, recall/specificity, and the prevention of false negative predictions.

5.3. Bayesian vs. Frequentist Logistic Regression in Apache Spark

This research concludes with the examination, training, and testing of a Frequentist
Logistic Regression model using the predefined algorithms in Pyspark’s MLlib library. The
evaluation metrics of both models, trained and assessed on identical training and control
sets, are presented in Table 6, using a consistent decision threshold of 0.505.

By comparing the two models, we observe that they demonstrate similar levels of accuracy
and duration for the training and testing processes. The precision and ROC AUC metrics
differ significantly for the two models, with the Bayesian model performing better in terms of
precision and the Frequentist model having a higher ROC score, indicating its overall superior
performance in terms of balancing the true positive rate against the false positive rate. The
confusion matrices for each model for various thresholds are shown in Figures 8–10 while the
ROC curve, as well as the AUC score for each method, are shown in Figure 11.

Given the significance of true negatives in this specific problem, the recall/specificity
metric is assumed to be of utmost importance. Notably, in Table 6, the Bayesian model
demonstrates a superior performance compared to its Frequentist counterpart when con-

Information 2023, 14, 451 20 of 27

sidering this specific metric, highlighting its effectiveness in accurately identifying true
negatives. This is crucial for ensuring that the Air Quality Index (AQI) category is not
mistakenly classified as “safe”, thereby preventing inadvertent exposure of the general
population to harmful air. The examination of the confusion matrices supports the idea that
the Bayesian model exhibits a greater number of true negatives compared to the Frequentist
model, a crucial aspect for addressing the problem at hand.

As a final conclusion, the Bayesian model provides more up-to-date estimates by
incorporating uncertainty, instilling a higher level of confidence in the data quality. Conse-
quently, based on these observations, it is safe to say that Bayesian Logistic Regression is
the best option between the two for this specific case.

Table 6. Frequentist and Bayesian Logistic Regression evaluation metrics in Spark with
five features and a decision threshold equal to 0.505.

Metrics Bayesian Logistic Regression Frequentist Logistic Regression

Accuracy 0.8791 0.8923

Precision 0.9932 0.9270

Recall/Specificity 0.9958 0.9452

ROC AUC 0.8678 0.9614

Time 35.3 s 35.3 s

Confusion Matrix [1285186,451604]
[8679, 2062755]

[1440301,296489]
[113412,1958022]

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1736750

False Positive
1144988

False Negative
926446

True Positive
180076

Confusion Matrix 1

(a) Confusion matrix for a threshold of 0.49.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1630466

False Positive
1626731

False Negative
444703

True Positive
106324

Confusion Matrix 2

(b) Confusion matrix for a threshold of 0.499.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1574588

False Positive
1738770

False Negative
332664

True Positive
162202

Confusion Matrix 3

(c) Confusion matrix for a threshold of 0.4999.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1567495

False Positive
1750169

False Negative
321265

True Positive
169295

Confusion Matrix 4

(d) Confusion matrix for a threshold of 0.5.

Figure 8. Bayesian Logistic Regression in Pyspark: Confusion matrices for thresholds of
0.49–0.5.

Information 2023, 14, 451 21 of 27

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1560479

False Positive
1761557

False Negative
309877

True Positive
176311

Confusion Matrix 5

(a) Confusion matrix for a threshold of 0.5001.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1490945

False Positive
1853274

False Negative
218160

True Positive
245845

Confusion Matrix 6

(b) Confusion matrix for a threshold of 0.501.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1285186

False Positive
2062755

False Negative
8679

True Positive
451604

Confusion Matrix 7

(c) Confusion matrix for a threshold of 0.505.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1271575

False Positive
465215

False Negative
792

True Positive
2070642

Confusion Matrix 8

(d) Confusion matrix for a threshold of 0.506.

Figure 9. Bayesian Logistic Regression in Pyspark: confusion matrices for thresholds of
0.5001–0.506.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1285186

False Positive
2062755

False Negative
8679

True Positive
451604

Confusion Matrix 7

(a) Confusion matrix for a threshold of 0.505.

Haza
rdo

us Sa
fe

Predicted Label

Ha
za

rd
ou

s
Sa

fe
Tr

ue
 la

be
l

True Negative
1440301

False Positive
296489

False Negative
113412

True Positive
1958022

Confusion Matrix Frequentist

(b) Confusion matrix for a threshold of 0.505.

Figure 10. Bayesian vs. Frequentist Logistic Regression in Pyspark: confusion matrices for
a threshold of 0.505.

Information 2023, 14, 451 22 of 27

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve

Bayesian Logistic Regression (AUC = 0.87)
Frequentist Logistic Regression(AUC = 0.9615)
No skill

Figure 11. ROC area under the curve for the two models.

6. Conclusions and Future Work
6.1. Conclusions

In this study, we introduced and presented the first-ever Markov Chain Monte Carlo
(MCMC) classifier in the context of environmental data analysis. Our focus on model sim-
plicity revealed that an equilibrium between the number of features and model complexity
is crucial for preventing overfitting and optimizing the predictive accuracy. Specifically,
our MCMC classifier achieved an outstanding accuracy of 87.91% and a remarkable recal-
l/specificity of 99.58% at a decision threshold of 0.505, demonstrating its efficacy in air
quality prediction.

Furthermore, we underpinned the essentiality of custom decision thresholds and the
careful selection of problem-specific evaluation metrics. This approach focuses on address-
ing the consequences of false negative predictions and optimizing the trade-offs between
false positives and negatives. Moreover, our research demonstrates the superior capabilities
of Bayesian machine learning models over their Frequentist counterparts in managing the
inherent uncertainties of environmental datasets. Simultaneously, this work underscores
the notable role of Apache Spark in big data management. Its distributed computing
capabilities facilitate the handling of large environmental datasets, ultimately enhancing
the model’s performance, reliability, and scalability. The scalability of Apache Spark is
particularly valuable in the spectrum of environmental data analysis, where the volume
and complexity of data pose significant challenges. Through the utilization of Apache
Spark, this study explored the scalability of our MCMC-based classifier, enabling compre-
hensive insights and accurate predictions on larger datasets. This not only enhanced the
model performance but also facilitated the exploration of complex environmental problems,
generating more reliable and robust results. The findings presented in Section 5.2 highlight
the potential of Apache Spark for use in environmental data analysis as it overcomes the
challenges faced while working with such data, while also incorporating prior knowledge,
leading to evidence-based decisions.

Regarding future work, several potential extensions can be considered. These include
the development of a multiclass Bayesian classification model to predict all categories of the
Air Quality Index (AQI), refining prior distributions to enhance the sampling and estimation
efficiency, exploring Bayesian models’ application to alternative environmental datasets,
such as recyclables management, and integrating Pymc with Pyspark for distributed
Bayesian modeling. These directions aim to expand the capabilities of our classifier for

Information 2023, 14, 451 23 of 27

environmental data analysis, fostering a deeper understanding of air quality data and
supporting informed decision-making in environmental management and public health.
As future directions, we will focus on developing a multiclass Bayesian classification model,
refining prior distributions, and broadening Bayesian models’ applications to more complex
environmental datasets. These improvements aim to further exploit the potential of our
pioneering MCMC classifier, deepen our understanding of air quality data, and support
informed decision-making processes in environmental management and public health.

6.2. Future Work
6.2.1. Environmental Data Analysis Applications

Future work on environmental data analysis must address various challenges such as
handling large volumes of data, managing uncertainties in characteristics and predictions,
minimizing computational complexities, and exploring intricate data relationships [51,52].
Novel techniques to be pursued include stochastic process modeling for environmental
systems [53,54], statistical computation methods for detecting patterns and trends [55,56],
and deep learning approaches to uncover hidden correlations [57–60]. The application
of intelligent gas detection systems, IoT, and advanced sensor technologies for real-time
monitoring can further enhance this field [61–63]. Notably, the integration of AutoML with
Bayesian optimizations, as presented in [64], offers promising results.

Moreover, the application of TinyML, which is characterized by lightweight machine
learning models optimized for resource-constrained peripheral devices, represents a new
frontier in environmental monitoring, according to [65]. Expanding the scope of TinyML
applications and integrating them with environmental sensors and networks could pave the
way for economically viable real-time data analysis solutions. In addition, the research and
development of novel clustering methods, such as those suggested in [66], could potentially
be beneficial. These techniques can aid in the unraveling of complex environmental patterns,
thereby enhancing the precision and robustness of machine learning models within complex
and high-dimensional datasets.

The scope and variety of possible future research in environmental data analysis is
vast and requires significant progress to be made in the fields of data science, modeling,
and distributed and cloud computing. Such research should focus on managing the
complexities of large-scale data analysis and the inherent uncertainty in environmental
data. Interdisciplinary collaborations and novel research practices are essential to address
the multifaceted challenges in earth and environmental sciences. Pursuing these areas will
underpin effective environmental issue management and promote informed, sustainable
decision-making.

6.2.2. Bayesian Machine Learning and Bayesian Inference

Future research in Bayesian machine learning should focus on improving model
accuracy and scalability, particularly within the context of Markov Chain Monte Carlo
(MCMC) applications in Apache Spark environments. Emphasis should be placed on the
development of efficient methods for the post hoc computation of high-dimensional targets,
investigating the potential of normalized flows for adaptive MCMC and creating Bayesian
coresets for data compression before sampling to mitigate the computational burden [51].

There is a significant need to explore distributed Bayesian inference for dependent,
high-dimensional models, moving beyond the current focus on independent data mod-
els [67]. Methods that capitalize on the low-dimensional structures of high-dimensional
problems can be valuable, along with those that reduce bias and variance, promote asyn-
chronous updates, and facilitate automated diagnosis.

Furthermore, to address larger and more complex problems, the scalability of Bayesian
models should be enhanced using distributed memory technologies. Optimization strate-
gies for these technologies can help to achieve faster and more energy-efficient predic-
tions [68]. This necessitates the development of novel algorithms and techniques for
Bayesian inference suitable for distributed memory architectures. Investigation into alterna-

Information 2023, 14, 451 24 of 27

tive formulations of the Bayesian theorem for distributed memory and hybrid architectures
that combine Bayesian models with other machine learning methods, such as neural net-
works and decision trees, could also be of significant value.

Ultimately, the future of Bayesian machine learning involves its successful integration
into existing machine learning technologies, focusing on speed, computational complexity,
energy efficiency, and cost-effectiveness. This exploration will unlock the full potential of
Bayesian models in addressing real-world challenges, promoting advancements in data
analysis and decision-making.

Author Contributions: E.V., C.K., A.K., D.T. and S.S. conceived the idea, designed and performed
the experiments, analyzed the results, drafted the initial manuscript and revised the final manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
AQI Air Quality Index
AUC Area Under the Curve
FN False Negative
FP False Positive
HMC Hamiltonian Monte Carlo
IQR Interquartile Range
MCMC Markov Chain Monte Carlo
MH Metropolis-Hastings
ML Machine Learning
NUTS No-U-Turn Sampler
RDD Resilient Distributed Dataset
ROC Receiver Operating Characteristic
TN True Negative
TP True Positive
UDF User-Defined Function
IoT Internet of Things
EI Environment Information
IT Information Technology

References
1. Villanueva, F.; Ródenas, M.; Ruus, A.; Saffell, J.; Gabriel, M.F. Sampling and analysis techniques for inorganic air pollutants in

indoor air. Appl. Spectrosc. Rev. 2021, 57, 531–579. [CrossRef]
2. Martínez Torres, J.; Pastor Pérez, J.; Sancho Val, J.; McNabola, A.; Martínez Comesaña, M.; Gallagher, J. A Functional Data

Analysis Approach for the Detection of Air Pollution Episodes and Outliers: A Case Study in Dublin, Ireland. Mathematics 2020,
8, 225. [CrossRef]

3. Karras, C.; Karras, A.; Avlonitis, M.; Giannoukou, I.; Sioutas, S. Maximum Likelihood Estimators on MCMC Sampling Algorithms
for Decision Making. In Proceedings of the Artificial Intelligence Applications and Innovations, AIAI 2022 IFIP WG 12.5
International Workshops, Creta, Greece, 17–20 June 2022; Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer
International Publishing: Cham, Switzerland, 2022; pp. 345–356.

4. Wang, G.; Wang, T. Unbiased Multilevel Monte Carlo methods for intractable distributions: MLMC meets MCMC. arXiv 2022,
arXiv:2204.04808.

5. Braham, H.; Berdjoudj, L.; Boualem, M.; Rahmania, N. Analysis of a non-Markovian queueing model: Bayesian statistics and
MCMC methods. Monte Carlo Methods Appl. 2019, 25, 147–154. [CrossRef]

6. Altschuler, J.M.; Talwar, K. Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave
Sampling. arXiv 2022, arXiv:2210.08448.

http://doi.org/10.1080/05704928.2021.2020807
http://dx.doi.org/10.3390/math8020225
http://dx.doi.org/10.1515/mcma-2019-2035

Information 2023, 14, 451 25 of 27

7. Paguyo, J. Mixing times of a Burnside process Markov chain on set partitions. arXiv 2022, arXiv:2207.14269.
8. Dymetman, M.; Bouchard, G.; Carter, S. The OS* algorithm: A joint approach to exact optimization and sampling. arXiv 2012,

arXiv:1207.0742.
9. Jaini, P.; Nielsen, D.; Welling, M. Sampling in combinatorial spaces with survae flow augmented mcmc. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, PMLR, Virtual, 13–15 April 2021; pp. 3349–3357.
10. Vono, M.; Paulin, D.; Doucet, A. Efficient MCMC sampling with dimension-free convergence rate using ADMM-type splitting.

J. Mach. Learn. Res. 2022, 23, 1100–1168.
11. Pinski, F.J. A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space. Entropy 2021, 23, 499. [CrossRef]
12. Beraha, M.; Argiento, R.; Møller, J.; Guglielmi, A. MCMC Computations for Bayesian Mixture Models Using Repulsive Point

Processes. J. Comput. Graph. Stat. 2022, 31, 422–435. [CrossRef]
13. Cotter, S.L.; Roberts, G.O.; Stuart, A.M.; White, D. MCMC Methods for Functions: Modifying Old Algorithms to Make Them

Faster. Stat. Sci. 2013, 28, 424–446. [CrossRef]
14. Craiu, R.V.; Levi, E. Approximate Methods for Bayesian Computation. Annu. Rev. Stat. Its Appl. 2023, 10, 379–399. [CrossRef]
15. Van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A simple introduction to Markov Chain Monte–Carlo sampling. Psychon. Bull. Rev.

2018, 25, 143–154. [CrossRef] [PubMed]
16. Karras, C.; Karras, A.; Avlonitis, M.; Sioutas, S. An Overview of MCMC Methods: From Theory to Applications. In Proceedings

of the Artificial Intelligence Applications and Innovations, AIAI 2022 IFIP WG 12.5 International Workshops, Creta, Greece,
17–20 June 2022; Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer International Publishing: Cham, Switzerland,
2022; pp. 319–332.

17. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process.
Syst. 2012, 25.

18. Theodoridis, S. Machine Learning: A Bayesian and Optimization Perspective; Academic Press: Cambridge, MA, USA, 2015.
19. Elgeldawi, E.; Sayed, A.; Galal, A.R.; Zaki, A.M. Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic

Sentiment Analysis. Informatics 2021, 8, 79. [CrossRef]
20. Band, S.S.; Janizadeh, S.; Saha, S.; Mukherjee, K.; Bozchaloei, S.K.; Cerdà, A.; Shokri, M.; Mosavi, A. Evaluating the Efficiency of

Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using
ALOS/PALSAR Data. Land 2020, 9, 346. [CrossRef]

21. Itoo, F.; Singh, S. Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit
card fraud detection. Int. J. Inf. Technol. 2021, 13, 1503–1511. [CrossRef]

22. Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based
on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40.

23. Wei, X.; Wang, H. Stochastic stratigraphic modeling using Bayesian machine learning. Eng. Geol. 2022, 307, 106789. [CrossRef]
24. Hitchcock, D.B. A history of the Metropolis–Hastings algorithm. Am. Stat. 2003, 57, 254–257. [CrossRef]
25. Robert, C.; Casella, G.; Robert, C.P.; Casella, G. Metropolis–hastings algorithms. In Introducing Monte Carlo Methods with R;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 167–197.
26. Hassibi, B.; Hansen, M.; Dimakis, A.G.; Alshamary, H.A.J.; Xu, W. Optimized Markov Chain Monte Carlo for Signal Detection in

MIMO Systems: An Analysis of the Stationary Distribution and Mixing Time. IEEE Trans. Signal Process. 2014, 62, 4436–4450.
[CrossRef]

27. Chib, S.; Greenberg, E. Understanding the metropolis-hastings algorithm. Am. Stat. 1995, 49, 327–335.
28. Hoogerheide, L.F.; van Dijk, H.K.; van Oest, R.D. Simulation Based Bayesian Econometric Inference: Principles and Some Recent

Computational Advances. Econom. J. 2007, 215–280. [CrossRef]
29. Johannes, M.; Polson, N. MCMC methods for continuous-time financial econometrics. In Handbook of Financial Econometrics:

Applications; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–72.
30. Flury, T.; Shephard, N. Bayesian inference based only on simulated likelihood: Particle filter analysis of dynamic economic

models. Econom. Theory 2011, 27, 933–956. [CrossRef]
31. Zuev, K.M.; Katafygiotis, L.S. Modified Metropolis–Hastings algorithm with delayed rejection. Probabilistic Eng. Mech. 2011,

26, 405–412. [CrossRef]
32. Alotaibi, R.; Nassar, M.; Elshahhat, A. Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive

Hybrid Censoring with Applications in Chemical Engineering. Mathematics 2022, 10, 3355. [CrossRef]
33. Afify, A.Z.; Gemeay, A.M.; Alfaer, N.M.; Cordeiro, G.M.; Hafez, E.H. Power-modified kies-exponential distribution: Properties,

classical and bayesian inference with an application to engineering data. Entropy 2022, 24, 883. [CrossRef] [PubMed]
34. Elshahhat, A.; Elemary, B.R. Analysis for Xgamma parameters of life under Type-II adaptive progressively hybrid censoring with

applications in engineering and chemistry. Symmetry 2021, 13, 2112. [CrossRef]
35. Delmas, J.F.; Jourdain, B. Does waste-recycling really improve Metropolis-Hastings Monte Carlo algorithm? arXiv 2006,

arXiv:math/0611949.
36. Datta, S.; Gayraud, G.; Leclerc, E.; Bois, F.Y. Graph sampler: A C language software for fully Bayesian analyses of Bayesian

networks. arXiv 2015, arXiv:1505.07228.
37. Gamerman, D. Markov chain Monte Carlo for dynamic generalised linear models. Biometrika 1998, 85, 215–227. [CrossRef]

http://dx.doi.org/10.3390/e23050499
http://dx.doi.org/10.1080/10618600.2021.2000424
http://dx.doi.org/10.1214/13-STS421
http://dx.doi.org/10.1146/annurev-statistics-033121-110254
http://dx.doi.org/10.3758/s13423-016-1015-8
http://www.ncbi.nlm.nih.gov/pubmed/26968853
http://dx.doi.org/10.3390/informatics8040079
http://dx.doi.org/10.3390/land9100346
http://dx.doi.org/10.1007/s41870-020-00430-y
http://dx.doi.org/10.1016/j.enggeo.2022.106789
http://dx.doi.org/10.1198/0003130032413
http://dx.doi.org/10.1109/TSP.2014.2334558
http://dx.doi.org/10.2139/ssrn.994801
http://dx.doi.org/10.1017/S0266466610000599
http://dx.doi.org/10.1016/j.probengmech.2010.11.008
http://dx.doi.org/10.3390/math10183355
http://dx.doi.org/10.3390/e24070883
http://www.ncbi.nlm.nih.gov/pubmed/35885105
http://dx.doi.org/10.3390/sym13112112
http://dx.doi.org/10.1093/biomet/85.1.215

Information 2023, 14, 451 26 of 27

38. Alvin J., K.C.; Vallisneri, M. Learning Bayes’ theorem with a neural network for gravitational-wave inference. arXiv 2019,
arXiv:1909.05966.

39. Vuckovic, J. Nonlinear MCMC for Bayesian Machine Learning. In Proceedings of the Neural Information Processing Systems,
New Orleans, LA, USA, 28 November–9 December 2022.

40. Green, S.R.; Gair, J. Complete parameter inference for GW150914 using deep learning. Mach. Learn. Sci. Technol. 2021, 2, 03LT01.
[CrossRef]

41. Martino, L.; Elvira, V. Metropolis sampling. arXiv 2017, arXiv:1704.04629.
42. Catanach, T.A.; Vo, H.D.; Munsky, B. Bayesian inference of stochastic reaction networks using multifidelity sequential tempered

Markov chain Monte Carlo. Int. J. Uncertain. Quantif. 2020, 10, 515–542. [CrossRef]
43. Burke, N. Metropolis, Metropolis-Hastings and Gibbs Sampling Algorithms; Lakehead University Thunder Bay: Thunder Bay,

ON, Canada, 2018.
44. Apers, S.; Gribling, S.; Szilágyi, D. Hamiltonian Monte Carlo for efficient Gaussian sampling: Long and random steps. arXiv

2022, arXiv:2209.12771.
45. Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach.

Learn. Res. 2014, 15, 1593–1623.
46. Soluciones, D. Air Quality in Madrid (2001–2018). In Kaggle: A Platform for Data Science; Kaggle: San Francisco, CA, USA, 2018.
47. Aguilar, P.M.; Carrera, L.G.; Segura, C.C.; Sánchez, M.I.T.; Peña, M.F.V.; Hernán, G.B.; Rodríguez, I.E.; Zapata, R.M.R.;

Lucas, E.Z.D.; Álvarez, P.D.A.; et al. Relationship between air pollution levels in Madrid and the natural history of idio-
pathic pulmonary fibrosis: Severity and mortality. J. Int. Med. Res. 2021, 49, 03000605211029058. [CrossRef]

48. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. Peerj Comput. Sci. 2016, 2, e55.
[CrossRef]

49. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Sampling, PyMC3 Documentation. Online Documentation. 2021. Available online:
https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/getting_started.html (accessed on 1 May 2023).

50. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag.
Process. 2015, 5, 1.

51. Blair, G.S.; Henrys, P.; Leeson, A.; Watkins, J.; Eastoe, E.; Jarvis, S.; Young, P.J. Data science of the natural environment: A research
roadmap. Front. Environ. Sci. 2019, 7, 121. [CrossRef]

52. Kozlova, M.; Yeomans, J.S. Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and
Computational Analytics. Sustainability 2022, 14, 1655. [CrossRef]

53. Bhuiyan, M.A.M.; Sahi, R.K.; Islam, M.R.; Mahmud, S. Machine Learning Techniques Applied to Predict Tropospheric Ozone in a
Semi-Arid Climate Region. Mathematics 2021, 9, 2901. [CrossRef]

54. Del Giudice, D.; Löwe, R.; Madsen, H.; Mikkelsen, P.S.; Rieckermann, J. Comparison of two stochastic techniques for reliable
urban runoff prediction by modeling systematic errors. Water Resour. Res. 2015, 51, 5004–5022. [CrossRef]

55. Cheng, T.; Wang, J.; Li, X. A Hybrid Framework for Space–Time Modeling of Environmental Data. Geogr. Anal. 2011, 43, 188–210.
[CrossRef]

56. Chen, L.; He, Q.; Wan, H.; He, S.; Deng, M. Statistical computation methods for microbiome compositional data network inference.
arXiv 2021, arXiv:2109.01993.

57. Li, J.B.; Qu, S.; Metze, F.; Huang, P.Y. AudioTagging Done Right: 2nd comparison of deep learning methods for environmental
sound classification. arXiv 2022, arXiv:2203.13448.

58. Jubair, S.; Domaratzki, M. Crop genomic selection with deep learning and environmental data: A survey. Front. Artif. Intell. 2022, 5,
1040295. [CrossRef]

59. Hsiao, H.C.W.; Chen, S.H.F.; Tsai, J.J.P. Deep Learning for Risk Analysis of Specific Cardiovascular Diseases Using Environmental
Data and Outpatient Records. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering
(BIBE), Taichung, Taiwan, 31 October–2 November 2016; pp. 369–372. [CrossRef]

60. Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Zuo, M.; Zhang, Q.C.; Lin, S. Deep-Learning Temporal Predictor via Bidirectional
Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse. Agriculture 2021,
11, 802. [CrossRef]

61. Senthil, G.; Suganthi, P.; Prabha, R.; Madhumathi, M.; Prabhu, S.; Sridevi, S. An Enhanced Smart Intelligent Detecting and
Alerting System for Industrial Gas Leakage using IoT in Sensor Network. In Proceedings of the 2023 5th International Conference
on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 23–25 January 2023; pp. 397–401. [CrossRef]

62. Liu, B.; Zhou, Y.; Fu, H.; Fu, P.; Feng, L. Lightweight Self-Detection and Self-Calibration Strategy for MEMS Gas Sensor Arrays.
Sensors 2022, 22, 4315. [CrossRef]

63. Fascista, A. Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applica-
tions, Signal Processing, and Future Perspectives. Sensors 2022, 22, 1824. [CrossRef] [PubMed]

64. Karras, A.; Karras, C.; Schizas, N.; Avlonitis, M.; Sioutas, S. AutoML with Bayesian Optimizations for Big Data Management.
Information 2023, 14, 223. [CrossRef]

65. Schizas, N.; Karras, A.; Karras, C.; Sioutas, S. TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A Systematic
Review. Future Internet 2022, 14, 363. [CrossRef]

http://dx.doi.org/10.1088/2632-2153/abfaed
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2020033241
http://dx.doi.org/10.1177/03000605211029058
http://dx.doi.org/10.7717/peerj-cs.55
https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/getting_started.html
http://dx.doi.org/10.3389/fenvs.2019.00121
http://dx.doi.org/10.3390/su14031655
http://dx.doi.org/10.3390/math9222901
http://dx.doi.org/10.1002/2014WR016678
http://dx.doi.org/10.1111/j.1538-4632.2011.00813.x
http://dx.doi.org/10.3389/frai.2022.1040295
http://dx.doi.org/10.1109/BIBE.2016.75
http://dx.doi.org/10.3390/agriculture11080802
http://dx.doi.org/10.1109/ICSSIT55814.2023.10060907
http://dx.doi.org/10.3390/s22124315
http://dx.doi.org/10.3390/s22051824
http://www.ncbi.nlm.nih.gov/pubmed/35270970
http://dx.doi.org/10.3390/info14040223
http://dx.doi.org/10.3390/fi14120363

Information 2023, 14, 451 27 of 27

66. Karras, C.; Karras, A.; Giotopoulos, K.C.; Avlonitis, M.; Sioutas, S. Consensus Big Data Clustering for Bayesian Mixture Models.
Algorithms 2023, 16, 245. [CrossRef]

67. Krafft, P.M.; Zheng, J.; Pan, W.; Della Penna, N.; Altshuler, Y.; Shmueli, E.; Tenenbaum, J.B.; Pentland, A. Human collective
intelligence as distributed Bayesian inference. arXiv 2016, arXiv:1608.01987.

68. Winter, S.; Campbell, T.; Lin, L.; Srivastava, S.; Dunson, D.B. Machine Learning and the Future of Bayesian Computation. arXiv
2023, arXiv:2304.11251.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/a16050245

	Introduction
	Preliminaries
	Bayesian Machine Learning
	Markov Chain Monte Carlo Sampling
	Markov Chain
	Metropolis–Hastings
	Gibbs Sampling

	Hamiltonian Monte Carlo and The No-U-Turn Sampler

	Related Work
	Methodology
	Data Selection and Preprocessing
	Bayesian Logistic Regression
	Model Definition
	MCMC Sampling
	Class Prediction on Unseen Data

	Experimental Results
	Sensitivity Analysis
	Predictions in Apache Spark for Different Decision Thresholds
	Bayesian vs. Frequentist Logistic Regression in Apache Spark

	Conclusions and Future Work
	Conclusions
	Future Work
	Environmental Data Analysis Applications
	Bayesian Machine Learning and Bayesian Inference

	References

