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Abstract: In recent times, the progress of machine learning has facilitated the development of decision
support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios.
However, this improvement has come at the cost of increased model complexity, rendering them black-
box models that obscure their internal logic from users. These black boxes are primarily designed
to optimize predictive accuracy, limiting their applicability in critical domains such as medicine,
law, and finance, where both accuracy and interpretability are crucial factors for model acceptance.
Despite the growing body of research on interpretability, there remains a significant dearth of
evaluation methods for the proposed approaches. This survey aims to shed light on various evaluation
methods employed in interpreting models. Two primary procedures are prevalent in the literature:
qualitative and quantitative evaluations. Qualitative evaluations rely on human assessments, while
quantitative evaluations utilize computational metrics. Human evaluation commonly manifests
as either researcher intuition or well-designed experiments. However, this approach is susceptible
to human biases and fatigue and cannot adequately compare two models. Consequently, there
has been a recent decline in the use of human evaluation, with computational metrics gaining
prominence as a more rigorous method for comparing and assessing different approaches. These
metrics are designed to serve specific goals, such as fidelity, comprehensibility, or stability. The
existing metrics often face challenges when scaling or being applied to different types of model
outputs and alternative approaches. Another important factor that needs to be addressed is that while
evaluating interpretability methods, their results may not always be entirely accurate. For instance,
relying on the drop in probability to assess fidelity can be problematic, particularly when facing the
challenge of out-of-distribution data. Furthermore, a fundamental challenge in the interpretability
domain is the lack of consensus regarding its definition and requirements. This issue is compounded
in the evaluation process and becomes particularly apparent when assessing comprehensibility.

Keywords: interpretability; explainable AI; evaluating interpretability

1. Introduction

People rely on data-driven technology in nearly every aspect of their daily life. Specifi-
cally, decision-making systems and black-box algorithms have begun making decisions
that were previously decided purely by people. These systems and algorithms play a
significant role in determining and directing a wide variety of real-world decisions, ranging
from applications with limited consequences to decision-making systems that affect human
rights, with performances that match or exceed that of humans. Accuracy is the leading
metric in assessing machine learning models. Nevertheless, this metric can be misleading,
as a model can achieve high accuracy by focusing on unimportant features or patterns in
the data or accidental artifacts. For example, a recent study by Ribeiro et al. [1] presented
a model that classifies images of a husky or a wolf, in which only one misclassification
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error was made. However, the model decided whether an image contains a wolf or a husky
based on the presence of snow in the background.

Notwithstanding, there is mistrust in the decisions made by data-driven technology
in critical domains, such as parole hearings (e.g., in 2016, prisoner Glen Rodrigues was
denied parole due to an incorrect high-risk COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions) score [2]). In addition, existing metrics do not show
how the model reasons or when it will fail; for instance, adversarial examples have shown
the lack of the robustness of deep neural networks, as the system can be broken in sur-
prising ways [3]. Altogether, there is an urgent need to demystify black-box models and
improve their transparency and interpretability towards trustworthy and reliable machine
learning models.

Interpretability/explainability in machine learning aims to bridge this gap by justify-
ing the reasoning behind decisions made by learned models. The explanation/interpretation
term appears in multiple fields from philosophy to social science and logic, with different
definitions depending on the field/context. In computer science, the need for interpretable
decisions was discussed in the 1980s [4] with the rise of expert systems and rules. In
the context of machine learning, many definitions are provided. Biran and Cotton [5]
stated that “systems are interpretable if their operations can be understood by a human,
either through introspection or through a produced explanation”. Miller [6] suggested
that interpretability is “the degree to which an observer can understand the cause of a
decision”. Doshi-Velez and Kim [7] defined interpretability as “the ability to explain or to
provide the meaning in understandable terms to a human”. The same definition is pro-
vided in [8]. A more specific definition of interpretability in a machine learning framework
is [9] “the use of machine learning models for the extraction of relevant knowledge about
domain relationships contained in data”. In most of the literature, interpretability and
explainability are used interchangeably [6,10]; in this survey, we also use both to refer to
the same task. However, some references distinguish between them and consider that
interpretable models are explainable by default. The reverse is rarely true. Gilpin et al. [11]
considered interpretability as a part of explainability. Pearl [12,13] considered interpretabil-
ity/explainablity to be a task that cannot be handled with the level of association needed to
go further to the causal level.

When analyzing the process of providing interpretable models, four dimensions can
be identified: the stage, specificity, scope, and output (Figure 1). The first dimension, stage,
describes when the process occurs, with two alternative stages occurring during (intrinsic)
and after (post hoc) building the model. The post hoc can be further subdivided into
model-agnostic and model-specific methods, creating a second dimension, specificity, in
which model-agnostic methods can be applied to any black-box model regardless of its
internal components, whereas model-specific methods target particular classes of models.
The third dimension, scope, determines what depth the interpretation reaches: global, for
the whole model, or local, per decision. Finally, local interpretations are either built upon
the input features feature-based or by providing examples instance-based. Instance-based
examples include prototypes, the most influential examples, or critics, which can be either
original or artificial points. Approaches can be both post hoc and global or post hoc and
local, as the relationship between these dimensions is many-to-many. Nevertheless, certain
dimensions, such as ante hoc (intrinsic) and model-agnostic, cannot overlap by definition.

It is important to be aware that certain approaches are repeated across several dimen-
sions yet have distinct meanings. For example, the importance of a feature might be global
or local. “Feature importance” in local interpretation refers to how much each input feature
contributes to the model’s prediction. In the context of global interpretation, it relates to
“what are the model’s most crucial features?” (feature weight). Then, these features are
either given or used to create a simplified model (for example rules) that closely resembles
the original one.

In recent years, the number of interpretation techniques and models has exploded.
However, according to Adadi and Berrada [14], these studies are mostly concerned with
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giving novel techniques, with just a few providing assessments; only 5% of the publications
they analyzed for their XAI survey are concerned with evaluating interpretability method-
ologies. This was mirrored in the existing surveys, since they were primarily concerned
with providing and classifying ideas without evaluating them.

Interpretability Dimensions

Stage

Post hoc

Model-agnostic Model-specific

Ante hoc

Scope

Global Local

Figure 1. Interpretability dimensions.

There is an urgent need in the ML interpretability research field to focus more on
comparing and assessing the existing explanation methods instead of continuing to create
new methods. Assessment and evaluation of interpretability is a very challenging task due
to the subjective nature of interpretability and the lack of consensus on an exact definition of
interpretability. In addition, it must be contextualized considering the application domain
and the target audience. Furthermore, the various types of approaches each have limitations
and strengths and different types of interpretation, ranging from text, images, heat maps,
and segments of the input to more formal types, such as rules and weights. Moreover,
most works codified criteria in their objective function instead of measuring their values in
the evaluation.

Evaluation is an essential part of building any effective machine learning model to
assess to what degree the model meets the claimed goal. For many years, accuracy was
the leading factor in adopting any model; however, accuracy is no longer a sufficient
metric. The basic question when evaluating an interpretation is “what makes an expla-
nation adequate?” There is no consensus on the notion of interpretability, and there is a
great deal of disagreement over what constitutes a good explanation. Additionally, the
plethora of proposed explanation strategies and various types of interpretation make it
hard to agree on a single metric of evaluation. Consequently, one way is to categorize the
different evaluation methods according to their goal. A suitable method of measuring in-
terpretability should “reflect the capability to convey the trained model’s output behaviors
in a human understandable way” [15,16]. This suggests two important factors that need to
be considered:

1. Fidelity: Does the resulting explanation accurately reflect the computation performed
by the original model during the decision-making process? To prevent providing a
falsely convincing explanation, the reported explanation must be faithful to what is
computed. Generally, unfaithfulness is brought up in post hoc explanations. In this
survey, we group all methods that examine this factor under the heading “evaluating
correctness”. Additionally, instability is an undesirable phenomenon that undermines
our trust in the model’s decision; thus, a further subsection is introduced to examine
the robustness of the interpretation.

2. Comprehensibility: Are the generated explanations “human-understandable”? This
can be determined by designing an experiment in which human assessors judge the
understandability or by relying on the findings of prior research that have demon-
strated the understandability of a particular model, such as a rule or tree. This factor is
discussed in two subsections of this survey: human evaluators and comprehensibility.
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Existing surveys on interpretable machine learning, such as [5,8,14,17], primarily
concentrate on presenting and categorizing various proposed approaches. However, they
often do not extensively discuss the assessments of these approaches. While some surveys
include a section on evaluation aspects, they may not be comprehensive [18]. Additionally,
certain surveys specifically center on the evaluation of causal interpretability, like the
work by Moraffah et al. [19]. To address this gap, our survey primarily emphasizes the
evaluation of feature-based methods. These methods, recognized for their simplicity
and intuitiveness, have been extensively studied and benchmarked among the various
approaches for providing interpretations [20].

This survey categorizes the literature on evaluating interpretability into qualitative
and quantitative evaluations (Figure 2), with the former relying on humans and the latter
employing computational metrics to evaluate correctness (fidelity), comprehensibility
(providing the interpretation in human-understandable terms), and robustness (stability).
It provides insights into the existing interpretability evaluation methods to understand
each method’s suitable scenario.

Methods to Evaluate Interpretability

Human-based (qualitative)

Access the classifier Find-alignment

Computational-based (quantitative)

Correctness Comprehensibility Stability

Figure 2. Methods to evaluate interpretability.

The rest of the paper is organized as follows. The background section covers the
fundamental concept in the domain required to go through in the paper. The qualitative
evaluation section (human-based) reviews human-subject studies to assess interpretability.
The quantitative evaluation section reviews existing computational methods and is sepa-
rated into three subsections: fidelity, comprehensibility, and stability. Finally, a discussion
of the findings and conclusions is presented.

2. Background

When studying the interpretability of predictive models, we may choose to consider a
set of dimensions which determine the model’s interpretability.

2.1. Interpretability as Stages: Post Hoc vs. Ante Hoc

Explaining a machine learning model can be achieved by either adopting a transparent
model (using an inherently interpretable model such as a decision tree or injecting the
interpretation with the learning process to enable the model to generate explanations in
the process of decision making) (intrinsic or ante hoc) or by interpreting the model after its
completion process (post hoc) [8]. The post hoc requires extra modeling effort. Its main
advantage is the preservation of accuracy, and it can be used with already-existing models.
In intrinsically interpretable models, in some cases, the interpretability comes at the cost
of accuracy.

Post Hoc Interpretability

Post hoc interpretability has two main categories: model-agnostic and model-specific.
Agnostic approaches are not tied to any particular type of black-boxes nor do they require
the original data to provide their explanation. Usually, model-agnostic approaches utilize
reverse engineering to acquire the approximation of the original model as they are only able
to observe the input and output of the black-box model. Thus, the black-box is queried with
a test dataset in order to create an oracle dataset to train the explainer and operate on data
level only without accessing the inner details of the model. Model-agnostic interpretability
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becomes the only choice when we try to explain proprietary models and also discover the
pattern in the model’s behavior. Model-agnostic approaches vary from simple, such as
partial dependency plot PDP, to complex, such as SHAP [21], which is a game-theoretic
technique based on Shapley values. Model-specific approaches, on the other hand, consider
input, output, and the inner-workings of the model. So, they are tied to a particular type of
black-box and cannot be generalized to other types.

2.2. Interpretability by Scope

In global interpretability, the model is completely interpretable, and we can understand
the model’s logic and the reasoning behind different possible outcomes. TERPAN [22,23] is
an example of global interpretation that fits a black-box into a simpler model.

In local interpretability, the interpretation does not explain the whole model’s behavior
but instead it is provided per decision. Many approaches provide local interpretation, either
by locally approximating the complex model around the point of interest or by providing
the most important features in different forms (heat maps for images [24,25], weight of
features [1], etc.). For example, a perturbation-based approach queries the model with
perturbed versions around the point of interest to approximate the model locally; Local
Interpretable Model-Agnostic Explanations (LIME) [1] is an example of this approach.

The saliency/heat maps are another form of local explanation to explain the pre-
diction of neural networks. They present the explanation visually by highlighting the
most influential parts in the input. The salient regions could be identified by deleting
or “perturbing” different regions, then observing how the prediction changes [26]. The
network is repeatedly tested to produce a heat-map that highlights the most influential
parts of the data [27]. A saliency map can be computed directly using the input gradient;
it gives importance weights to pixels based on first-order derivatives [28]. As the deriva-
tives can miss important aspects of the information that flows through a network, other
enhanced approaches have been proposed, such as class activation mapping (CAM) [24]
and gradient-weighted class activation mapping (Grad-CAM) [25]. These maps are useful
to give insight on the most influential parts, or where the network is looking. However,
they are restricted to neural networks (mostly CNN), and some times they are scattered
and need to be interpreted.

These dimensions may overlap as one model can be post hoc and either local or
global. Some examples include LIME [1], which is local, post hoc, and model-agnostic, and
GoldenEye [29], which is global, post hoc, and model-agnostic. However, no overlap can
be found between intrinsic and agnostic models.

Another rarely mentioned dimension is the output type, which is the dimension with
the least overlap. Regardless of whether the interpretation is local or global, it may be
expressed in terms of features such as the weight of the most affected feature or salience fea-
tures, another instance to explain the prediction (prototype, critic, counterfactual, influential
training example), or another model (simpler model). The feature-based interpretation is
provided as the attribution of each feature, or, in other words, a ranking of which features
mattered most to the model in making a prediction for the given instance or for the whole
model. The attribution can be found either by perturbing input instances around the
point of interest, then approximating the decision boundary of the original model using
perturbation-based methods, or by calculating the partial derivative of the target with
respect to every input feature using gradient-based methods. In the instance-based inter-
pretation, it is provided as an example that could be prototype, critic, or counterfactual. In
the first one, the prototype interpretation provides representative points for the class, while
influential examples are provided by looking at the training examples and finding the most
influential one to model prediction for the point of interest. Meanwhile, the counterfactual
interpretation provides the required change for the point of interest to flip the prediction.



Information 2023, 14, 469 6 of 29

3. Qualitative Evaluation: Human-Based

Human assessment is essential for evaluating interpretability [7]. However, human-
subject experiments should be well designed to meet the required goals, such as simu-
latability and decomposability. This section aims to survey and categorize the different
human-based tasks to evaluate interpretability. The different tasks in the literature have
two main goals: assess the explanation’s ability to grant the user access to the classifier
logic and find the alignment between the human and classifier logics (see Table 1).

Table 1. Qualitative evaluation.

Lay Expert Lay + Expert

Specific

- Understand internal
reasoning process [30]
- Reconstruct target
instance [31]

All models - Verification [32,33]
- Counterfactual [32]

- Alignment between
human and model
[21,34,35]

- Forward Simulation
[6,7,30,32,36–39]
- Select the best explanation
[7,21,26,30,36,40–42]
- Describe the class characteristics
[43,44]

Agnostic

- Select the best classifier
[1,25,45,46]
- Improve a classifier [1]
- Alignment between
human and model [46,47]

- Identify classifier
irregularities [1]

3.1. Access the Classifier

In this category, tasks are designed to assess whether the interpretation provides
sufficient information to understand the classifier’s logic.

Task 1: Select the best classifier
Can human subjects select the best classifier based on the explanation alone? By

presenting explanations of two different classifiers along with their corresponding data, the
user is then prompted to choose which classifier performed best. In both [1,45], providing
explanations helped the user determine the best classifier.

Similarly, in [25], when conducting the same task, users were able to select the more
accurate classifier based on prediction explanations, despite the fact that both models
made identical predictions on the presented subset of instances. Kim et al. [46] term this
activity the “distinction task”. In this task, they present four predictions along with their
respective explanations for a given input image. Participants are then asked to identify the
accurate prediction based on the provided explanations. This “distinction task” also serves
to alleviate the impact of confirmation bias in interpretability assessment, as participants
must now consider multiple explanations concurrently.

Task 2: Improve a classifier
Can human subjects improve a classifier (by performing feature engineering) based on

explanations only? In this task, an instance with its explanation is presented to a non-expert
user, and the user has to enhance the classifier by identifying which feature should be
removed from subsequent training [1]. As mentioned, users are non-experts and have
no access to data, so the identification is made solely based on the explanation content.
However, the users were able to identify and remove the unimportant features from the
task. Across rounds, the users converged to the same ‘correct’ model. This high agreement
is evidence of the ability of the explanation to improve the untrusted classifier.

Unlike the common concept of the trade-off between accuracy/interpretability tasks
1 and 2, accuracy and interpretability are not necessarily opposite concepts but can be
positively correlated; as we see here, interpretations improve accuracy.
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Task 3: Identify classifier irregularities
Can human subjects identify and describe classifier irregularities based on the ex-

planation only (insights)? During training, the artifacts in the data lead to undesirable
correlations. Therefore, can explanations reveal this correlation? To answer this question, a
logistic regression classifier is trained to distinguish between photos of wolves and huskies
based on snow in the background [1]. The experiment starts by showing test predictions
that are all correct except one, without explanation to an expert. Then, the expert is asked
questions (Do you trust the algorithm? Why? How do you think this algorithm distin-
guishes between images?). After that, an explanation is shown, and the same questions
are repeated. By comparing the answers before and after explanations, more than 30%
answered yes to “do you trust the classifier?”, and less than 50% noticed the snow in the
background. After presenting the explanation, all experts obtained the correct insight, and
the trust decreased.

Task 4: Forward Simulation
Can human subjects correctly predict outcomes based on explanations only “for-

ward simulation/prediction”? Doshi-Velez and Kim [7] suggested “forward simula-
tion/prediction” as an evaluation approach of interpretable models. In this approach,
both an explanation and input are presented, and the user is asked to predict the model’s
output, i.e., the user is asked to simulate the model’s behavior based on the explanation. For-
ward simulation is used frequently in assessing interpretability, as in [36], where the users
were asked to predict the classifier behavior on a random set with binary forced choice.

A short survey is presented to users with backgrounds in machine learning to make
predictions on given instances in [37]. The mean response time is used to estimate in-
terpretability in [38] after the user is provided with a list of feature values along with a
graphical depiction of the explanation, and then the user is asked to make a prediction. An
important finding is that using the same users across all experiments substantially reduced
response time, which is one of the most vital shortcomings of using humans to compare
among different models.

A simulation was also used in [30,39] to evaluate how well the user understood the
model process.

An empirical study of the complexity factors most affecting human simulatability is
presented in [32]. This study was conducted by varying three types of complexity model
sizes, cognitive chunks, and repeated terms. Three metrics were considered to measure the
effect response time, accuracy, and subjective difficulty. The simulation task was studied by
varying the number of cognitive chunks between 1, 3, and 5. Unsurprisingly, increasing
the complexity results in longer response times, especially for cognitive chunks, while the
other two metrics were less clear with varying cognitive chunks.

Task 5: Counterfactual
Can human subjects determine if the correctness of a prediction would change if some

of the features in the input example were changed? In this task [32], the users were asked
to change features in the input data, which led to a change in the model’s prediction. This
task aims to determine whether the users are able to detect how to change the prediction
by making small changes in the input.

Task 6: Describe the class characteristics
Can human subjects describe all the characteristics of a class based on the explanation?

To determine the human ability to understand the decision boundaries of the classes in the
data along with the classes’ patterns, this task [43] was carried out in two stages: descriptive
questions and multiple choice questions. In the first stage, the users were asked to explain
in plain text all the characteristics of a particular class based on the explained model (the
presented rules). In the second stage, the users were asked “true” or “false” questions to
decide if the information provided was sufficient to conclude a particular class.

The same approach was followed to assess the human understandability of an ex-
tracted tree [44] by asking the user to determine how the interpretable model (tree in their
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case) classifies a given instance, and whether the user is able to select a subset of features
with a relevant one.

3.2. Find Alignment

In this category, the tasks were designed to evaluate how close the explanation is to
human reasoning.

Task 7: Alignment between humans and models
Are the human explanations aligned with the one provided by the model? Based on

the idea that a good model explanation should be consistent with humans’ explanation.
Model comparison is performed among LIME [1], DeepLIFT [48], and SHAP [21] with
human explanations. Human subjects were asked to write a short description; then,
agreement between human explanations and the explanations of the other three models
was identified [21]. However, the match between human and model explanations does not
imply explanation correctness, especially if all the used models are post hoc.

On the assumption that alignment implies consistency, the authors of [34] propose a
measure for “human accuracy” that evaluates the alignment between the labels provided
by humans for certain terms corresponding to and those produced by the model.

The most basic approach of evaluating extracted reasonings is comparing them
to human-marked reasonings. Evaluating Rationales and Simple English Reasoning
(ERASER) [35] is proposed as a benchmark with exhaustive annotated rationales for NLP
tasks, along with two types of metrics: exact matches and ranking metrics. The amount of
overlap between the ground truth and the extracted reasonings in an exact match case is cal-
culated using the intersection-over-union (IOU) measure, a metric derived from computer
vision that allows partial match credit assignment. In the ranking cases, marked tokens
receive higher points. Specifically, the area under the precision-recall curve (AUPRC) is
calculated by moving a threshold over the token scores.

Yang et al. [47] refer to this task as “groundability”, which measures the alignment of
model interpretations with human interpretations.

Kim et al. [46] refer to this task as the “agreement task”. They sequentially provide
participants with individual prediction–explanation pairs and inquire about their level
of confidence in the model’s prediction based on the explanation. This task gauges the
extent of confirmation bias stemming from a specific interpretability method. Nonetheless,
it does not assess the effectiveness of explanations in discerning accurate from erroneous
predictions—an essential aspect of explanations in AI-assisted decision-making.

Task 8: Select the best explanation
Human subjects are given two different explanations from two different algorithms and

select the one that they find to be of better quality. This approach is presented in [7] as a binary
forced choice and is the most commonly used approach in the literature [21,26,30,36,40–42].

Task 9: Verification
Can human subjects find consistency between system prediction and recommended

prediction? In this task [32,33], the user is given observations (data instances), predictions
recommended by the model, and an explanation, and then, the user decides based on the
explanation of their agreement/disagreement with the recommendation.

Task 10: Understand internal reasoning processes
Can human subjects understand the internal reasoning process by showing the visu-

alization of the model’s intermediate outputs at each step? In this task [30], users were
shown the model’s intermediate outputs along with the final prediction and then asked
to judge whether they understood the internal reasoning process or what the model was
doing at each step.

Task 11: Reconstruct target instance
Can human subjects reconstruct target instance by modifying each component of the

generative model? In this task [31], a user is presented with two representation values,
z and z′, along with their respective instance values, x and x′, as well as the distance
between them, d(x, x′). Additionally, they give controls (sliders for continuous dimensions,
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radio buttons for discrete dimensions) that let the user to alter each component of z. This
quantifies the human interpretability of generative model representations and is referred to
as “interactive reconstruction”.

3.3. Discussion

Qualitative evaluation is useful for providing insight into how humans react and for
understanding the interpretation/explanation provided by the model. Lakkaraju et al. [43]
utilized human users because they believe that “there can be no better judges than humans
to evaluate this notion of interpretability”. However, many factors can influence the results
of human experiments, such as human fatigue, inadmissible practice sessions, and human
background. Furthermore, studies have shown that humans trust and are satisfied with
a model’s explanation if it matches their expectations and their point of view. Therefore,
relying on human trust as an evaluation metric is a source of bias, as such a metric rewards
the alignment and similarity instead of faithfulness and correctness [49]. Also, providing
explanations increases human trust regardless of its correctness, Kim et al. [46] found
that providing explanations makes participants more likely to believe that the model
predictions are correct. For example, 60% of their participants found the explanations for
incorrect model predictions convincing, which aligns with the observations of Poursabzi-
Sangdeh et al. [50].

Herman [49] states that considering cognitive attributes and user expectations as
indicators for user trust and understanding introduces bias, causing implicit human cog-
nitive bias. Finally, as demonstrated in [51], a model may provide plausible but poorly
faithful explanations.

An important consideration with human-based tasks is to ensure that participants rely
on the provided explanations rather than their existing knowledge to complete the task.
This phenomenon is often referred to as the “effect of human prior knowledge”. To mitigate
this effect, Kim et al. [46] adopted several measures, including selecting non-common
contexts that are not readily known by non-experts and omitting semantic class labels.

Also all the reviewed papers have one common aspect: human-based evaluations are
consistently conducted on relatively small sample sizes. The largest of these studies was
undertaken by Kim et al. [46], involving 1000 participants.

4. Computational Metric: Correctness with Respect to the Original
Model/Faithfulness/Fidelity

One of the most important criteria in assessing an interpretation is its correctness with
respect to a black-box model (the model being explained). Correctness, often referred to as
faithfulness or fidelity, assesses “the ability of the explanations to reflect the behavior of
the prediction model” [52]. Depending on the nature of explanation, many approaches are
employed to determine fidelity (see Table 2).

Table 2. Explanation correctness approaches.

References Validation Approach Explanation Type

[22,44,53,54] Separate test-set Global models (post hoc)

[43,55] Ablation studies Global models (intrinsic)

[34,40,41,48,56–71] Removal-approach
All feature attribution
approaches

[35,55,61,72–75]
Compare interpretation
with ground-truth

All types when data are
available
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4.1. Interpretation as Model

In this category, the original model is approximated by a simpler proxy model
(post hoc) or the interpretation is augmented during the model building process (ante
hoc/intrinsic). The first consideration is how well the approximation matches the original
model. Fidelity ensures that the proxy model captures the decision-making process of the
original black-box model, so the explanations are accurate and can be used to understand
the target model (Table 3 summarizes the various techniques).

TREPAN [22] ensures that the extracted tree accurately models the networks by
measuring the percentage of agreement between the tree and network on test-set examples.
The same procedure was followed in [53] by considering the black-box models as teachers,
while the student was the transparent model that mimicked the scores assigned by the
teacher. Then, how accurately the student models anticipated their teachers’ outputs was
examined on test sets. Additionally, in [44], the decision tree extracted from a random
forest was evaluated on a separate test set to see how well its predictions matched those
of the random forest. The test was based on the F1 score, and a close match implies
the faithfulness of the interpretation. In line with the idea of evaluating explanations on
independent test sets, Tan et al. [54] evaluated the selected prototypes by using them in
another model nearest-prototype classifier. They interpreted tree ensembles by providing
different numbers of prototypes for each class.

Ablation studies aim to determine the effect of different components of the objective
function by removing one objective and observing the result. In [43], ablation studies
are used to ensure the correctness of decision sets by studying the impact of removing
different components from the objective function on the interpretability and predictive
accuracy. At each time, one objective is removed, the precision, recall, and overlap, the
predictive power and interpretability of these ablated models are quantitatively evaluated.
Additionally, in [55], ablation studies are used to assess the different components of their
generative model.

Table 3. Explanation correctness of models.

Ref. Metric Name Proxy Model How the Faithfulness Measured

[22] Fidelity Decision tree
The percentage of test-set examples on
which the classification made by a tree
agrees with black-box (NN) counterpart.

[53] Fidelity
Linear model,
iGAM

Compare the output of both black-box
with transparent models on test-sets

[44]
Accuracy relative to
the complex model Decision tree

Find the match between the two models
on test-sets

[55] -
Global prototypes
per class

Use prototypes in nearest-prototype
classifier

Self-Explaining Neural Networks (SENN) [76] provide an intrinsic explanation by
teaching the neural network to explain itself. To provide interpretations, the SENN model
relies on the basis concepts. Individual features in low dimensions, tissue ruggedness, or
irregularities in image processing are examples of basis concepts that are either learnt by a
network or offered by an expert. When SENN classifies any instances, it assigns relevance
scores (weights) to each of the basis concepts. Consequently, in this context, fidelity assesses
how closely the relevance scores correspond to truly relevant features. To address this
question, researchers analyze how deleting features affects the model’s prediction. First,
some features were removed, the decrease in the probability of the predicted class was
measured, and the prediction of the model was compared against the interpreter’s own
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prediction of relevance. After that, the correlation of these probabilities decreases and the
relevance scores on various points were computed, and the aggregate statistics were shown.

Global fidelity is not always attainable. Hence, proxy model local fidelity has been
introduced in LIME [1], where fidelity corresponds to the model behavior with respect to
the instance being explained. Global fidelity implies local fidelity, but local fidelity does
not entail global fidelity. LIME approximates the model locally using a simpler model and
relies on qualitative evaluation; LIME only codifies fidelity but never quantifies it.

4.2. Interpretation as Feature-Attribution (Saliency/Heat-Maps)

Interpretation can be provided in terms of the most contributed/important features
for a given decision. Across a variety of fields, feature importance was by far the most
used and studied interpretability approach [20]. Often, it is referred to as feature-level
interpretation, feature attribution, feature contribution, or saliency map. Depending on the
input, important features might be coefficient weights, saliency maps that assign a weight
to each pixel based on its importance, or the most significant words in natural language
processing (NLP).

This method’s flaw is that it provides interpretations in input terms, which usually
seem persuasive but are not always accurate. For instance, saliency methods highlight the
pixels that best represent the real class in the image. They primarily determine where the
classifier “looks” to produce a prediction. They are popular in explaining the prediction
of deep neural networks on images. As revealed by sanity checks [56], depending solely
on visual assessment might be deceiving. Sanity checks [56] evaluate the adequacy of
explanation approaches based on the concept of a statistical randomization test, which com-
pares a natural experiment against an artificially randomized experiment. Two randomized
tests were investigated: a model parameter randomization test and a data randomization
test. The first test is a model parameter randomization test, where the output of a saliency
method performed on a trained model is compared with the output of the same model
architecture with random weights. If the saliency method relies on the model’s parameters,
then the output of the two cases should be different. While the similarity of the outputs
indicates the insensitivity of the saliency map to the model parameters, saliency is not
useful in understanding the model’s behavior. The second test is a data randomization test,
where the saliency method performed on a base model is compared with the output of the
same model trained with randomly permuted labels. If the saliency method relies on the
data labels, the output of the two cases should be different. The insensitivity indicates that
the method does not depend on the relationship between the instances being explained and
their class labels. However, some tested methods fail the proposed tests and are invariant
to either network reparameterizations or label perturbations. Thus, the failed methods are
inadequate for some tasks, such as model debugging.

Evaluating the saliency map correctness had to ensure that the highlighted pixels are
the actual pixels used during classification (relevancy of the heat map). The quality of the
saliency map depends on the quality of both the algorithm used to compute it and the
classifier’s performance. Thus, it is very difficult to define objective criteria.

Many approaches suggested in the literature include removal-based and ground-truth
approaches. In the removal-based approach, input variables that are highly important for
the prediction are perturbed or masked to determine whether this causes a decline in the
prediction score or in the expected difference between input explanations when applying
perturbations to the output (see Table 4). In the ground truth approach, the areas located
on saliency maps are compared to annotated data.
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Table 4. Correctness of feature attribution (Perturbation-approach).

Ref. Metric Name Removal Approaches

[56] Fidelity Remove Measure the drop in probability after the perturbation

[57] Faithfulness Replace by baseline values Find subset features perturbation to a baseline

[58]
Explanation
selectivity Remove Measure the drop in probability after remove important feature

[40] AOPC Remove The same as [58], on patch of size 9 × 9

[59]
[60] -

Replace by random sample
from uniform distribution Same as [58]

[61] AOPC Remove
Extended AOPC to evaluate negative attributions to irrelevant
regions

[62] - Replacing with zero Same as [40], one pixel at a time

[41]
(CPP) and
(NLCI)

Replace positive by 0,
and negative by 1.

Find the change of prediction probability and the number of
label-changed instance

[63] Pixels flipping Flip the pixels Change pixels with highly scores then evaluate the effect

[64] - Iterative removal Remove the segment with highly score then, find the drop in AOC

[48] -
Required change to
flip the class (erase)

Find log-odds score change between original image and
perturbed image in another class

[65] Completeness Baseline
Sum of features’ attribution should sum up to difference
in prediction wrt baseline

[62] Sensitivity-n Baseline
Quantify the attributions difference when remove a subset
of features

[66] Infidelity
Baseline, noisy baseline,
and multiple baselines Same as [62], with different perturbations

[67] - Remove Re-train models on the perturbed instances before find the drop

[68] -
Remove features
one-by-one Find the differences and correlation

[34]
Post hoc
accuracy Zero padding Compute accuracy level between original and padded instance

[69,70]
Precision and
recall

Masking with uninformative
from original distribution Utilize AUP and AUR

[71] Saliency metric Cropping relevant region Utilize entropy to validate the classifier ability to recognize class

4.2.1. Removal-Based Evaluation

Three phases can be used to organize methods for validating feature-based interpretations.

1. Select features to remove, either randomly or based on their importance.
2. Fill in the blanks of features, and this is where the methods vary (either filling the

blank with the background, or replacing it with the mean, or ignoring it, etc.)
3. Calculating the difference between the presence and absence of a feature to determine

its predictive impact (reporting the decline in accuracy relative to the trained model).
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Bhatt et al. [58] quantified the faithfulness of feature attribution by setting a particular
feature xs, where s refers to a randomly selected feature subset |S| and replace those features
with baseline values x̄s. Then, they measure the correlation between the sum of attribution
of xs and the difference in output when replacing s with baseline (see Equation (1)). If the
change in output is proportional to the sum of attribution scores of the features in xs, then
the explanation is faithful.

µF( f , g; x) = corr
s∈([d]|s|)

(
∑
i∈s

g( f , x)i, f (x)− f
(

x[xs=x̄s ]

))
. (1)

In Equation (1), corr is Pearson’s correlation, f is the predictor, g is the explanation
function, d is the total features, s is the randomly selected subset of features, and x is the
point of interest. However, the accurate estimate of all ([d]|s|) subsets may not be obtained
and it is even harder to aggregate.

The same approach was followed in [68] on Gaussian process regression. The features
are removed one-by-one to find the differences between the predictions made with the
original input and the perturbed input. Then, the correlation between the differences and
the contributions of the removed features are calculated.

Saliency methods assign a score to each input variable, which is utilized to evaluate the
fidelity of the explanation. In [57], the scores are sorted from most to least significant, and
the related input variables are eliminated iteratively, beginning with the most significant,
to track the prediction value by making a plot and finding the area under the curve (AUC).
A sharp drop in the function value (low AUC score) is an indication of fidelity. The same
approach was followed in [40] on patches of size 9 × 9 to measure the Area Over the
most relevant first Perturbation Curve (AOPC). Ordering regions according to importance
implies a steep decrease in the graph of Most Relevant First (MoRF) and thus a larger AOPC.
In [59,60], the highly important values in the input were replaced by random samples from
a uniform distribution.

Instead of using a 9 × 9 patch, Ancona et al. [62] operate at the pixel level by replacing
one pixel at a time with a zero value and then measuring the change. This metric was
extended to evaluate the distribution of the negative attributions to the irrelevant regions
of the prediction by perturbing the Least Relevant First (LeRF) and then finding a decrease
in the accuracy [61].

Based on the same assumption that a good interpretation model should identify the
most relevant features to the predictions, Cong et al. [41] evaluated the effectiveness of
their feature attribution by sorting the absolute weights of the input features in descending
order. Then, the input features (positive weights with 0; negative weights with 1) were
iteratively altered one at a time for up to 200 features. Then, two metrics were used in the
evaluation: the change in prediction probability (CPP) and the number of label-changed
instances (NLCI). CPP is the absolute change in the classifying probability, and NLCI is the
number of instances whose predicted labels change after the alteration.

Pixel flipping is also used in [63], by change pixels with highly positive and highly
negative scores and then evaluates the effect of flipping on the prediction scores.

To minimize the computational cost, the Iterative Removal Of Features (IROF) was
proposed [64]. Each image is partitioned into a set of segments; then, for each segment,
the mean importance is found, and then, the segments are sorted in decreasing order of
importance score (relevance). A high-relevance-score segment is removed, and the class
label is found. Finally, the area over the curve (AOC) is computed for the class score. A
high AOC is an indication of the goodness of the explanation method.
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The completeness axiom [65] states that the sum of the attributions equals the differ-
ence between the output of F at instance x and baseline x′, where x′ is set to be a black
image (zero attribution). F : Rn → R is differentiable almost everywhere, so

n

∑
i=1

attributioni(x) = F(x)− F(x′). (2)

An extension of the completeness axiom is sensitivity-n [62], which requires that
attributions of a subset of features of cardinality n sum to the difference between the value
of F at instance x and baseline x′; completeness is achieved when n is equal to the total
number of input features.

More general perturbations than setting the feature values to 0 or a baseline have been
investigated in [66]. Perturbations can be the difference from the baseline, or a subset of
differences from the baseline, or the difference from a noisy baseline, or the difference from
multiple baselines. Then, the infidelity is measured by:

INFD(g, f , x) = EI∼µI

[(
IT g( f , x)− f (x− I)

)2
]

, (3)

where, f : a black-box function, g: explanation functional, x: a random variable with proba-
bility measure µI , I = x− x0 is the difference to the baseline. Chih-Kuan et al. [66] found
that many existing explanations are optimizing the infidelity with respect to
various perturbations.

Shrikumar et al. [48] designed a task to evaluate different feature attribution methods.
The task starts by selecting an image that originally belongs to class Co, erasing pixels (up
to 20%) in a way that converts the image to another target class Ct and then finding the
score as follows:

Sxi diff = SxiCo − SxiCt , (4)

where Sxi is the score for pixel xi and class c. Sort images in a descending order according
to Sxi diff, to evaluate log-odds score change between each of Co and Ct for the original and
perturbed images.

Instances where the features are removed or perturbed come from a different distri-
bution, which violates the assumption that states that the training and evaluation data
must come from the same distribution. As a result, the degradation in model performance
could be due to the distribution shift. To overcome this problem, RemOve and Retrain
(ROAR) [67] retrain models on the perturbed instances so that both training and test data
come from the same distribution. However, the resulting model after retraining can be
slightly different than the original model. Also, repeating the retraining process multiple
times to lower the accuracy variation is computationally costly. Notably, a similar approach
is also adopted by Meng et al. [77].

L2X [34] selects the most informative features for a given instance. L2X maximizes the
mutual information between the subset of feature xs and response y through the selector
E. In particular, it optimizes the criterion: max I(XS; Y) subject to S ∼ E(X). In order to
validate the effectiveness of their method, they introduced post hoc accuracy by feeding
sample X to the model after masking the unselected features with zero padding. Then
compute the accuracy using P(y|Xs) to predict samples in the test dataset labeled by P(y|X).
Masking the correct salient features results in a steep decline in accuracy, showing that the
removed feature is necessary for accurate prediction. When irrelevant features are removed,
the accuracy level remains intact. However, the unaltered outcome may also occur if the
removed feature is essential but insufficient to cause the model to behave incorrectly. As a
result, Ismail et al. [69] advise against basing comparisons of saliency methods solely on
the loss of accuracy after masking. Instead, the features should satisfy the following two
criteria: all identified salient features should be informative (precision), and the saliency
method should be able to identify them (recall). In evaluating time series data, they thus
utilized the area under the precision curve (AUP), the area under the recall curve (AUR),
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and the area under the precision and recall curves (AUPR). Using the accuracy and recall
values at various levels of deterioration, the curves are computed after masking the features
with uninformative ones from the original distribution. The same approach is adopted
in [70].

The goal of instance-wise feature selection is to select from the ith instance xi the
minimum subset of features xi

si satisfying: F(y|xsi = xi
si ) = F(y|x = xi) with regard to the

target y [78]. The problem is ensuring that both points belong to the same distribution. For
that purpose an evaluator model EVAL_X [78] is trained to evaluate the selected features
on true conditional distribution. The subset of features represented by a binary vector,
however, is selected at random, independent of x, from a Bernoulli distribution, which
resembles any potential input selection. In practice, optimality may be difficult to achieve
because there are 2d different combinations. In addition, since the evaluator model is
different from the original model, explanation metrics computed using this evaluator
model may not accurately reflect the fidelity of explanations.

Alangari et al. [79] introduced both global and local fidelity metrics for Gaussian Mix-
ture Model. For global validation of feature importance, they marginalized the contribution
over that specific feature. On a local level, they employed two metrics comprehensiveness
and sufficiency. Comprehensiveness, which mandates the inclusion of all contributing
features. Excluding these features diminishes the model’s confidence.

comprehensivenessk = P(Ck|xD)− P(Ck|xD−S), (5)

where, D = { f1, . . . , fd} full set of features, x instance being explained, Ck is the kth cluster,
S is the selected subset of features as class evidence and D is the full features.

Sufficiency, which seeks the subset of features that, when retained, sustains or boosts
the model’s confidence.

sufficiencyk = P(Ck|xS)− P(Ck|xD). (6)

4.2.2. Entropy-Based Evaluation

In addition to masking and perturbing the highly important features, Dabkowski et al. [71]
suggested locating the tightest rectangular crop that includes all the salient or important
regions and then feeding it back to the classifier to validate its ability to recognize the
requested class. A correct saliency method will minimize the crop size without affecting
the classification probability p. This metric is referred to as the saliency metric, which is
measured by the following formula [71]:

s(a, p) = log(ã)− log(p), (7)

where ã = max(a, 0.05), a is the area of the rectangular crop/the total image size, and p is
the probability of the requested class returned by the classifier based on the cropped region,
where a low value of s is an indication of good saliency detectors. However, cropping
images results in images with arbitrary sizes, and not all classifiers accept this; thus, this
metric works with classifiers that are invariant to scale and aspect ratio.

4.2.3. Compare Interpretation with a Ground-Truth

With prior knowledge of feature importance, the salient features are compared to
the ground truth. Table 5 presents some of the used datasets. Ground truth fidelity is
defined by Dai et al. [75] as the intersection of the top k features of the ground truth and
the explanation, divided by k.

The availability of bounding box annotation is utilized in [72] to assess the positive
relevance scores in the heat map by computing the outside–inside relevance ratio metric ϕ
as follows:

ϕ =
1

Pout
∑q∈Pout R(1)

q

1
Pin

∑p∈Pin
R(1)

p

, (8)
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with |.|: the cardinality operator, and (Pout and Pin): set of pixels outside and inside the
bounding box, R(1)

i is the relevance value attributed to the ith computation unit at the
first layer.

The outside–inside relevance ratio metric ϕ is extended in [61] to simultaneously
evaluate both positive and negative relevance scores.

ϕ =
1

Pout
∑q∈Pout R(0)+

q + 1
Pin

∑p∈Pin
R(0)−

p

1
Pin

∑p∈Pin
R(0)+

p + 1
Pout

∑q∈Pout R(0)−
q

, (9)

Rl
i is relevance of a neuiron i in a layer l.

Additionally, Nam et al. [61] utilize segmentation masks and metrics to overcome
the nonperfect fit of the bounding box for the object corresponding to the prediction.
Normalized cross correlation (NCC) [55,73] is used to compare the saliency absolute values
of the attribution and the ground truth masks.

Feature attribution and interaction scores are evaluated by Tsang et al. in [80] against
the ground truth of annotation labels on subsets of features. Moreover, Tsang et al. [80]
compare their model performance in three tasks (sentiment analysis, image classification,
and recommendation) with that of state-of-the-art models. In the sentiment analysis task,
they use two metrics: phrase correlation and word correlation. In image classification, they
compare their model to state-of-the-art methods by computing the agreement between the
estimated attribution of an image segment and that segment’s label “Segment AUC” metric.
Due to the absence of ground truth annotations in the recommendation task, only positive
feature interactions are considered.

Ying et al. [74] prepared synthetic datasets with ground-truth explanations and then
used them to calculate explanation accuracy. As [74] aimed to interpret graph neural
networks, they formalized the explanation problem as a binary classification task, where
the edges are the labels and the explanation methods’ importance scores are the prediction
scores. A higher score for edges is an indication of a good explanation method.

ERASER [35] is a benchmark that consists of numerous NLP datasets and tasks for
which human annotations of “reasonings” have been gathered, as well as a number of
metrics designed to measure how well the rationales produced by models correlate with
human rationales and how faithful these rationales are. To prevent plausible interpretations,
two metrics, comprehensiveness and sufficiency, are designed to capture faithfulness. The
first metric, comprehensiveness, indicates if all the features required to make a prediction
were selected. The sufficiency metric should indicate whether the extracted reasonings
include sufficient information to make a decision. To determine comprehensiveness, take
input instance xi, eliminate reasoning ri to generate x′i , and then feed both xi and x′i into
model F to find the difference. A large difference indicates that ri did indeed affect the
prediction and lower the model confidence. The purpose of sufficiency is to determine if
the extracted reasonings are adequate for making a prediction. Thus, xi and ri are both
input into the model, which calculates the difference to decide if retaining features would
improve or preserve the model’s confidence. The same metrics were employed in [81] to
compare five feature removal approaches in NLP tasks.

Ribeiro et al. [82] have introduced the STructured REasoning and Explanation Multi-
Task benchmark (STREET), which comprises a range of NLP question-answering tasks
encompassing quantitative, analytical, and deductive reasoning. This dataset is constructed
by augmenting five existing QA datasets through the addition of reasoning graphs as
annotations to the answers. The objective for models using this benchmark is to generate
an answer accompanied by a reasoning graph that provides an explanation for the answer.
Two metrics are employed to evaluate the reasoning graph. The first metric is Reasoning
Graph Accuracy, which involves comparing the predicted reasoning graph with the golden
reasoning graph, considering both the graph structure and the content of the intermediate
conclusion nodes. It is important to note that this metric is strict, and even slight deviations
from the golden reasoning graph would deem the predicted graph as incorrect. The second
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metric, Reasoning Graph Similarity, is a more flexible measure that compares the predicted
and golden reasoning graphs using the graph edit distance function. This function utilizes
insertion, deletion, and substitution as elementary graph edit operators for nodes and
edges. However, computing the graph edit distance can be computationally expensive due
to its NP-complete nature, so an approximation of this value is computed to mitigate the
computational burden.

Dai et al. [83] employ the linear weight of logistic regression as a ground truth for
explanation, which is suitable only for inherently interpretable machine learning models
that explicitly encode feature weights. They quantify fidelity by measuring the intersection
between the top k important features predicted by the model and those provided by the
explanation for the same k.

Table 5. Datasets used to compare with (ground-truth).

Ref. Metric Data

[72] Outside–inside relevance ratio PASCAL VOC2007 [84]

[61] Outside–inside relevance ratio
A subset from imageNet dataset with segmentation
masks, and some images from the Pascal VOC

[55,73] Normalized cross correlation
Computed to compare with disease effect maps in
ADNI dataset [85]

[80]
Phrase/word correlation
Segment AUC

Sentiment analysis: SST dataset [86]
Image classification: MS COCO dataset [87]

[74] Explanation accuracy Synthetic datasets

[35]
Comprehensiveness and
sufficiency

ERASER: A Benchmark to Evaluate Rationalized
NLP Models [35]

[82]
Reasoning Graph Accuracy
Reasoning Graph Similarity

STREET: Structured Reasoning and Explanation
Multi-Task benchmark [82]

4.3. Discussion

Before approving any explanation approach, ensuring the correctness or fidelity of the
explanations is of utmost importance. Otherwise, the provided explanations may mislead
users, leading to erroneous or unfounded decisions. A more concerning scenario arises
when explanations are optimized to conceal biased or undesirable properties within the
model. Slack et al. [88] demonstrated the ability to deceive post hoc perturbation-based
approaches using a scaffolding classifier designed to identify out-of-distribution (OOD)
instances. This highlights the potential dangers of misleading or manipulated explanations.
Shamsabadi et al. [89] coined the term ’fairwashing’ to describe the phenomenon where
model explanation methods are manipulated to rationalize decisions made by an unfair
black-box model using deceptive surrogate models. They also introduce a fairwashing
detector that employs Kullback–Leibler divergence for detection.

Perturbation-based approaches aim to attribute the influence of individual features
in achieving a specific prediction by modifying features within the instance of interest
and observing the corresponding decrease in classifier probability. However, instances
generated using such perturbations have the potential to deviate from the underlying data
manifold. This characteristic is exploited by the scaffolding classifier, which examines
each instance and behaves like the original classifier if the perturbation is within the data
manifold. However, if the perturbation lies outside the manifold, the scaffolding classifier
exhibits arbitrary behavior.

The out-of-distribution (OOD) problem extends to evaluation approaches. In these
evaluations, a decrease in the area under the curve (AUC) probability is utilized as an
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indicator of success in identifying important features. However, it becomes challenging to
disentangle whether the decrease in probability is due to successfully specifying important
features or due to the production of instances outside the data distribution.

To mitigate distribution shifts, one suggested approach is to retrain the model using
perturbed instances. Nevertheless, this solution is computationally expensive and may
lead to slight variations in the resulting models.

Saliency methods, despite their visual appeal, have been found to possess signifi-
cant vulnerabilities that can lead to misleading attributions, thereby undermining their
reliability [90]. A theoretical explanation [91] reveals that some backpropagation-based
approaches, namely, guided backpropagation and deconvolutional networks, were per-
forming (partial) image recovery that has nothing to do with the network decisions, which
is the reason for their compelling visualizations. It is important to note that while some
approaches may fulfill specific metrics, they can still fail in other critical aspects. For
instance, integrated gradients [65] may satisfy completeness but fail when subjected to a
simple sanity check [56]. This highlights the potential pitfalls of solely relying on visual
assessments and emphasizes the urgent need for reliable evaluation approaches.

The process of evaluating feature attribution methods is difficult due to the lack of
ground truth, which attracts some researchers to prepare datasets with explanations to
compare with. However, the alignment between the generated explanation and the ground
truth cannot be more different than the reliance on the human assessment unless the ground
truth explanation is embedded within the learning process or employed in a way other
than comparing the results.

5. Computational Metrics: Comprehensibility

Comprehensibility refers to “how easily we can inspect and understand a model
constructed by the learning system” [23]. Michalski [92] confirmed the importance of
comprehensibility and stated that the results should be semantically and structurally
similar to those a human expert might produce by observing the same entities, where the
components should be comprehensible and directly interpretable in natural language.

Measuring comprehensibility should be contextualized, and the interpretation must
be relevant considering a particular audience in a chosen domain [9]. Additionally, com-
prehensibility is model-dependent and varies from one model to another; hence, in this
section, it will be categorized according to the explanation.

Comprehensibility was previously explored in symbolic AI and fuzzy logic, which
has been reflected in the well-established evaluation framework of comprehensibility for
each of the rules and trees. Other formats, such as heat maps (salient maps) and prototypes,
is still ill-defined.

5.1. Rules/Decision Trees

Generally, trees are considered to be naturally interpretable due to their graphical
structure and the fact that they only contain a subset of attributes, which narrows the
analysis to the most relevant attributes. Furthermore, the tree’s hierarchical structure
provides information about the attribute’s importance, as the most important attributes are
closer to the root [93].

In the context of rule-based approaches, complexity is mainly related to many factors,
including the number of rules, number of terms, number of conditions, etc., and there is no
standard measure to evaluate the complexity of rules [15]. Nevertheless, there is agreement
upon the following factors/proxies for the interpretability of rules [94–97]:
Complexity of the rules:

1. The number of rules should be as small as possible, since according to Occam’s
razor principle, “the best model is the simplest one fitting the system behavior well”.
Additionally, rule weights or degrees of plausibility should be avoided.

2. For the number of conditions, the rule antecedent should contain only a few conditions
limited by 7± 2 distinct conditions.
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Semantic of the rules:

1. For the consistency of the rule set, there are no contradictory rules in the rule set.
2. The rule’s redundancy: reducing the number of redundant rules in the rule set

improves the rule set’s interpretability.

Reducing complexity is usually enforced during the learning process, as in [98–100],
in which the number of rules and the inconsequential conditions are minimized by a two-
objective function. Ishibuchi et al. [101] optimized three objectives, namely, the sum of
square error, number of selected rules, and sum of the length of the rules. Nevertheless,
none of the authors in the previous works [98,99,101] measured the complexity after its
enforcement during the learning process.

The measure of clearness is suggested in [102] to ensure interpretability by restricting
the final rule based on unweighted rules only. Nauck [103] proposed an interpretability
measure that relates the complexity, namely, the number of conditions, to the number
of classes:

Complexity =
no. of classes

no. of classes
∑

i=0
no. of conditions

. (10)

The complexity value is 1 if the classifier contains only one rule per class using one
condition each. It approaches 0 when more rules and conditions are used.

Pedrycz [104] analyzed the interpretability of a rule set by using both the relevance
and consistency. The rule’s relevance refers to the degree to which the rule covers the
given data by way of an antecedent and conclusions. The consistency of rules refers to the
dissimilarity of the conclusions of rules with the antecedent part.

Stefanowski et al. [105] suggest a set of evaluation criteria for rules, namely, consistency
(the rule should cover no or very few negative examples), simplicity (the rule should have
a short condition part), relevance (the rule should be related to the user’s requirements and
expectations), and finally, the number of rules (should be limited for cognitive reasons).
However, the appropriate level for these criteria is subjective and user-dependent.

Rajapaksha et al. [106] suggest to use the simplicity of the generated rule as a proxy of
their interpretability by measuring the total number of features used in the antecedent of
the given rule; specifically, they report the mean values of the number of features used in a
single rule to explain each instance.

Lakkaraju et al. [43] defined four metrics for decision sets’ interpretability: size, length,
cover, and overlap. They minimized size (the number of rules in a decision set without
the final else clause); calculating size is straightforward from decision lists. The length
(number of predicates in the item set) was minimized to produce short and concise rules
and computed by the average rule length given by:

Avg. Rule Length(R) =
1
|R| ∑

r∈R
length(r), (11)

where R is the decision set and r is a rule.
Then, cover is used to find how many data points satisfy the item set of a rule and

computed by the fraction uncover given by:

Fraction Uncover(R) = 1− 1
N
| ∪

r∈R
cover(r)|, (12)

where N is the total number of data points. This metric is 0.0 when all data points are
covered by some rule in R and a maximum of 1.0 when no data point is covered by any
rule in R.
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Finally, overlap is minimized to avoid having many data points that satisfy more than
one rule (each rule covers an independent part of the feature space) and is computed by
fraction overlap given by:

Fraction Overlap(R) =
2

|R| · (|R| − 1) ∑
ri ,rj∈R, i≤j

overlap(ri, rj)

N
, (13)

the minimum value of this metric is 0.0 which means zero overlap between every pair of
rules in R, and maximum value of 1.0 which means all the data points are covered by all
the rules in R.

Fu et al. [107] focused on minimizing the size by combining rules in prototypes and
the length. The cover is used to reweight data during learning. Finally, since a decision tree
is used, there will be no overlap.

A comparison is conducted in [108] between the interpretability of a tree versus rules
in terms of tree dimensions (number of leaves and tree size). They compared the number
of leaves with the total number of rules, and the tree size (computed as the sum of the
number of nodes in every branch) is equivalent to the total number of premises. They
found that both tree and rule results are comparable regarding interpretability, but trees
yield better accuracy. Nonetheless, they propose interpretability indicators for rule-based
systems, namely, the total number of rules, total number of premises, number of rules that
use one input, number of rules that use two inputs, number of rules that use three or more
inputs, and number of labels defined per variable.

In [23], the comprehensibility of the resulting decision tree is measured with the
tree’s syntactic complexity, namely, the number of tree’s internal nodes and the number of
symbols used in the splits of the tree (count ordinary single features as one symbol).

5.2. Feature Attribution

Bhatt et al. [58] consider a complex explanation as the explanation that uses all features.
While using all features will increase the fidelity it also increases complexity. Thus, they
define a fractional contribution distribution as follows:

Pg(i) =
|g( f , x)i|

∑
j∈[d]

∣∣g( f , x)j
∣∣ ; Pg =

{
Pg(1), . . . ,Pg(d)

}
, (14)

where Pg is a valid probability distribution, |.| absolute value, d is number of features, and
Pg(i) is the fractional contribution of feature xi to the total attribution. If all features have
equal contribution, then the explanation will be complex. Thus, they define complexity as
the entropy of Pg as follows:

Complexity( f , g; x) = Ei
[
− ln

(
Pg

)]
= −

d

∑
i=1

Pg(i) ln
(
Pg(i)

)
, (15)

where, f black-box predictor, g explanation function, and x a point.
The low complexity for saliency/heat maps is measured in terms of image entropy or

the file size of the compressed heat-map image [40].
Effective complexity [109] is introduced to quantify the comprehensibility of saliency

maps, where a(i) is the attributions sorted in ascending order, x(i) is the corresponding
features. Let Mk = x(N−k), ....., x(N) be the set of top k features and y∗ is the prediction of
interest, f−Mk is the restriction of the model f to the non-important features given fixed
values for the (important) features in Mk. And ε > 0 is a chosen tolerance, the effective
complexity is computed as follows:

k∗ = argmin
k∈{1,...,N}

|Mk| : E(l(y∗, f−Mk) | X∗k ) < ε, (16)
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an explanation with low effective complexity both simple and broad, as the low value
implies the ability to ignore some of the features even though they do have an effect
(reduced cognitive salience) due to the small effect.

Dai et al. [75] measure sparsity by counting the number of features with an attributed
importance with respect to a threshold.

Another related term in the context of NLP models is plausibility, which refers to
how convincing the interpretation is to a human [110]. Plausibility does not imply faith-
fulness [51]. Commonly, plausibility is measured by the degree to which the model’s
highlights resemble gold-annotated human highlights [111].

5.3. Discussion

Measuring comprehensibility is problematic, and even finding a suitable proxy is
not direct. A common proxy is the model size. Feldman [112] relates the difficulty in
the domain of Boolean concepts to the complexity measured by the length of the shortest
propositional formula, which is aligned with the assumption that the smaller the model
is, the more comprehensible it is, and has been used in the literature as the number of
rules and length of trees. However, a smaller size was sometimes provided at the cost of a
less accurate or less informative model, as in the medical domain, in which experts prefer
larger trees over shorter trees, favoring more informative attributes to support medical
decisions [113]. Additionally, in an experiment with 100 nonexperts, the participants
evaluated the larger model as understandable due to their ability to provide classification-
relevant information [114]. Moreover, there is an old trade-off between the accuracy and
comprehensibility/complexity of a model, which has been discussed extensively in the
literature, as in the minimum description length principle [115] and Occam’s razor [116].

Another proxy is cognitive chunks. Miller [117] stated that humans can hold 7 ± 2 items
in their working memory at the same time; thus, explanations should consider this capacity
limit. Additionally, adding intermediate terms instead of a conjunction could facilitate the task.

The comprehensibility of salient maps and prototypes is ill-defined, demanding more
effort/attention in defining and evaluating the complexity and understandability of such
forms, as the file size and such proxies are not sufficient proxies for comprehensibility.
Human studies could play an important role in this criterion, and importing metrics from
social studies could be helpful, as previously observed, with cognitive chucks limited
to 5–9.

6. Computational Metric: Stability/Robustness

Interpretability aims to increase the trust in ML models by providing an explanation
of why models make a certain decision, and for interpretations to be trustworthy, they
should be reliable. The fragility/instability of interpretation limits trust and presents a
security concern. Stability implies that similar instances with the same label should have
similar explanations; slight variations of an instance that did not change the predicted
class should not substantially change the explanation. High stability is always desirable.
Fragility occurs when applying imperceptible perturbations to the input does not change
the prediction of the model but substantially manipulates explanations.

Ghorbani et al. [118] define the fragility of neural network interpretation in the context
of images and suggest that “for a given image, it is possible to generate a perceptively
indistinguishable image that has the same prediction label by the neural network, yet is
given a substantially different interpretation”.

Additionally, Kindermans et al. [90] introduce axiom input invariance, which ensures
the interpretation reliability of the input’s contribution to model prediction. Then, they
showed that most saliency methods are not invariant under simple transformations, such
as constant shifts. To understand the instability phenomena in neural networks, Goodfel-
low et al. [3] provided insight into why interpretation is fragile, as the decision boundaries
of neural networks are roughly piecewise linear with many transitions. According to Ghor-
bani et al. [118], the interpretation of instances near transitions is more fragile. They also
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show the process of generating adversarial perturbations to obtain indistinguishable inputs
that received the same predicted label but have very different interpretations. Additionally,
they state that neural network interpretation fragility can be orthogonal to the fragility of
the prediction.

Dombrowski et al. [119] relate this vulnerability in gradient-based methods to principle
curvatures, a key concept of differential geometry. To mitigate the effect of large curvatures,
they suggest smoothing the explanation process without changing the original model to
increase resilience to manipulations. As mentioned above, the concept of instability should
be demonstrated among similar instances, and the similarity between instances (either
input or explanation) is assessed by different similarity metrics.

Many different approaches have been suggested to measure stability, while others
have focused on enforcing stability during the learning process via regularization. The
gradient of the function with respect to the input is a classical approach used to measure
the sensitivity of a function [66].

Melis and Jaakkola [76] enforced stability through a regularization term in their
optimization objective. Then, the stability is measured by introducing the concept of local
difference boundedness defined as follows:

∀ x0 ∃ δ > 0∧ L ∈ R : ‖x− x0‖ < δ =⇒ ‖ f (x) < f (x0)‖ ≤ L‖h(x)− h(x0)‖, (17)

where, f is the model, x0 is the point where x are all its neighborhood, L (and δ ) to depend
on x0, that is, the “Lipschitz” quantity can vary throughout the space, and h(x) is the basis
concept. Accordingly, they quantify the stability of an explanation fexpl(x) for a given input
x and neighborhood size ε:

L(xi) = argmax
xj∈Bε(xi)

∥∥∥ fexpl(xi)− fexpl
(
xj
)∥∥∥

2
‖h(xi)− h

(
xj
)
‖2

, (18)

h(x): basis concepts. For raw-input methods, h(x) can be replaced with x itself. This
quantity can be easily estimated for the Melis and Jaakkola [76] model because it is end-to-
end differentiable. However, it is challenging for post hoc explanation frameworks. Also,
this notion is not suitable for discrete inputs, so they replace it with a weaker notion.

The same convention in Melis and Jaakkola [76] is followed in [58] by defining two
sensitivities for the point of interest x (maximum and average) with respect to neighborhood r.

A closely related measure max-sensitivity [66], that finds the maximum variation in
the explanation when applying a small perturbation to an input x is defined as follows:

max− sensitivity (g, f , x, r) = max
‖y−x‖≤r

‖ g(f, y)− g(f, x)‖, (19)

f : black-box, g: explanation function, r: neighborhood radius.
Montavon et al. [57] evaluated the ability of different explanation methods to produce

explanation continuity. This is quantified by looking for the strongest variation in the
explanation in the input domain as follows:

max
x 6=x′

‖R(x)− R(x′)‖1
‖x− x′‖2

. (20)

Montavon et al. [57] found that gradient techniques are subject to the problem of
shattered gradients, making them strongly discontinuous. Cosine similarity (CS) is used to
find the consistency of the interpretation between the computed interpretations of x0 and
x1 [41], where x0 is an input instance predicted as in class c, and x1 is the nearest neighbor
of x0 in terms of Euclidean distance.
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The stability of rule-based approaches extracted by model-agnostic explainers [106]
was evaluated by finding the similarity between the resulting rules over independent runs
using the Jaccard coefficient:

J(X, Y) =
|X ∩Y|
|X ∪Y| , (21)

where X and Y are two given sets of features that are included in the rules from two runs.
The Jaccard coefficient calculates the similarity [120] by comparing the common and distinct
features in the two sets. The output value ranges from 0 to 1, where a higher coefficient is
an indication of a high similarity of rules over the two runs.

To evaluate the attribution robustness in [121], two metrics were used: Kendall’s
tau rank order correlation and top-k intersection. Utilizing the feature rank provided by
the attribution method, the rank correlation was used to compare interpretations’ sim-
ilarities. The size of the k most important feature intersection is computed before and
after perturbation.

Dai et al. [75] measure stability by adding noise to a random point x to produce similar
points, finding explanations for these similar points, and then calculating the average L1
distance between x′s explanation and the explanations of the similar points. They also make
a distinction between stability and consistency. Stability means that similar points have the
same explanations, while consistency means that for a single point, the explanation should
be the same when calculated multiple times.

Discussion

Fragility/instability is an emerging problem in interpretable machine learning that
vastly affects trust, pushing us to increase the robustness of model interpretations through
regularization terms and metrics. Robustness in the interpretation methods does not im-
ply their correctness, but instability would make the interpretations untrusted. The role
of robustness in human alignment is confirmed in [121], as they found that the attribu-
tions produced by regularized models are much more aligned with human perceptions,
which agrees with prior studies that found that robust models align better with human
perception [122]. Additionally, adversarial robustness represents a prospective direction
to improve learned representations [123]. Another important result relates sensitivity to
fidelity, as lowering the sensitivity of the explanation was found to increase its fidelity and,
hence, its correctness [66]. These results all emphasize the importance of robustness in
interpretable models.

Melis and Jaakkola [76] noted instability even in situations where the underlying
model remains stable. This occurrence casts doubt upon the reliability of such explana-
tions [83].

7. Conclusions

For a long time, predictive accuracy was the dominant evaluation criterion in machine
learning; however, it is no longer sufficient to comply with other requirements of models,
such as interpretability. Thus, there has been a surge in proposed methods that provide
interpretable predictions. Despite this significant progress in methods, there is a lack of
quantitative evaluation criteria, which makes it difficult for practitioners to know when to
use each explanation method.

This survey presented a review of the evaluation methods proposed in the literature
to assess the interpretability of machine learning models. Followers of the literature will
see that the discipline has shifted from subjective assessments such as “you’ll know it
when you see it” to a more objective and methodical approach. However, the literature
analysis led to the conclusion that there is a lack of agreement on what constitutes a
comprehensible or understandable explanation. Despite the different proposed approaches
and proxy measures, such as complexity, the question of what makes the explanation
comprehensible is still unanswered, and it remains an open problem. The question becomes
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more challenging when considering the different possible forms of explanation, ranging
from features or weights to other models.

In light of the different approaches and types of explanations, defining a standard for
the implementation of metrics that applies to all state-of-the-art interpretability methods
is difficult at this stage, as interpretability depends on several factors. One suggested
direction for tackling the problem is contextualizing the evaluation concerning the domain,
model, and target audience. Also, there is a need for a multi-disciplinary collaboration that
includes human–computer interaction, AI–human partnership, psychology, and cognitive
science to tackle the comprehension issues.

In many situations, accuracy and interpretability represent contradictory objectives.
Thus, researchers attempt to obtain the best trade-off between them based on the user’s
requirements and the domain. The quality of interpretation is inherently tied to the
quality of the classifier. Consequently, when evaluating interpretability by comparing
the interpretation with the ground truth, it is essential to consider both the quality of the
interpretation and the underlying classifier, as any errors can potentially propagate through
the system. However, in our analysis of reviewed papers, we observed that none of the
works accounted for this potential vulnerability or quantified the impact of data or classifier
mistakes on the resulting interpretations.

The use of human-based evaluation methodologies presents certain limitations, includ-
ing the presence of biases and fatigue. Furthermore, humans may struggle to objectively
compare two models once they have gained an understanding of the model or instance, as
it is difficult for them to forget and repeat the experiment. In such cases, a well-designed
task that encompasses all relevant factors can be advantageous. Conversely, computational
metrics provide a more objective approach to evaluating interpretations. Although mea-
suring correctness or fidelity can typically be achieved by observing a drop in probability
when removing important features, the correlation between features remains an open issue.
Establishing a dataset for comparing model-agnostic approaches could prove to be useful.
Moreover, applying model-agnostic approaches to explain transparent models could help
uncover situations where they fail.

Correctness (fidelity), comprehensibility, and robustness are the most studied criteria
in the literature; however, there are other criteria, such as scalability, which refers to the
ability of the post hoc interpretable model to be scaled to other models (as being agnostic),
and generality, which implies that the model does not need special training regimes or
architecture. These are less important than the previously considered ones.
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