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Abstract: The control of internal combustion engines is becoming increasingly challenging to the
customer’s requirements for growing performance and ever-stringent emission regulations. Therefore,
significant computational efforts are required to manage the large amount of data coming from the
field for engine optimization, leading to increased operating times and costs. Machine-learning
techniques are being increasingly used in the automotive field as virtual sensors, fault detection
systems, and performance-optimization applications for their real-time and low-cost implementation.
Among them, the combination of long short-term memory (LSTM) together with one-dimensional
convolutional neural networks (1DCNN), i.e., LSTM + 1DCNN, has proved to be a promising tool for
signal analysis. The architecture exploits the CNN characteristic to combine feature classification and
extraction, creating a single adaptive learning body with the ability of LSTM to follow the sequential
nature of sensor measurements over time. The current research focus is on evaluating the possibility
of integrating virtual sensors into the on-board control system. Specifically, the primary objective is
to assess and harness the potential of advanced machine-learning technologies to replace physical
sensors. In realizing this goal, the present work establishes the first step by evaluating the forecasting
performance of a LSTM + 1DCNN architecture. Experimental data coming from a three-cylinder
spark-ignition engine under different operating conditions are used to predict the engine’s in-cylinder
pressure traces. Since using in-cylinder pressure transducers in road cars is not economically viable,
adopting advanced machine-learning technologies becomes crucial to avoid structural modifications
while preserving engine integrity. The results show that LSTM + 1DCNN is particularly suited for the
prediction of signals characterized by a higher variability. In particular, it consistently outperforms
other architectures utilized for comparative purposes, achieving average error percentages below
2%. As cycle-to-cycle variability increases, LSTM + 1DCNN reaches average error percentages below
1.5%, demonstrating the architecture’s potential for replacing physical sensors.

Keywords: machine learning; LSTM + 1DCNN; architecture; neural network; pressure

1. Introduction

Internal combustion engine testing is becoming increasingly difficult because of in-
creasingly stringent regulations on pollutant emissions [1–3] and increasing performance
demands from customers [4–6]. Hence, exploring modern combustion strategies such as
low-temperature combustions [7,8], expanding the use of renewable fuels [9], and increas-
ing the hybridization level of vehicles are mandatory to meet the demands of sustainable
mobility [10,11]. Concerning modern spark-ignition (SI) engines, the path to reduce fuel
consumption demands the adoption of high boost levels in conjunction with downsiz-
ing [12,13], as well as water injection [14,15] and lean and/or exhaust gas recirculation
diluted mixtures [16–18]. As a result, the engine complexity increases [19,20], and therefore
data analysis tools need to handle large amounts of data from various physical sensors
during engine calibration and runtime operations [21–23]. Improving engine performance
requires significant computational efforts [24,25], which results in longer operating times
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and higher costs [26]. As a result, automotive researchers aim to discover cutting-edge
technologies that can effectively monitor engine parameters [27–29] to improve perfor-
mance while lowering consumption, pollutant emissions, and operating longevity [30,31].
Machine-learning (ML) techniques are becoming more prevalent in automotive applica-
tions due to their real-time capabilities, low-cost hardware implementation, and compact
setup. These techniques are used for virtual sensors [32,33], fault detection systems [34],
and performance optimization [35]. By using interpolation-based techniques, they can
predict parameters and reduce the need for evaluating multiple operating points. This
leads to significant improvements in memory and computational speed [36–46]. Based on
the different ML approaches available, the LSTM + 1DCNN method appears to be a reliable
way to conduct signal analysis. LSTM, which stands for long short-term memory, is a type
of recurrent neural network (RNN) [47] that can effectively handle long-term relationships
using ‘gates’ located in each cell. This is because it can model the sequential nature of
sensor measurements over time [42,43]. Shin et al. [44] employed a long short-term mem-
ory approach to predict soot emissions from a diesel engine during dynamic conditions,
specifically the worldwide harmonized light vehicles test procedure cycles. They compared
its performance to that of a deep neural network (DNN). The LSTM model demonstrated a
higher accuracy, with an R2 value of 0.9761, in contrast to the DNN model, which achieved
an R2 value of 0.9215. The LSTM model’s predictions showed mean absolute errors (MAEs)
ranging from 0.30% to 1.47% when compared to the maximum measured values in the
transient cycles. Remarkably, the LSTM model excelled in capturing local data variations
and peak values.

Norouzi et al. [45] utilized a deep recurrent neural network with LSTM layers to
develop a model for predicting the emissions and performance of a 4.5-L four-cylinder
Cummins diesel engine in an industrial setting. They subsequently used this model
for implementing a nonlinear model predictive controller (NMPC). The LSTM achieved
higher R2 values of 0.9761 compared to a DNN (R2 = 0.9215) used for comparison and
closely matched the NMPC performance, achieving NOx reductions of up to 63.4% (at
1200 rpm). Importantly, LSTM-based controllers significantly reduced the computational
time compared to conventional controllers while maintaining performance.

One-dimensional convolutional neural networks (1D-CNN) have been proposed for
various applications, such as data classification, early diagnosis, structural health monitor-
ing, anomaly detection, and detecting defects in electrical motors [48,49]. The 1D-CNNs
have a simple and compact architecture that performs only scalar multiplications and addi-
tions during real-time 1D convolutions. This results in significant time savings and allows
for low-cost hardware implementation, as noted in reference [50]. CNNs, or convolutional
neural networks, are widely utilized due to their ability to combine feature extraction and
classification in a single adaptive learning system. Fukuoka et al. [51] predicted the wind
speed of Tokushima city using a mixed 1D-CNN LSTM structure. Wind speed is usually
measured over a period, so the proposed method uses historical data to make current pre-
dictions. Rosato et al. [52] developed a novel deep learning approach that integrates long
short-term memory networks and convolutional neural networks to tackle the challenge
of predicting energy time series for a real-world solar power plant. After evaluation, it
was found that the suggested framework is a practical and durable option for forecasting
applications. Its significant advantage is that it uses efficient and intelligent approaches
to benefit from diverse physical data sources. Our research group, referenced as [33], de-
veloped a hybrid structure using LSTM and 1DCNN to explore the feasibility of replacing
a physical sensor, such as a torque meter, with a virtual one. The successful execution of
this objective could have significant cost-saving benefits and prevent damage to the test
bench components caused by the resonance phenomenon, as noted in references [53,54].
The structure accurately replicates the natural frequency of the recorded signal, ensuring
that the absolute difference between the predicted and recorded values always remains
below the acceptable threshold of 10%.
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Considering ICE, the accurate analysis and prediction of engine performance param-
eters are crucial for optimizing fuel efficiency, reducing emissions, and improving overall
reliability. Time-series data collected from sensors and engine control systems provide valuable
insights into engine behavior and can be leveraged to enhance engine performance.

In this context, an ML approach was used in the present work to predict in-cylinder
pressure traces of an SI engine with the aim of determining if such a method can replace
physical sensors. In road cars, the use of an in-cylinder pressure transducer results in
the approach not being economically viable. Using machine-learning technology can be
essential in preserving engine integrity without the need for structural modifications [36].
Murugesan et al. [37] investigated the capability of an ANN approach with an integrated
back propagation (BP) algorithm in predicting the in-cylinder pressure of a single-cylinder
Greaves GL-400. The ANN model’s predictive capabilities, including its performance in
both interpolation and extrapolation scenarios, and its robustness, are thoroughly examined
through a range of error and performance analyses. Based on the error analysis conducted,
the constructed ANN model demonstrates exceptional accuracy in predicting experimental
outcomes, boasting a correlation coefficient close to the unit value and a mean squared
error of 0.0012. A study by Jane Robert et al. [38] introduces a pioneering approach
to achieving near-real-time predictions of in-cylinder engine parameters, with a strong
emphasis on enhancing energy efficiency within systems. Notably, this method relies on
MATLAB/Simulink, diverging from conventional practices that often demand extensive
pre-characterized datasets. The research results underscore the system’s adaptability to
fluctuating operational conditions, offering the potential for significant advantages over the
prevalent look-up table approximations commonly used in advanced vehicle and engine
control strategy development. This innovative implementation significantly enhances our
capacity to optimize engine performance while minimizing data-intensive requirements,
thus advancing energy management within complex systems.

Mariani et al. [39] used extreme learning machines (ELM) to simulate a spark-ignition
engine’s cyclic behavior on octane fuel. Experimental runs at various speeds and crankshaft
angles yielded a mean effective pressure reflecting cyclic variability (average over 100 cycles).
ELM models achieved rapid predictions, surpassing iterative mathematical models. The
optimized ELM models accurately approximated the mean effective pressure, consistent with
experimental data.

The LSTM + 1DCNN approach utilized in the present work to predict the engine’s
internal pressure was trained and evaluated utilizing experimental data obtained from a
port fuel injection (PFI) three-cylinder spark-ignition (SI) engine operating under various
conditions. CNN-LSTM networks offer a unique advantage by combining the local feature
extraction capabilities of convolutional neural networks (CNNs) with the sequential mem-
ory modeling of long short-term memory (LSTM) networks. This fusion allows them to
effectively capture spatial and temporal patterns in data, making them ideal for tasks like
spatiotemporal forecasting, outperforming other AI approaches in scenarios where both
spatial and temporal information are crucial [40].

The signals were acquired via a fast-combustion analysis system. Three operating
points characterized by different cycle-to-cycle variabilities have been considered and the
LSTM + 1DCNN performance compared with other three different artificial structures,
i.e., back propagation and LSTM, to compare the advantages brought by the proposed
model. The optimized structure exploited the capability of LSTM to capture long-term
dependencies and temporal patterns with the ability of 1DCNN to detect patterns within
smaller signal segments. The results of the present work showed that the proposed
LSTM + 1DCNN architecture proved to be particularly suitable for predicting signals
featuring high variability, since it is able to effectively capture and predict the target trends.
The LSTM + 1DCNN enhances the performance of the other architectures tested and always
achieves percentages of average error below 2%. In particular, when the cycle-to-cycle
variability increases, the committed error drops below 1.5%, thus certifying the capability
of the proposed algorithm to replace the task of physical sensors.
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2. Materials and Methods
2.1. Experimental Setup

A series of tests were conducted on a 999-cc, three-cylinder engine with SMART
turbocharging, 12 valves, and pent-roof combustion chambers, as indicated in Table 1 [41].
The engine uses port fuel injection (PFI) technology and is designed to run on gasoline
(E5) with a RON of 95 and MON of 85, which is commonly used in the European market.
The gasoline is injected at a 4.2 bar absolute pressure and ignited by traditional spark-
ignition systems. The use of an electric motor enables control of the engine’s speed,
whether in motored or firing conditions. The engine control unit (ECU) oversees all
engine parameters, while data acquisition systems from the National Instrument acquire
signals from thermocouples and pressure sensors. To conduct the analysis, a Kistler KiBox
combustion analysis system with a maximum temporal resolution of 0.1 CAD is used.
The system collects data from various sources including the in-cylinder pressure from the
piezoelectric sensor (Kistler 5018) positioned beside the flywheel, the ignition signal from
ECU, the absolute crank angular position measured by an optical encoder (AVL 365C),
and the pressure signals from the piezoresistive sensors (Kistler 4624A) located in the
intake and exhaust ports. When the engine is running, a piezoelectric sensor measures the
indicated mean effective pressure (IMEP) in the combustion chamber beside the flywheel.
AdaMo Hyper was the program used to record all the related quantities. To see the
layout and experimental configuration of the test bench, refer to Figure 1a,b respectively,
for illustration.

Table 1. The primary characteristics of the engine [41].

Displacement 999 cc
Cylinders 3 Cyl./4 V per Cyl.

Bore 72 mm
Stroke 81.8 mm

Compression ratio 10:1
Power 84 CV at 5250 rpm
Torque 120 Nm at 3250 rpm

Figure 1. (a) Layout of the test bench. (b) The practicality picture of the test bench.
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2.2. Definition of the Case Study for In-Cylinder Prediction
2.2.1. Definition of the Involved Parameters

The authors evaluated the performance of various algorithms in predicting the in-
cylinder pressure traces of a SI engine. This was realized at three different operating points,
each of which was characterized by an increasing engine speed and CoVIMEP during full-
throttle operations. The combustion stability was assessed using the coefficient of variance
(CoV) of the indicated mean effective pressure (IMEP). This is the ratio of IMEP standard
deviation to the IMEP mean value. Table 2 displays the average main characteristics of the
tested operating points.

Table 2. Principal features of the operating point tested including the specific parameters measured
and the corresponding values at different engine speeds.

Engine Speedavg [rpm] IMEPavg [bar] CoVIMEP [%] Torqueavg [Nm]

1500 10.18 0.46 77
3250 14.15 2.13 111
2500 11.35 15.05 83

The KiBox analysis system continuously records with a max resolution of 0.1 CAD.
All the parameters recorded by the indicating analysis system are initially selected as
potential input parameters (Figure 2) to the tested architecture for forecasting the in-cylinder
pressure Pcyl:

• In-cylinder volume during the engine cycle in dm3, Vcyl.
• Pressure at the intake port in bar, Pint.
• Pressure at the exhaust port in bar, Pexh.
• Position of the crankshaft during the engine cycle in the crank angle degree, CAD.
• Rotational speed of the engine in rpm, EngineSpeed.

Figure 2. Example of the acquired quantities as a function of the crank angle degree CAD. (a) In-
cylinder pressure Pcyl, (b) Pressure at the intake port in bar Pint, (c) pressure at the exhaust port in
bar Pexh, (d) rotational speed of the engine in rpm EngineSpeed, and (e) in-cylinder volume Vcyl.

Since not all the experimental features are recorded with the same sampling frequency,
preliminary actions are realized to align the acquired data to obtain the same sampling
frequency. The initial dataset of [6 × 3,614,400], corresponding to an acquisition ranging
from −360 CADaTDC to 359.9 CAD aTDC, is transformed into a dataset of [6 × 67,550].
The quantities are therefore considered starting from −44.5 CAD aTDC up to 89.5 CAD
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aTDC with a step of 1 CAD, ensuring a comprehensive analysis of each combustion cycle
focused on the complete development of the in-cylinder cylinder pressure.

2.2.2. Evaluating the Influence of the Input Parameters on the Pressure Prediction

By eliminating parameters with low correlation, it is possible to effectively reduce
the dimensions of the model and enhance its accuracy. For this reason, a preliminary
analysis through the Shapley value has been performed considering the entire dataset.
The objective of SHAP is to provide an explanation for the prediction of an instance by
assessing the contribution of each characteristic toward the prediction. By calculating the
average absolute Shapley values (ABSV), the authors were able to determine the impact of
individual measured quantities on the objective function [55,56]. The results (Figure 3) show
that CAD is the most influential parameter to be considered for the in-cylinder prediction,
followed by the in-cylinder volume Vcyl. EngineSpeed and Pexh have a percentage of
impact equal to 10% and, conversely to the pressure at the intake port, must be considered
as input parameters.

Figure 3. The Shapley analysis: a comprehensive understanding of the significance of each feature in
predicting in-cylinder pressure on a global scale.

To conclude, based on the analysis, Pin can be eliminated as an input feature since it
has the lowest impact percentage on the Pcyl prediction. This reduces the number of inputs
from 5 to 4. Previous works of the same research group [22,33] demonstrated enhancements
of the performance when the architectures operate with the exclusion of the less influential
parameters. Based on this, the present work shows only the architecture forecasting
performance with the four input parameters previously identified (i.e., Vcyl, EngineSpeed,
Pexh, and CAD). After analyzing the input parameters, a normalization process is carried
out to prevent prediction errors and ensure faster convergence of the architecture. This
process helps in avoiding discrepancies between input and output parameters. The values
are mapped to the range [0, 1] for a better understanding. After the prediction process,
the predicted data are de-normalized to offer a direct comparison with the original target
experimentally acquired.

2.2.3. Definition of the Final Dataset for the Pressure Prediction

Based on the results of the sensitivity analysis, Figure 4 provides a comprehensive
overview of the dataset, including the division of input and output parameters for each
analyzed case. As is possible to observe, the entire dataset analyzed is composed of the
three different operating points (Table 2) featured with 5 variables, each of which presenting
67,550 samples (Figure 4a). Vcyl, CAD, Pexh, and EngineSpeed [4 × 67,550] define the input
parameters while the in-cylinder pressure Pcyl [1 × 67,550] is the output (Figure 4b).
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Figure 4. (a) Description of the complete dataset used in terms of the analyzed cases and the
considered number of variables and samples; (b) breakdown of the input and output parameters for
each analyzed case according to the preliminary sensitivity analysis; (c) segmentation of the dataset
for the training and testing sessions. In total, 80% of data were used for the training session and the
remaining 20% during the test session to predict the output, i.e., Pcyl.

In total, 80% of the data were used for the training session and the remaining 20%
[4 × 13,508] during the test session to predict Pcyl [1 × 13,508] (Figure 4c). The performance
of the LSTM + 1DCNN structure was compared with those of three different AI architectures
on Case 1. Based on the obtained results, the other two cases, i.e., Case 2 and Case 3, were
used to investigate the LSTM + 1DCNN behavior when operating with signals characterized
by a higher cycle-to-cycle variability.

2.3. Creating an Artificial Architecture to Predict In-Cylinder Pressure
2.3.1. Structure of the LSTM + 1DCNN Model

Figure 5a displays the predictive scheme of LSTM + 1DCNN used to predict the in-
cylinder pressure traces. A sequence input layer is used to pass the dataset to the network.
This layer inputs sequence data into the network by establishing its size and constructing
the corresponding structures. A one-dimensional CNN layer applies a 1D convolutional
filter to each input frame; it is made up of neurons and a ReLu activation function. The
average pooling layer calculates the average value of patches in a feature map, which
helps to down-sample the maps by using the mean value in 2 × 2 cell squares. After that,
another 1D convolutional level, similar to the previous one, is applied. Following this, the
feature maps undergo processing by an LSTM layer consisting of hidden units. Within the
LSTM network’s internal architecture (Figure 5b), gates play a crucial role. The forget gate
determines which information should be kept or discarded by taking into account both
the previous layer’s information (ht−1) and the current input’s information (xt). A sigmoid
function evaluates this information and generates an output between 0 and 1, indicating
whether the information should be retained or not. This gate alters the previous cell state
value (Ct−1). The input gate is responsible for choosing which information should be stored
in the cell state. It does this in a few steps. First, a layer called the “input port layer”
applies a sigmoid function (represented by σ) to decide which values should be updated.
Then, a new set of candidate values (represented by a vector called Ct) is generated using a
hyperbolic tangent function (represented by tanh). These two sets of values are combined
and updated using the ft function, which replaces the old cell state (Ct−1) with the new
one (Ct). Finally, the updated cell state is multiplied by the gating function (ft). The output
gate stores a filtered version of the processed data, while the sigmoid determines which
parts of the cell state to output. The cell state undergoes a tanh operation to limit the values
between −1 and 1, and then it is multiplied by the sigmoid gate output. This process results
in only the selected parts being produced as output. LSTMs have a distinctive structure that
incorporates a forget gate activation, enabling the network to promote desired behavior
through frequent port updates at every stage of the learning process. Once the LSTM
is complete, the time-distributed layer distributes the feature map in a temporal vector
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sequence, and the regression output level calculates the mean square error loss for the
regression problem.

Figure 5. (a) Predictive scheme and (b) the internal structure of the LSTM and its division into gates.

2.3.2. Definition of the Procedures to Determine the Structural Parameters of the
Proposed Models

The definition of the optimal neural structures is determined through preliminary
analysis considering the training sessions’ performance. To assess the effectiveness of the
model parameters, a loss function is used, and, in this case, the mean square error (MSE) is
the chosen function for the task (Equation (1)):

MSE =
1
N ∑N

i=0

(
Yi

predicted − Yi
exp

)2
(1)

where N represents the number of samples, Yi
predicted refers to the predicted value while

Yi
exp refers to the target value experimentally obtained.

The network’s epoch iterations are set to 100, allowing the computation of the loss
function’s final value for each prediction model once the network training reaches its
maximum learning iteration. For the LSTM + 1DCNN architecture, the following structural
parameters have been investigated:

• The number of neurons in the 1DCNN layers Nc varies from 50 to 200.
• The number of neurons in the LSTM hidden layers Nh varies from 50 to 200.
• The batch size Bs varies from 8 to 64.
• The model depth Md varies from 1 to 5.

The Adam optimizer is applied to facilitate the updating of the weight matrix and
bias in the LSTM network model, along with an adaptive learning rate adjustment during
training. The performance of the proposed structure is assessed in comparison to two other
architectures: back propagation, LSTM, and NARX [22], which were optimized based on
extensive preliminary analysis similar to the LSTM + 1DCNN architecture. The optimal
solutions with the lowest loss function values were selected for predicting Pcyl.

3. Results and Discussions
3.1. Performance on Training

Figure 6 illustrates the validation loss (val_loss) and training loss (training_loss) for
the best-performing LSTM + 1DCNN configuration, i.e., Nc = 100, Nh = 150, Bs = 16, Md = 1.
The training results demonstrate that the model converges effectively without exhibiting
overfitting. In the context of debugging the 1DCNN structure, it is crucial to observe that a
limited number of neurons can lead to underfitting, as it may not capture sufficient features.
Conversely, an excessive number can result in overfitting. Although the addition of pooling
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layers can mitigate overfitting, an abundance of them reduces the feature dimensions
passed to the LSTM network. This reduction can hinder the LSTM’s ability to extract
time-series features effectively, ultimately diminishing the network’s capacity to fit the
data accurately.

Figure 6. Trend of loss value of the LSTM + 1DCNN architecture which performed best during the
training session.

To sum up, the LSTM + 1DCNN structure is composed of a one-dimensional convolu-
tional layer with 100 neurons, a kernel size equal to three, and a ReLu activation function;
a max pooling 1D layer which uses a pool size of two and a stride of two; an LSTM layer
composed by 100 neurons; a time-distributed layer and a dense layer composed of one unit
to perform the regression task [33].

The performance of the proposed structures is compared with three other different
architectures, optimized with the same procedures as LSTM + 1DCNN, and composed
as follows:

1. The BP algorithm [57–59] consists of one input layer, and three hidden layers with
each layer having 100 neurons and one output layer.

2. The prediction model for the LSTM network [33] consists of an input layer, a hidden
layer with 100 neurons, an output layer, and a fully connected layer.

3. The NARX [22] structure is composed of [1:2] delays for each input and two hidden
layers composed of 50 and 100 neurons, respectively.

In general, all trends decrease as the epoch increases, and they tend to stabilize, on
average, after 50 iterations, thus indicating that the models converge without overfitting.
BP reaches the stabilization zone about 20 epochs after the other architectures, while NARX
presents the fastest converge speed, showing a training loss below 0.05 already at about
10 epochs. Moreover, once stabilized, it presents very low oscillations which suggests that
the model could be more robust than the others at this operating point.

Figure 7 shows the results of the first comparison between the proposed algorithms,
at the operating condition of 1500 rpm and a low load, performed through the evaluation
of the training losses.
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Figure 7. Training loss for the tested architecture during training sessions at 1500 rpm and low
load conditions.

3.2. Performance on Test

Figure 8 displays the prediction of the in-cylinder pressure traces performed by each
neural structure.

Figure 8. Cont.
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Figure 8. Test performance of the architectures compared through the plot of the observed trend and
forecasted one. Percentage error is depicted as well in order to highlight the quality of the predictions.

For the sake of clarity, since the prediction is performed on the last 100 cycles of
500, only eight events are depicted in the figure in order to better visualize the quality of
the prediction.

To compare the predicted range as a whole, the deviation of each forecast’s prediction
from the target across the entire range has been calculated using Equation (2).

Err =
1
N ∑N

i=1

[ ∣∣∣Yi
predicted−Yi

exp

∣∣∣
Yi

exp

]
N

× 100 (2)

In this test case, N represents the number of samples being considered and i represents
the ith sample. The average percentage error, known as Erravg, is calculated to assess the
overall prediction accuracy. In order to ensure high-quality predictions, a maximum critical
threshold of 10 is set for the computed errors.

All of the tested structures (Figure 8) are able to reproduce the trend of the in-cylinder
pressure over time. BP shows an Erravg below the critical threshold of 10% and equals 2.68%,
with 95 samples presenting an Err over 10% corresponding to about 0.8% of the predicted
samples. LSTM lowers the BP performance presenting an Erravg equal to 3.20%, with
about 3.55% of predicted samples exceeding the critical threshold of 10% corresponding
to 480 samples. LSTM + 1DCNN enhances the LSTM performance showing an Erravg of
1.51% with 10 samples exceeding a 10% error, i.e., 0.07% of the entire predicted samples.
The NARX structure performs the best in terms of average errors, showing Erravg values
equal to about 1.45%, but it shows 1% of samples exceeding 10% of Err, corresponding to
139 samples. Therefore, even if the LSTM + 1DCNN error prediction is, on average, higher
than the NARX one, the structure outperforms NARX in terms of the number of samples
predicted with an Err below the critical threshold of 10%. The effectiveness of the two latter
forecasts is also highlighted by the comparison between the observed and predicted trends,
which almost overlapped with the target trend.

The accuracy of regression for each architecture tested in the prediction set is shown
in Figure 9. Models show great accuracy at the lower range of analysis (i.e., low Pcyl).
Increasing the in-cylinder pressure value, BP and LSTM present a higher dispersion while
LSTM + 1DCNN and NARX exhibit uniform distribution across the interpolation line,
without any points displaying a wide range of deviation. In particular, these architectures
show the lowest dispersion degree with an R2 close to the unit value. These results
demonstrate that LSTM + 1DCNN and NARX possess a higher liner fitting and prediction
accuracy compared to other tested architectures. The presented results highlight the robust
learning capabilities of NARX and LSTM + 1DCNN structures and their ability to reproduce
the target trend well.
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Figure 9. Regression prediction chart of the different models tested. (a) BP; (b) LSTM; (c) LSTM +
1DCNN; and (d) NARX.

After analyzing the results obtained, both structures (NARX and LSTM+1DCCN) were
selected for the forecast activities of the other case reported in Table 2 (i.e., 3250 rpm), which
is characterized by a higher variability (higher CoVIMEP) compared to 1500 rpm. Figure 10
displays the forecasted signals against the observed signals of both architectures. Both
models are able to reproduce the target trend well. NARX slightly lowers the performance
compared to the previous case, showing a small increment in the percentage error up to
2.16% (compared to the 1.37% at 1500 rpm), with 545 samples exceeding 10% of the error.
The LSTM + 1DCNN structure maintains a similar performance, showing an Erravg equal
to 1.61% with 0.8% of predicted samples exceeding the critical threshold of 10%.

It is clear that the LSTM + 1DCNN structure is capable of maintaining its performance
when operating with signals characterized by more variability. This feature suggests that
the architecture could also be suitable for predicting the in-cylinder pressure traces of
unstable stationary operating points or transient cycles. For this reason, the last attempt is
performed by considering an operating point characterized by CoVIMEP = 15% (Table 2).
A comparison with NARX performance is also presented to highlight the differences in
the forecasting behavior. As depicted (Figure 11), NARX maintains about the same perfor-
mance as the previous case (Erravg = 2.16% at 3250 rpm) showing an Erravg equal to 2.45%
with 166 samples predicted above the critical Err threshold of 10%. The LSTM + 1DCNN
structure is able to follow the signal oscillations and it gains its performance by showing an
Erravg equal to 1.43% with 89 of the predicted samples presenting an Err over the critical
threshold of 10%.
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Figure 10. Comparison between NARX (upper) and LSTM + 1DCNN (bottom) performance at
3250 rpm.

Figure 11. Comparison between NARX (upper) and LSTM + 1DCNN (bottom) performance at
2500 rpm and corresponding percentage errors (right).
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4. Conclusions

The present work evaluates the forecasting performance of LSTM + 1DCNN in predict-
ing the in-cylinder pressure traces of a three-cylinder spark-ignition engine, under different
operating conditions.

The aim is to explore the potential of using advanced machine-learning technologies
to replace physical sensors and evaluate the possibility of integrating virtual sensors into
the on-board control system. This would eliminate the need for costly and time-consuming
structural modifications. The results highlight the better quality of the LSTM + 1DCNN
in reproducing the trend target signals. In comparison to the other architectures used for
comparative purposes, the structure consistently shows the best performance, achieving
average percentages of errors below 2%. As the variability of the engine from cycle to cycle
becomes greater, the LSTM + 1DCNN is able to achieve average error percentages below
1.5%. To summarize:

Key Findings:

The study revealed that the LSTM + 1DCNN architecture achieves convergence dur-
ing training without overfitting, indicating its capacity to effectively learn from data
and make precise predictions. Furthermore, when compared to other architectures the
LSTM + 1DCNN consistently demonstrates a superior accuracy and robustness. These
results position LSTM + 1DCNN as a promising candidate for in-cylinder prediction in
spark-ignition engines.

Implications:

These findings have significant implications for spark-ignition engine research and
artificial intelligence. The development of an architecture capable of accurately predicting
pressure opens opportunities for cost savings and enhanced engine performance monitor-
ing. This innovation can lead to more efficient and dependable engine management systems.
Additionally, the demonstrated robustness and accuracy of the LSTM + 1DCNN archi-
tecture makes it adaptable to various real-world engine operating conditions, potentially
advancing diverse engine applications.

Future Research and Testing:

While this study represents a substantial advancement, further research and testing
are needed to validate and broaden the applicability of the LSTM + 1DCNN architecture.
On-board implementation and testing under diverse operational scenarios are crucial to
fully explore its potential benefits. This includes testing the architecture with larger datasets
and various dynamic cycles.

In conclusion, this work presents a promising solution for replacing physical pressure
sensors and contributes to the broader field of artificial intelligence in engine research. The
LSTM + 1DCNN architecture’s robustness and accuracy position it as an attractive choice
for enhancing engine performance monitoring, paving the way for further advancements
in the field.
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Nomenclature

Err Percentage Errors
Erravg Average Percentage Errors
ABSV Absolute Shapley Values
CAD Crank Angle Degree
CNN Convolutional Neural Network
CoV Coefficient of Variation
DNN Deep Neural Network
ECU Engine Control Unit
EGR Exhaust Gas Recirculation
ELM Extreme Learning Machines
ICE Internal Combustion Engine
IMEP Indicated Mean Effective Pressure
ML Machine Learning
NMPC Nonlinear Model Predictive Controller
IT Ignition Timing
LSTM Long Short-Term Memory
MON Motor Octane Number
NARX Nonlinear Autoregressive Network with Exogenous Inputs
PCYL In-cylinder Pressure
PFI Port Fuel Injection
RON Research Octane Number
SI Spark Ignition
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5. Witanowski, Ł.; Breńkacz, Ł.; Szewczuk-Krypa, N.; Dorosińska-Komor, M.; Puchalski, B. Comparable analysis of PID controller

settings in order to ensure reliable operation of active foil bearings. Eksploat. I Niezawodn. 2022, 24, 377–385. [CrossRef]
6. Rudolph, C.; Freund, D.; Kaczmarek, D.; Atakan, B. Low-calorific ammonia containing off-gas mixture: Modelling the conversion

in HCCI engines. Combust. Flame 2022, 243, 112063. [CrossRef]
7. García, A.; Monsalve-Serrano, J. Analysis of a series hybrid vehicle concept that combines low temperature combustion and

biofuels as power source. Results Eng. 2019, 1, 100001. [CrossRef]
8. He, X.; Wang, Q.; Fernandes, R.; Shu, B. Investigation on the autoignition characteristics of propanol and butanol isomers under

diluted lean conditions for stratified low temperature combustion. Combust. Flame 2022, 237, 111818. [CrossRef]
9. Alvarez, C.E.C.; Couto, G.E.; Roso, V.R.; Thiriet, A.B.; Valle, R.M. A review of prechamber ignition systems as lean combustion

technology for SI engines. Appl. Therm. Eng. 2018, 128, 107–120. [CrossRef]
10. Lukic, S.M.; Ali, E. Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric

vehicles. IEEE Trans. Veh. Technol. 2004, 53, 385–389. [CrossRef]
11. Chau, K.T.; Wong, Y.S. Hybridization of energy sources in electric vehicles. Energy Convers. Manag. 2001, 42, 1059–1069. [CrossRef]
12. Zou, R.; Liu, J.; Jiao, H.; Wang, N.; Zhao, J. Numerical study on auto-ignition development and knocking characteristics of a

downsized rotary engine under different inlet pressures. Fuel 2022, 309, 122046. [CrossRef]
13. Kouhyar, F.; Nikzadfar, K. A Model-Based Investigation of Electrically Split Turbocharger Systems Capabilities to Overcome the Drawbacks

of High-Boost Downsized Engines; SAE Technical Paper No. 2022-01-5052; SAE International: Warrendale, PA, USA, 2022.
14. Lanni, D.; Galloni, E.; Fontana, G. Numerical analysis of the effects of port water injection in a downsized SI engine at partial and

full load operation. Appl. Therm. Eng. 2022, 205, 118060. [CrossRef]
15. Sun, X.; Ning, J.; Liang, X.; Jing, G.; Chen, Y.; Chen, G. Effect of direct water injection on combustion and emissions characteristics

of marine diesel engines. Fuel 2022, 309, 122213. [CrossRef]
16. Zhou, L.; Song, Y.; Hua, J.; Liu, F.; Liu, Z.; Wei, H. Effects of different hole structures of pre-chamber with turbulent jet ignition on

the flame propagation and lean combustion performance of a single-cylinder engine. Fuel 2022, 308, 121902. [CrossRef]

https://doi.org/10.1007/s10845-019-01512-w
https://doi.org/10.4271/2020-01-0352
https://doi.org/10.1177/1468087419877990
https://doi.org/10.1016/j.aej.2017.04.010
https://doi.org/10.17531/ein.2022.2.19
https://doi.org/10.1016/j.combustflame.2022.112063
https://doi.org/10.1016/j.rineng.2019.01.001
https://doi.org/10.1016/j.combustflame.2021.111818
https://doi.org/10.1016/j.applthermaleng.2017.08.118
https://doi.org/10.1109/TVT.2004.823525
https://doi.org/10.1016/S0196-8904(00)00128-X
https://doi.org/10.1016/j.fuel.2021.122046
https://doi.org/10.1016/j.applthermaleng.2022.118060
https://doi.org/10.1016/j.fuel.2021.122213
https://doi.org/10.1016/j.fuel.2021.121902


Information 2023, 14, 507 16 of 17

17. Molina, S.; Novella, R.; Gomez-Soriano, J.; Olcina-Girona, M. Experimental Evaluation of Methane-Hydrogen Mixtures for Enabling Sta-
ble Lean Combustion in Spark-Ignition Engines for Automotive Applications; SAE Technical Paper No. 2022-01-0471; SAE International:
Warrendale, PA, USA, 2022.

18. Liu, X.; Aljabri, H.; Silva, M.; AlRamadan, A.S.; Ben Houidi, M.; Cenker, E.; Im, H.G. Hydrogen pre-chamber combustion at
lean-burn conditions on a heavy-duty diesel engine: A computational study. Fuel 2023, 335, 127042. [CrossRef]

19. Atkinson, C. Fuel Efficiency Optimization Using Rapid Transient Engine Calibration; SAE Technical Paper No. 2014-01-2359; SAE
International: Warrendale, PA, USA, 2014.

20. Dimopoulos, P.; Rechsteiner, C.; Soltic, P.; Laemmle, C.; Boulouchos, K. Increase of passenger car engine efficiency with low
engine-out emissions using hydrogen–natural gas mixtures: A thermodynamic analysis. Int. J. Hydrogen Energy 2007, 32,
3073–3083. [CrossRef]

21. Iqbal, M.Y.; Wang, T.; Li, G.; Li, S.; Hu, G.; Yang, T.; Gu, F.; Al-Nehari, M. Development and Validation of a Vibration-Based
Virtual Sensor for Real-Time Monitoring NOx Emissions of a Diesel Engine. Machines 2022, 10, 594. [CrossRef]

22. Ricci, F.; Petrucci, L.; Mariani, F. Using a Machine Learning Approach to Evaluate the NOx Emissions in a Spark-Ignition Optical
Engine. Information 2023, 14, 224. [CrossRef]

23. Hasan, A.; Leung, P.; Tsolakis, A.; Golunski, S.; Xu, H.; Wyszynski, M.; Richardson, S. Effect of composite aftertreatment catalyst
on alkane, alkene and monocyclic aromatic emissions from an HCCI/SI gasoline engine. Fuel 2011, 90, 1457–1464. [CrossRef]

24. Zembi, J.; Ricci, F.; Grimaldi, C.; Battistoni, M. Numerical Simulation of the Early Flame Development Produced by a Barrier Discharge
Igniter in an Optical Access Engine; SAE Technical Paper No. 2021-24-0011; SAE International: Warrendale, PA, USA, 2021.

25. Thompson, G.J.; Atkinson, C.M.; Clark, N.N.; Long, T.W.; Hanzevack, E. Neural network modelling of the emissions and
performance of a heavy-duty diesel engine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2000, 214, 111–126. [CrossRef]

26. Escobar, C.A.; Morales-Menendez, R. Machine learning techniques for quality control in high conformance manufacturing
environment. Adv. Mech. Eng. 2018, 10, 1687814018755519. [CrossRef]

27. Suzuki, K. (Ed.) Artificial Neural Networks—Industrial and Control Engineering; IntechOpen: Rijeka, Croatia, 2011.
28. Das, A.K.; Padhi, M.R.; Hansdah, D.; Panda, A.K. Optimization of engine parameters and ethanol fuel additive of a diesel engine

fuelled with waste plastic oil blended diesel. Process Integr. Optim. Sustain. 2020, 4, 465–479. [CrossRef]
29. Shamekhi, A.; Shamekhi, A.H. Expert Systems with Applications: A New Approach in Improvement of Mean Value Models for

Spark Ignition Engines Using Neural Networks. Expert Syst. Appl. 2015, 42, 5192–5218. [CrossRef]
30. Li, X.-Q.; Song, L.-K.; Choy, Y.-S.; Bai, G.-C. Multivariate ensembles-based hierarchical linkage strategy for system reliability

evaluation of aeroengine cooling blades. Aerosp. Sci. Technol. 2023, 138, 108325. [CrossRef]
31. Li, X.-Q.; Song, L.-K.; Bai, G.-C.; Li, D.-G. Physics-informed distributed modeling for CCF reliability evaluation of aeroengine

rotor systems. Int. J. Fatigue 2023, 167, 107342. [CrossRef]
32. Bai, S.; Li, M.; Lu, Q.; Fu, J.; Li, J.; Qin, L. A new measuring method of dredging concentration based on hybrid ensemble deep

learning technique. Measurement 2022, 188, 110423. [CrossRef]
33. Petrucci, L.; Ricci, F.; Mariani, F.; Mariani, A. From real to virtual sensors, an artificial intelligence approach for the industrial

phase of end-of-line quality control of GDI pumps. Measurement 2022, 199, 111583. [CrossRef]
34. Pan, H.; Xu, H.; Liu, Q.; Zheng, J.; Tong, J. An intelligent fault diagnosis method based on adaptive maximal margin tensor

machine. Measurement 2022, 198, 111337. [CrossRef]
35. Abbas, A.T.; Pimenov, D.Y.; Erdakov, I.N.; Mikolajczyk, T.; Soliman, M.S.; El Rayes, M.M. Optimization of cutting conditions

using artificial neural networks and the Edgeworth-Pareto method for CNC face-milling operations on high-strength grade-H
steel. Int. J. Adv. Manuf. Technol. 2018, 105, 2151–2165. [CrossRef]

36. Petrucci, L.; Ricci, F.; Mariani, F.; Cruccolini, V.; Violi, M. Engine Knock Evaluation Using a Machine Learning Approach; SAE Technical
Paper No. 2020-24-0005; SAE International: Warrendale, PA, USA, 2020.

37. Murugesan, S.; Srihari, S.; Senthilkumar, D. Investigation of Usage of Artificial Neural Network Algorithms for Prediction of In-Cylinder
Pressure in Direct Injection Engines; SAE Technical Paper No. 2022-01-5089; SAE International: Warrendale, PA, USA, 2022.

38. Jane, R.; James, C.; Rose, S.; Kim, T. Developing Artificial Intelligence (AI) and Machine Learning (ML) Based Soft Sensors for In-Cylinder
Predictions with a Real-Time Simulator and a Crank Angle Resolved Engine Model; SAE Technical Paper No. 2023-01-0102; SAE
International: Warrendale, PA, USA, 2023.

39. Mariani, V.C.; Och, S.H.; Coelho, L.d.S.; Domingues, E. Pressure prediction of a spark ignition single cylinder engine using
optimized extreme learning machine models. Appl. Energy 2019, 249, 204–221. [CrossRef]

40. Ricci, F.; Petrucci, L.; Mariani, F. Hybrid LSTM + 1DCNN Approach to Forecasting Torque Internal Combustion Engines. Vehicles
2023, 5, 1104–1117. [CrossRef]

41. Ricci, F.; Petrucci, L.; Mariani, F. NARX Technique to Predict Torque in Internal Combustion Engines. Information 2023, 14, 417.
[CrossRef]

42. ElSaid, A.; El Jamiy, F.; Higgins, J.; Wild, B.; Desell, T. Optimizing long short-term memory recurrent neural networks using ant
colony optimization to predict turbine engine vibration. Appl. Soft Comput. 2018, 73, 969–991. [CrossRef]

43. Lyu, Z.; Fang, Y.; Zhu, Z.; Jia, X.; Gao, X.; Wang, G. Prediction of acoustic pressure of the annular combustor using stacked long
short-term memory network. Phys. Fluids 2022, 34, 054109. [CrossRef]

44. Shin, S.; Won, J.-U.; Kim, M. Comparative research on DNN and LSTM algorithms for soot emission prediction under transient
conditions in a diesel engine. J. Mech. Sci. Technol. 2023, 37, 3141–3150. [CrossRef]

https://doi.org/10.1016/j.fuel.2022.127042
https://doi.org/10.1016/j.ijhydene.2006.12.026
https://doi.org/10.3390/machines10070594
https://doi.org/10.3390/info14040224
https://doi.org/10.1016/j.fuel.2010.12.018
https://doi.org/10.1243/0954407001527277
https://doi.org/10.1177/1687814018755519
https://doi.org/10.1007/s41660-020-00134-7
https://doi.org/10.1016/j.eswa.2015.02.031
https://doi.org/10.1016/j.ast.2023.108325
https://doi.org/10.1016/j.ijfatigue.2022.107342
https://doi.org/10.1016/j.measurement.2021.110423
https://doi.org/10.1016/j.measurement.2022.111583
https://doi.org/10.1016/j.measurement.2022.111337
https://doi.org/10.1007/s00170-019-04327-4
https://doi.org/10.1016/j.apenergy.2019.04.126
https://doi.org/10.3390/vehicles5030060
https://doi.org/10.3390/info14070417
https://doi.org/10.1016/j.asoc.2018.09.013
https://doi.org/10.1063/5.0089146
https://doi.org/10.1007/s12206-023-0538-y


Information 2023, 14, 507 17 of 17

45. Norouzi, A.; Shahpouri, S.; Gordon, D.; Winkler, A.; Nuss, E.; Abel, D.; Andert, J.; Shahbakhti, M.; Koch, C.R. Deep learning
based model predictive control for compression ignition engines. Control Eng. Pract. 2022, 127, 105299. [CrossRef]

46. Gölc, M.; Sekmen, Y.; Erduranli, P.; Salman, M.S. Artificial Neural-Network Based Modeling of Variable Valve-Timing in a
Spark-Ignition Engine. Appl. Energy 2005, 81, 187–197. [CrossRef]

47. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

48. Abdeljaber, O.; Avci, O.; Serkan, M.; Boashash, B.; Sodano, H.; Inman, D.J. Neurocomputing 1-D CNNs for structural damage
detection: Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [CrossRef]

49. Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Inman, D. Structural damage detection in real time: Implementation of 1D convolutional
neural networks for SHM applications. In Structural Health Monitoring & Damage Detection, Proceedings of the Thirty-Fifth IMAC, a
Conference and Exposition on Structural Dynamics, 2017; Niezrecki, C., Ed.; Springer International Publishing: Cham, Switzerland,
2017; Volume 7, pp. 49–54. [CrossRef]

50. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

51. Fukuoka, R.; Suzuki, H.; Kitajima, T.; Kuwahara, A.; Yasuno, T. Wind speed prediction model using LSTM and 1D-CNN. J. Signal
Process. 2018, 22, 207–210. [CrossRef]

52. Rosato, A.; Araneo, R.; Andreotti, A.; Succetti, F.; Panella, M. 2-D convolutional deep neural network for the multivariate
prediction of photovoltaic time series. Energies 2021, 14, 2392. [CrossRef]

53. Kaššay, P. Torsional natural frequency tuning by means of pneumatic flexible shaft couplings. Sci. J. Silesian Univ. Technol. Ser.
Transp. 2015, 89, 57–60. [CrossRef]

54. Nawae, W.; Thongpull, K. PMSM torque estimation based on machine learning techniques. In Proceedings of the 2020 Interna-
tional Conference on Power, Energy and Innovations (ICPEI), Chiangmai, Thailand, 14–16 October 2020; pp. 137–140.

55. Tang, S.; Ghorbani, A.; Yamashita, R.; Rehman, S.; Dunnmon, J.A.; Zou, J.; Rubin, D.L. Data valuation for medical imaging using
Shapley value and application to a large-scale chest X-ray dataset. Sci. Rep. 2021, 11, 8366. [CrossRef]

56. Hart, S. “Shapley Value”. Game Theory; Palgrave Macmillan: London, UK, 1989; pp. 210–216.
57. Cui, Y.; Liu, H.; Wang, Q.; Zheng, Z.; Wang, H.; Yue, Z.; Ming, Z.; Wen, M.; Feng, L.; Yao, M. Investigation on the ignition delay

prediction model of multi-component surrogates based on back propagation (BP) neural network. Combust. Flame 2022, 237,
111852. [CrossRef]

58. Wright, L.G.; Onodera, T.; Stein, M.M.; Wang, T.; Schachter, D.T.; Hu, Z.; McMahon, P.L. Deep physical neural networks trained
with backpropagation. Nature 2022, 601, 549–555. [CrossRef]

59. Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive overview of backpropagation algorithm for digital image
denoising. Electronics 2022, 11, 1590. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.conengprac.2022.105299
https://doi.org/10.1016/j.apenergy.2004.07.008
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1016/j.neucom.2017.09.069
https://doi.org/10.1007/978-3-319-54109-9_6
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.2299/jsp.22.207
https://doi.org/10.3390/en14092392
https://doi.org/10.20858/sjsutst.2015.89.6
https://doi.org/10.1038/s41598-021-87762-2
https://doi.org/10.1016/j.combustflame.2021.111852
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.3390/electronics11101590

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Definition of the Case Study for In-Cylinder Prediction 
	Definition of the Involved Parameters 
	Evaluating the Influence of the Input Parameters on the Pressure Prediction 
	Definition of the Final Dataset for the Pressure Prediction 

	Creating an Artificial Architecture to Predict In-Cylinder Pressure 
	Structure of the LSTM + 1DCNN Model 
	Definition of the Procedures to Determine the Structural Parameters of the Proposed Models 


	Results and Discussions 
	Performance on Training 
	Performance on Test 

	Conclusions 
	References

