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Abstract: Recent advances in the Internet and digital technology have brought a wide variety of
activities into cyberspace, but they have also brought a surge in cyberattacks, making it more
important than ever to detect and prevent cyberattacks. In this study, a method is proposed to
detect anomalies in cyberspace by consolidating BGP (Border Gateway Protocol) data into numerical
data that can be trained by machine learning (ML) through a tokenizer. BGP data comprise a mix
of numeric and textual data, making it challenging for ML models to learn. To convert the data
into a numerical format, a tokenizer, a preprocessing technique from Natural Language Processing
(NLP), was employed. This process goes beyond merely replacing letters with numbers; its objective
is to preserve the patterns and characteristics of the data. The Synthetic Minority Over-sampling
Technique (SMOTE) was subsequently applied to address the issue of imbalanced data. Anomaly
detection experiments were conducted on the model using various ML algorithms such as One-Class
Support Vector Machine (One-SVM), Convolutional Neural Network–Long Short-Term Memory
(CNN–LSTM), Random Forest (RF), and Autoencoder (AE), and excellent performance in detection
was demonstrated. In experiments, it performed best with the AE model, with an F1-Score of 0.99. In
terms of the Area Under the Receiver Operating Characteristic (AUROC) curve, good performance
was achieved by all ML models, with an average of over 90%. Improved cybersecurity is expected to
be contributed by this research, as it enables the detection and monitoring of cyber anomalies from
malicious users through BGP data.

Keywords: anomaly detection; machine learning; BGP dataset preprocessing

1. Introduction

In recent decades, the advancement of computer and network technology has facili-
tated various activities in cyberspace, and as a result, the majority of interactions are also
conducted in cyberspace. But over the past year, cyberattacks have increased at an alarming
rate. From 2021 to 2022, cross-border cyberattacks increased by a whopping 28% [1]. The
gravity of the situation is recognized by the US Department of Defense, and cyberspace has
been designated as the fifth battlefield, with substantial amounts of money being invested
to prepare for and detect cyberattacks [2]. However, due to the unrealistic nature of defend-
ing against all cyberattacks and the continuous creation of new attack methods every day, a
60% to 70% attack detection rate is achieved in some organizations’ information protection
systems, with approximately 30% of systems showing false positives [3]. To address the
previously mentioned problems, a group of cyberattacks is selected, and their BGP data
are collected and analyzed through machine learning (ML) to detect anomalies in their IPs
and AS (Autonomous System). BGP data pose a challenge for machine learning models
as they contain a mix of text and numerical data, making direct model training difficult.
Additionally, there is a limitation in the number of abnormal dataset samples available for

Information 2023, 14, 501. https://doi.org/10.3390/info14090501 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14090501
https://doi.org/10.3390/info14090501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9094-4053
https://orcid.org/0000-0002-8621-715X
https://orcid.org/0000-0002-2665-3339
https://doi.org/10.3390/info14090501
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14090501?type=check_update&version=1


Information 2023, 14, 501 2 of 19

anomaly detection. These factors can introduce difficulties during both model training and
the anomaly detection process. To solve this problem, BGP data, encompassing routing
information from global networks, are collected and preprocessed to enable smooth model
training. The performance of the models was evaluated by inputting the preprocessed
data into the ML models and comparing and quantifying various metrics, including the
confusion matrix.

This paper is organized as follows: In Section 2, the ML models and features utilized
for detecting BGP anomalies are outlined. In Section 3, normal and abnormal data for
the experiments are collected, and the AI models are trained. In Section 4, the paper
presents the anomaly detection results of ML models with preprocessed BGP data. Finally,
in Section 5, the paper is concluded, summarizing the research and describing future work.

2. Related Work
2.1. Border Gateway Protocol (BGP) Data

Much research has been conducted on detecting anomalies in cyberspace. BGP is
regarded as one of the main routing protocols on the Internet, used for exchanging routing
information between multiple AS and determining communication paths on the Internet.

BGP is primarily used for exchanging route and accessibility information for a network.
This information is utilized to determine the best route between various AS to a destination.
BGP operates in a transitive, self-replicating fashion and is equipped with a variety of
properties and mechanisms that are employed to update routing tables and respond to a
wide range of network changes [4].

Large amounts of routing information are contained in BGP data, and a critical role
is played in network behavior as routing information is exchanged between various AS
around the world. However, due to the complexity and size of BGP data, effectively
analyzing them and detecting anomalies is a challenging task, and various researchers are
working on it.

2.2. Research on Cyber Anomaly Detection

Machine learning has been utilized to detect anomalies in cyberspace, along with BGP
data and other types of cyber data.

Lad M. et al. [5] use a method that collects BGP routing data to detect possible hijack
takeovers in real time and notify the owner. As an anomaly detection method, AS with
cyberattack cases is selected, and the path of the data is continuously tracked. If a new
type of path pattern is consistently detected in an existing path pattern, it is identified as
an anomaly, and the security fence is promptly notified. The study found that anomalies
can be detected based solely on changes in AS by continuously tracking AS that have been
involved in cyberattacks. However, its limitations are shown by not providing performance
indications for detecting anomalous behavior in cyberspace.

Comarela G. et al. [6] analyze BGP data for the purpose of identifying anomalous AS
based on anomalous relationships. However, due to the presence of missing values in BGP
data, inferring the precise relationships between AS became challenging. As a result, a
preprocessing step was introduced to the BGP data with the aim of detecting anomalies
regardless of noise interference. Moreover, the concept of “(λ, ν)-event” was employed
to extract data exhibiting abrupt changes through tensor analysis when provided with
information on prefixes, AS, and time. This study demonstrates the feasibility of anomaly
detection utilizing AS and time data, highlighting that data demonstrating swift changes
are well-suited for the purpose of anomaly detection. McGlynn K. et al. [7] studied a model
to detect anomalies using Autoencoder (AE) [8] with AS paths from BGP routing data. The
experimental results were expressed as an F1-Score and showed good performance of 82%
and 75%, respectively. However, as the number of data increased, performance tended
to decrease.

Copstein R. et al. [9] compared and analyzed BGP data using three different temporal
representations using Naïve Bayes (NB) [9] and decision trees to detect anomalies. The
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evaluation results showed that a high accuracy of 84% and recall of 85% were achieved by
using redundant packet buffer data in BGP data.

Choudhary S. et al. [10] proposed extracting key features from multiple network data
to form training data, which were then input to the Deep Neural Network (DNN) [11]. The
good detection rates of 95% on different datasets, such as UNSW-NB15 [12], NLS-KDD [13],
and KDD-Cup’99 [14], are consistently shown in the above papers.

JI Y. et al. [15] conducted an experiment to determine normal and abnormal data by
receiving sensor data of vehicle control functions instead of cyber data. Sensor data from
the vehicle were collected and preprocessed to extract key features related to control unit
malfunctions, forming the training and experimental data. The data were fed into a One-
Class Support Vector Machine (One-SVM) [16], and they were classified into normal and
abnormal data, achieving excellent results of TRP 0.81 and TNR 1.0. The above experiments
demonstrate that anomalies and normal data can be detected using One-SVM, and the
performance of the algorithm is validated with AUROC.

Halbouni A. et al. [17] preprocessed the CIC-IDS2017 [18], UNSW-NB15, and WSN-
DS [19] datasets to construct training and experimental data. The data were input into
a CNN–LSTM [20], which is a fusion of a CNN and an LSTM, with the LSTM handling
temporal information and the CNN handling spatial information. From the above experi-
ments, it can be observed that better performance can be achieved by combining LSTMs
and CNNs and leveraging the strengths of Logistic Regression (LR) [21] and decision tree
(DT) [22].

Anton S.D.D. et al. [23] conducted experiments to detect network attacks through
time series analysis of network data. Datasets DS1 [24], based on Modbus, and DS2 [25],
based on OPC UA, were preprocessed to retain only the core features of the data. A
Random Forest (RF) [26] and a Support Vector Machine (SVM) [27] were trained on the
above data, and an accuracy of 0.92 for the SVM and 0.99 for the RF was found. From the
above experiment, it is evident that RF and SVM exhibited the best performance, with RF
demonstrating a high detection accuracy of 0.99.

Related studies have proposed methods for detecting cyberattacks and anomalies,
as shown in Table 1. CNN–LSTM, RF, One-SVM, etc. are the ML models used to detect
anomalies. However, most of them use historical data rather than the latest updated data,
which means that they cannot keep up with the rapidly changing trends of cyberattack
methods. In addition, BGP data, which are real-time data, have many limitations due
to the lack of diversity in ML models and detailed evaluation indicators. In this study,
the goal is to use BGP data to detect anomalous behavior. In addition, an alternative
approach to existing studies is attempted in this research, wherein a diversity of ML
models and evaluation indicators that have not been presented in prior studies using BGP
are introduced.

Table 1. Anomaly detection algorithms.

Year Study Data Detection Technique Performance

2006 Lad M. et al. [5] BGP Data [4] No technique No Performance

2014 Comarela G. et al. [6] BGP Data [4] No technique No Performance

2019 McGlynn K. et al. [7] BGP Data [4] AE [8] F1-Score: 0.82

2020 Copstein R. et al. [9] BGP Data [4] NB [28] Accuracy: 0.84
Recall: 0

2020 Choudhary S. et al. [11] UNSW-NB15 [13], NSL-KDD [14],
KDD-Cup’99 [15] DNN [12], Accuracy: 0.96

AUROC: 0.96

2022 Jl Y. et al. [16] Sensor Data [16] One-SVM [17] TRP: 0.81
TNR: 1.0
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Table 1. Cont.

Year Study Data Detection Technique Performance

2022 Halbouni A. et al. [18] UNSW-NB15 [13],
CIC-IDS2017 [19], WSN-DS [20]

CNN–LSTM [21], NB [10],
LR [22], DT [23] Accuracy: 0.98

2019 Anton S.D.D et al. [24] DS1 [25], DS2 [26] RF [27], SVM [29] SVM Accuracy: 0.92,
RF Accuracy: 0.99

2.3. Anomaly Detection with Machine Learning
2.3.1. Random Forest (RF)

RF is a machine learning algorithm that trains each decision tree independently and
then combines their results to make more accurate and reliable predictions. The structure
of RF is shown in Figure 1. RF is constructed as an ensemble model that combines multiple
decision trees. Each decision tree is independently trained on a random sample of data,
and the final prediction is determined by averaging the results of each tree or by majority
vote. This results in RF possessing a high degree of accuracy and generalization ability.
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Figure 1. Random Forest Model (green as normal data and red as abnormal data).

Ensemble methods in RF learn different characteristics for each tree because of the
randomized data used, even if the same algorithm is used. Typical methods include
Bagging and Boosting.

Bagging generates multiple sample datasets through randomized restoration sampling
from a dataset and trains each one independently on a decision tree. After training, the data
are categorized by averaging the predictions of each decision tree or by being subjected to
voting. The above techniques help improve the accuracy and stability of predictions by
covering a wide range of sample data and characteristics.

Boosting initially weights all data equally and trains. The prediction results are
evaluated, and the misclassified data are given a higher weight and trained again. This
process allows the decision tree to compensate for errors and improve accuracy because it
is biased in its training [9].

As can be observed from the literature mentioned above, the most notable feature of RF
is the creation of random dataset samples and their training, resulting in each tree having
distinct characteristics. Randomly sampling the data also strengthens the model even when
biased data are fed into the decision tree, which improves generalization performance
and prevents overfitting. It can efficiently process large amounts of data, avoid overfitting
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problems by avoiding model bias, and reduce volatility by improving the ability to make
more accurate predictions [10].

2.3.2. Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)

CNN–LSTM is an effective deep learning algorithm utilized for anomaly detection [30].
Figure 2 illustrates the CNN–LSTM structure. Different types of data, including images
and time series data, can be processed by the method, allowing it to learn both spatial and
temporal features of the data. In Liu Y. et al. [31], real-time sensor data are gathered using a
CNN. Each layer within the CNN comprises a convolutional layer, a batch normalization
layer, and a non-linear layer. These modules form a hierarchical structure that utilizes
pooling layers for sampling aggregation and stacks convolutional layers to progressively
extract more abstract features. The module generates an M-length feature sequence of size
N ×M. In the feature aggregation section, crucial features are extracted from this sequence
through multiple convolutions and pooling layer stacking. A 1× 1 convolutional kernel is
employed to uncover linear relationships within the data. The scale restoration component
then brings back the crucial features to the N ×M size and employs a sigmoid function to
confine their values within the [0, 1] range. The data that pass through the CNN enter the
LSTM unit and run through the equation below:

ft = σl

(
W f ·[ht−1, xt] + b f

)
(1)

it = σl(Wi·[ht−1, xt] + bi) (2)

∼
Ct = tanh(Wc·[ht−1, xt] + bc) (3)

Ct = ft·Ct−1 + it·
∼
Ct (4)

ot = σl(Wo·[ht−1, xt] + bo) (5)

ht = σt·tanh(Ct) (6)
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In Equations (1)–(6), W f , Wi, Wc and Wo refer to the weight matrix for the input vector
xt and b f , bi, bc, and bo refer to the bias vector. σl is the activation function, and · indicates
the elementwise multiplication of the matrix. ht is the state of the hidden layer in the current
step t, and ht−1 is the state of the hidden layer in the previous step t− 1. ft decides which
information to forget from the previous cell state and accept new information. Values close
to 0 indicate that information is forgotten, while values close to 1 indicate that information
is fully retained. The input gate it plays a crucial role in controlling the inflow of new
information into the cell state. It determines its value by considering both the previous state
ht−1 and the current input dataset xt. A higher gate value signifies greater incorporation
of new information into the cell state, whereas a lower value implies less incorporation.
∼
Ct combines the previous cell state ht−1 with the current input dataset xt and applies the
combination to the hyperbolic tangent tanh function to calculate a new candidate cell state.
This calculation is weighted by specific parameters Wc and bc. This update represents new
information that is likely to be stored in the cell state. ot is the value of this gate is calculated
by considering the previous state ht−1 and the current input dataset xt. The higher the
value, the greater the impact of information from the current state on the next output. ht is
utilized to compute the final output from the cell state. The Hidden State incorporates the
information from the cell state Ct regulated by the output gate ot. This allows it to consider
the significant information from the current state to predict the final output. If the output
across the LSTM units is greater than the threshold, it is classified as an abnormal dataset,
and if it is lower, it is classified as a normal dataset [30,31].

In this study, the analysis of AS path changes in a temporal pattern enables the
detection of diverse anomalies. These temporal patterns play a crucial role in recognizing
alterations in network conditions and can be effectively employed for the identification of
anomalies or potential security breaches. Spatial patterns pertain to the interplay between
Autonomous Systems AS, subnet configurations, and network topologies within BGP
data. CNN–LSTM is tasked with tracing AS relationships and overseeing shifts in network
topologies, thus enhancing its ability to detect anomalies.

2.3.3. One-Class Support Vector Machine (One-SVM)

One-SVM is a machine learning algorithm used for anomaly detection in datasets
where most data points are considered normal and anomalies are rare [17]. Unlike tra-
ditional SVMs, which are typically used for binary classification tasks, One-SVMs are
primarily employed to detect abnormal data that deviate significantly from normal data.
To classify abnormal data, One-Class SVM aims to find hyperplanes that separate normal
data by learning patterns and features of normal data. One-SVM comes with three different
kernel types. Linear kernels separate data into linear hyperplanes, which makes it intu-
itively easy to understand how normal and abnormal data are separated. However, they
may overlook dataset patterns and perform poorly when dealing with non-linear dataset
distributions. In contrast to linear kernels, polynomial kernels are capable of capturing
patterns in non-linear data and can express data using polynomials of different degrees.
Nonetheless, they carry the risk of overfitting, and the heightened dimensionality can
augment the model’s complexity. The Radial Basis Function (RBF) Kernel can effectively
learn patterns in non-linear data and provides flexibility to the model by using a tunable
parameter called ‘gamma’ to control the width of the kernel. Adjusting this parameter
allows for flexibility in the model and helps prevent overfitting.

HyperPlane = min
w, ὲi ,p

1
2
‖w‖2 +

1
vn

n

∑
i=1

ὲi − p (7)

Equation (2) is a mathematical representation of the process for obtaining a hyperplane
in One-Class SVM. In this formula, ‖w‖2 represents the size of the weight vector w, and the
square of this value serves to find the slope of the hyperplane. ‘p’ is the distance between
the origin and the hyperplane. ∑n

i=1 ὲi − p represents the sum of the slack variables ὲi,
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indicating how far away each data point is from the hyperplane. In 1
vn , vn represents

the number of normal data points, serving the purpose of normalizing the average of
slack variables. The formula above primarily aims to discover the optimal hyperplane
by adjusting the weight vector w during the process of learning to differentiate between
abnormal and normal data [32,33].

BGP data reveal non-linear relationships in route histories between AS. This implies
that RBF kernels can offer a more effective means of comprehending and interpreting the
intricate connections among AS. While the linear kernel is adept at handling linear data, its
capabilities are limited when examining non-linear data, such as BGP. Polynomial kernels
carry the risk of overfitting, and comprehending the inner workings of the model is often
challenging. Consequently, this study opts for the RBF kernel to identify anomalies in
BGP data.

2.3.4. AutoEncoder (AE)

AE is a technique of unsupervised learning that learns patterns in data. An encoder
takes in data and compresses them until they reach latent space while extracting key
patterns in the data. The decoder has a learning method to reconstruct the low-dimensional
compressed data by restoring them to their original dimensions. The key to distinguishing
between anomalies in the AE algorithm is to restore the compressed data and compare
them to the input data. Equation (2) means that the input dataset x is compressed and
mapped to the low-dimensional dataset f (x).

z = f (x) (8)

In the above formula, z represents the value of the key pattern in the input dataset that
is extracted during the compression process. f (x) represents the function of the encoder,
which compresses the dataset. x is represented by the input data. Rectified Linear Unit
(ReLU) is a non-linear function that enables neural networks to capture non-linear patterns
in data, which is crucial for modeling complex relationships. Unlike activation functions
like Sigmoid or Tanh, ReLU does not suffer from the vanishing gradient problem, especially
for large input values. As a result, ReLU is commonly used as the activation function in
neural networks. The formula for reconstructing the compressed data by restoring them is
given by Equation (3).

x′ = g(z) (9)

In Equation (3), x′ represents the data that have been compressed and then restored
by the decoder. g(z) represents the decoder function responsible for reconstructing the
compressed data. The reconstruction error is obtained through x and x′, which were
obtained earlier, and AE learns to reduce the reconstruction error. The corresponding value
is given by Equation (4).

Reconstruction Error =
∥∥x− x′

∥∥2
2 (10)

In the above formula, ‖·‖ stands for L2norm. The equation represents the reconstruc-
tion loss of an Autoencoder and is used for detecting anomalies. The reconstruction loss
measures the distance between the original dataset x and the reconstructed dataset x′,
and when the difference between them is significant, it is considered an anomaly. There-
fore, if the reconstruction loss exceeds a certain threshold, the data are classified as an
anomaly [34].

AE is a more powerful model for dimensionality reduction and feature extraction than
other deep learning models. In anomaly detection, it is important to detect and extract
specificity, and AE is very good at doing this. In addition, it has a relatively simple structure
and can prevent overfitting and improve generalization performance, so in this study, AE
was used to perform anomaly detection.
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3. BGP Dataset Description and Anomaly Detection Environment

In this study, In this study, Figure 3 shows the structure of the AE used in this pa-
per, showing that the dimensionality decreases in the encoder and increases in the de-
coder. Figures 4 and 5 illustrate the process of collecting BGP data to detect anomalies
in cyberspace. In Figure 4, the client requests data from the DB API Server, and the DB
API Server collects data by sending BGP data containing AS information to the client.
Figure 5 shows the AS trace records of the collected data compared to the security incident
cases and separates them into normal and abnormal data. Normal data refer to AS that
have no record of cyberattacks, while abnormal data refer to AS that have frequently
attempted cyberattacks.
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The data have been collected, labeled normal and abnormal, and are presented in
Table 2. A detailed description of each attribute can be found in Table 3. The criteria for
selecting abnormal data were based on irregular changes in the path of a peer AS that
frequently attempted attacks. For instance, abnormal data were classified when a suspected
target, which typically follows the path sequence ‘A -> B -> C’, suddenly changed to
‘A -> D -> E -> F’.
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Table 2. Some of the normal and abnormal data in BGP data.

Timestamp Peer IP Peer AS Path Location Label

16 September 2022 212.66.96.212 20,912 A -> C -> D Italy 1
16 September 2022 12.0.1.63 7018 U -> F -> E US 0
16 September 2022 37.139.139.17 57,866 H -> U -> A Netherland 1
17 September 2022 194.153.0.2 5413 L -> C -> A Australia 0
17 September 2022 198.129.33.85 293 U -> A -> D US 0

. . . . . . . . . . . . . . . . . .

Table 3. BGP dataset column definitions.

Column Definition

Timestamp
Time information that indicates when routing data were sent or received.
It is usually combined with date and time information to show the exact
time an event occurred.

Peer Ip
An IP address between two devices or systems that communicate back
and forth in a network environment. Each device has a unique IP
address, which allows it to identify its owner.

Peer AS

When sending and receiving communications in a network environment,
it refers to the number of the AS that sent the communication. Like IPs
and carriage numbers, AS numbers have a unique identification number
that identifies the owner.

Path Information about which AS a dataset packet traversed to reach
its destination.

Location Information about the country of ownership of the peer AS.

Label
Distinguish between normal and abnormal data.
0: Normal data
1: abnormal data

The classification of normal and abnormal data is based on a threshold value exceeding
a certain limit, as depicted in Figure 6. Abnormal data typically involve sudden AS path
changes and the emergence of new path patterns, resulting in significantly elevated recon-
struction values for the corresponding data points. The reconstruction error is determined
using statistical properties such as the mean and standard deviation of the training data.
It is decided by selecting a specific percentile or a multiple of the standard deviation as
the threshold.
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4. Experiments

In this section, experiments were conducted using the previously mentioned prepro-
cessed data and machine learning algorithms, and the results are described.

4.1. BGP Dataset Preprocessing with Tokenizer

Machine learning algorithms can only learn from numeric data. However, as shown
in Table 2, path and location are character data, so the models cannot learn them. To solve
the above problem, preprocessing needs to be performed. Figure 7 illustrates the process of
converting text data into numeric data through a tokenizer.
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In this process, the sequence is split by dividing the string into smaller units. An
example would be breaking down a path like ‘A -> B -> F -> H’ into individual components:
[‘A’, ‘B’, ‘F’, ‘H’]. Finally, dataset preprocessing is completed by assigning unique integer
numbers to the separated path characters. Figure 8 displays the dataset distribution of
the preprocessed data in a pie chart. It can be observed that there has been a significant
change in the ratio of normal to abnormal data. There are a variety of techniques to address
dataset imbalances.
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Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) can
be considered effective methods for dealing with imbalance issues, but their models focus
on mimicking the distribution of the data. This means that they generate fewer abnormal
data than normal data. Furthermore, these models are not suitable as anomaly detection
models because their main purpose is to generate data according to their distribution, not to
detect anomalies.

Undersampling is a technique where instances are randomly removed from many
classes, which may result in the loss of potentially valuable information and patterns
present in the majority of class data [35].

The resampling method increases the number of data in the minority category to
make it equal to the number of data in the majority category, but it has the disadvantage of
causing overfitting in the minority category [36].

Adaptive Synthetic Sampling (ADASYN) is a technique designed to overcome the
limitations of SMOTE. It places its emphasis on generating synthetic samples based on the
density distribution of minority-class instances. However, it demands additional resources
and meticulous parameter tuning due to increased complexity, and it has the potential to
introduce misinformation by oversampling mislabeled data points [37].

To solve this issue, the Synthetic Minority Oversampling Technique (SMOTE) is em-
ployed, which is one of the techniques used for balancing dataset imbalances. SMOTE
works by identifying the nearest neighbors of the samples from the minority class and
generating synthetic data points between these neighbors and the minority class sam-
ple [35,36]. The generated data are added to the original dataset, and anomaly detection is
performed using the combined data, with the generated data labeled as anomalies. The
process continues to repeat until the dataset’s needs are met. The result of applying SMOTE
is shown on the right side of Figure 8. The rationale for maintaining an 8:2 ratio of normal
to abnormal data is that elevating the number of abnormal dataset instances to attain a
5:5 ratio of normal to abnormal data can blur the boundaries between the normal and
abnormal classes. Such blurring can lead to issues with the model misclassifying normal
data as abnormal data. Additionally, an excessive application of SMOTE can lead the model
to learn patterns from the generated data rather than capture patterns within the actual
abnormal data, potentially undermining the model’s performance.

Understanding dataset distribution before model training is deemed crucial. PCA
serves the purpose of visualizing data by reducing dimensionality. However, it encounters
challenges when dealing with non-linear patterns and complex clusters. On the other hand,
t-distributed Stochastic Neighbor Embedding (t-SNE) conquers these limitations by adeptly
preserving intricate structures, making it highly effective for high-dimensional, non-linear
data [38,39]. Figure 9 illustrates how BGP data and SMOTE are efficiently distributed using
t-SNE, especially for anomalies, ultimately enhancing dataset analysis and visualization.
Figure 9 displays the distribution of the BGP data and SMOTE after applying t-SNE. Upon
examining the dataset distribution after preprocessing on the right, it can be observed that
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the anomalies are clustered to the right, with a few of them mixed in with the normal data.
However, the original data exhibit almost no anomalies. With t-SNE, it can be observed
that, during preprocessing, anomalies are adequately distributed from the original data,
with few anomalies.
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4.2. Parameters and Performance Evaluation of Models

The BGP dataset comprises a total of one million data points. To mitigate the vanishing
gradient problem associated with an abundance of training and testing data, twenty
thousand data points were allocated for training, and an additional 20,000 were set aside for
testing, following preprocessing with SMOTE and tokenization. Throughout the training
phase, the model acquired patterns and features from the regular data. Subsequently, in
the experiments conducted using the test data, data points with high reconstruction error
values that did not match the patterns and characteristics of normal data were classified as
anomalies. The RF, One-SVM, CNN–LSTM, and AE algorithms were experimented with
using both BGP datasets as training and test data. The parameters that make up the AE, RF,
One-SVM, and CNN–LSTM algorithms are presented in Tables 4–7, and the experimental
environment is shown in Table 8.

Table 4. AE parameters used in the experiment.

Parameters AE Value

Epoch 100
Batch size 32

Activation Function LeaklyReLu, Linear
Optimizer Adam

Loss Function MSE

Table 5. RF parameters used in the experiment.

Parameters RF Value

N_estimaotors 100
Max_depth None

Min_sample_split 3
Min_sample_leaf 2

Max_features ‘auto’
bootstrap True
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Table 6. One-SVM parameters used in the experiment.

Parameters One-SVM Value

kernel ‘rbf’
nu 0.05

gamma 1.0
degree 4

Shrinking True
Cache size 500

Random state None

Table 7. CNN–LSTM parameters used in the experiment.

Parameters One-SVM Value

Convolutional Filters 64
Convolutional Kernel 3 × 3

Convolutional Activation ReLU
Max Pooling Size 2

LSTM Units 100
LSTM Activation tanh

Dropout Rate 0.2
Dense Activation ReLU

Output Activation sigmoid
Loss Function Binary Crossentropy

Optimizer Adam

Table 8. Anomaly detection experiment environment.

Equipment Name

OS Window 11 pro
CPU Intel(R) Core 19-13900K
RAM 32 GB
GPU NVIDIA GeForce RTX 4080 SUPER 16 GB

Language Python 3. 6. 4
Libraries TensorFlow, scikit-learn, Pandas

The purpose of this experiment is to learn the AS path patterns of abnormal and
normal AS and detect abnormal behavior using BGP data. In anomaly detection problems,
there can be an imbalance in the ratio of normal data to abnormal data. For instance, when
outlier data occur exceptionally rarely, the model might tend to classify all data as normal.
In such scenarios, relying solely on accuracy can lead to a high accuracy rate, but it may
result in missing out on crucial abnormal data. To evaluate the performance of the models
utilized in the experiments, various metrics were employed, each defined as follows:

1. Precision: The percentage of data in the experiment that correctly identified the
abnormal AS path as an abnormal AS path. This metric assesses the accuracy of the
model’s classification of anomaly data.

2. Recall: It, also known as “sensitivity” or “true positive rate”, represents how well the
model correctly identifies true abnormal AS paths. For example, if the recall is 0.9, it
means that the model misses 10% of the true abnormal AS paths.

3. F1-Score: It is computed as the harmonic mean of precision and recall, providing
a balanced measure in datasets with class imbalances where one class is dominant.
This metric comprehensively assesses the model’s performance by considering false
positives and false negatives. A high F1 score indicates a well-balanced trade-off
between precision and recall, signifying the model’s ability to accurately classify both
positive and negative samples.

4. Receiver Operation Characteristic (ROC) Curve: One of the methods used to visualize
the performance of binary classification models. This curve represents the relationship
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between the False Positive Rate (FPR) and True Positive Rate (TPR) as the threshold
of the classification model is adjusted. The ROC curve plots the FPR on the x-axis and
the TPR on the y-axis, showing the model’s performance at different thresholds. The
TPR is equivalent to the recall and represents the proportion of true positive samples
correctly classified as positive. On the other hand, the FPR represents the proportion
of false–positive samples incorrectly classified as positive.

The above metrics are calculated based on the confusion matrix. It is shown in Table 9
and the metrics are calculated using Equations (11)–(15).

1. True Positive (TP): A metric that represents the number of correctly classified positive
samples in a binary classification model. These are the samples that the model
correctly identified as positive when they were positive, meaning the model made
accurate positive predictions. TP is a crucial indicator of the model’s performance,
helping to assess its ability to correctly detect positive instances in the dataset.

2. True Negative (TN): A metric used in binary classification to represent the number
of correctly classified negative samples by the model. These are the samples that the
model accurately identified as negative when they were indeed negative, indicating
that the model made correct negative predictions. TN is an important measure of the
model’s performance, assessing its ability to correctly identify and exclude negative
instances in the dataset.

3. False Positive (FP): Measures the frequency of the anomaly detection model incorrectly
predicting normal data as anomalies, i.e., the model incorrectly categorizes normal
instances as anomalies.

4. False Negative (FN): Indicates the number of times the anomaly detection model
incorrectly predicted abnormal data as normal.

5. TPR: The percentage of abnormal data that the model correctly classified as anomalous
out of the actual abnormal data.

6. FPR: The percentage of normal data that the model misclassifies as abnormal data.

Table 9. Confusion matrix.

Actual Values
Positive Negative

Predicted Values
Positive TP FP

Negative FN TN

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1-Score = 2· Precisiojn ·Recall
Precision + Recall

(13)

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

4.3. Experiments Results

The experimental results were evaluated by measuring the AUROC to assess the
accuracy of normal and abnormal dataset classifications. The AUROC value ranges from 0
to 1, with 0.5 indicating a random classifier and 1 indicating a perfect classifier. A higher
AUROC value implies better classification performance, with values closer to 1 indicating a
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more accurate and reliable model for distinguishing between positive and negative classes.
AUROC is particularly useful when dealing with imbalanced datasets or when the cost
of false positives and false negatives differs significantly. Table 10 presents a summary of
the AUROC performance of the BGP data used in our experiments. The unprocessed data
achieved performance ranging between 89% and 92%, while the preprocessed data with
tokenizer achieved performance ranging between 91% and 96%, indicating a performance
difference of approximately 3.7%.

Table 10. AUROC Measurement Results.

Models BGP Data BGP Data (Tokenizer)

RF 0.893 0.944
One-SVM 0.892 0.946

CNN–LSTM 0.873 0.914
AE 0.927 0.961

Figure 10 shows the AUROC values of the machine learning models, and the experi-
mental results are shown in Tables 11 and 12. The results demonstrate that the BGP data
with tokenizers significantly outperformed the original BGP data. Particularly in the case of
AE, all indicators increased significantly from 0.89 to 0.97, and overall, all metrics improved.
Figure 11 is an image representing the confusion matrix results after applying AE. In both
scenarios, when calculating accuracy, it appears to be 0.99. However, the results obtained
through auxiliary indicators indicate that overfitting occurred in the unprocessed BGP data.
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5. Conclusions

In this study, an experiment was conducted to identify anomalies using machine
learning and BGP data. Machine learning algorithms, including AE, One-SVM, RF, and
CNN–LSTM, were employed to classify the data into normal or anomalous categories. To
unify the form of the data, tokenizer preprocessing was used to convert character data
into numerical data, and the SMOTE technique was applied to address the issue of dataset
imbalance. To quantify the performance of the model, various secondary metrics, such as
AUROC, were utilized to provide objective numbers. The results demonstrated that the
BGP data preprocessed with the tokenizer outperformed the original BGP data in all cases.
Among them, tokenizer-preprocessed BGP data performed the best, achieving an AUROC
of 0.96 and an accuracy of 0.99 in anomaly detection through AE. This result shows the best
results among experiments that use machine learning to detect abnormalities in BGP data
and confirms that overfitting has been prevented.

By using the results, the potential for real-time cyber anomaly detection and identify-
ing the rerouting of previously identified malicious users to enable ongoing monitoring
is presented. Additionally, the preprocessing method used in this research is a very chal-
lenging study that applies NLP-based tokenizer techniques not used in existing BGP data.
Furthermore, by employing the above techniques and utilizing SMOTE, this study demon-
strated the enhanced capability of machine learning in detecting abnormal behaviors in
cyberspace. Finally, to detect cyber anomalies, anomalies were detected using BGP data.
The detection abilities of accuracy (0.99), precision, recall, f1-score, and AUROC curves
were 0.98, 0.99, 0.99, and 0.96, respectively, showing that overfitting did not occur.

In future research, BGP data will be compared with other data to check for consistency.
Then, data will be fused to utilize various attributes such as system logs, network traffic,
and user behavior data instead of only AS routes. To overcome the limitations of AS
path data and develop a more comprehensive detection model, attack types will also
be added to the breach case information to create a model that can detect each attack
type. Moreover, the model’s performance will be enhanced through the combination
of deep learning algorithms and novel preprocessing techniques, resulting in improved
detection capabilities.
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Abbreviations
The following abbreviations are used in this manuscript:
BGP Border Gateway Protocol
AS Autonomous System
AE Autoencoder
NB Naïve Bayes
DNN Deep Neural Network
One-SVM One-Class Support Vector Machine
CNN–LSTM Convolutional Neural Network–Long Short-Term Memory
LR Logistic Regression
DT Decision Tree
RF Random Forest
SVM Support Vector Machine
ReLU Rectified Linear Unit
BGP Border Gateway Protocol
SMOTE Synthetic Minority Oversampling Technique
PCA Principal Component Analysis
t-SNE t-distributed Stochastic Neighbor Embedding
AUROC Area Under the Receiver Operating Characteristic
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