
Citation: Matricciani, E. Is Short-Term

Memory Made of Two Processing

Units? Clues from Italian and English

Literatures down Several Centuries.

Information 2024, 15, 6. https://

doi.org/10.3390/info15010006

Academic Editors: Tudor Groza and

Birgitta Dresp-Langley

Received: 23 October 2023

Revised: 15 December 2023

Accepted: 18 December 2023

Published: 20 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Is Short-Term Memory Made of Two Processing Units? Clues
from Italian and English Literatures down Several Centuries
Emilio Matricciani
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Abstract: We propose that short-term memory (STM), when processing a sentence, uses two inde-
pendent units in series. The clues for conjecturing this model emerge from studying many novels
from Italian and English Literature. This simple model, referring to the surface of language, seems
to describe mathematically the input-output characteristics of a complex mental process involved
in reading/writing a sentence. We show that there are no significant mathematical/statistical dif-
ferences between the two literary corpora by considering deep-language variables and linguistic
communication channels. Therefore, the surface mathematical structure of alphabetical languages is
very deeply rooted in the human mind, independently of the language used. The first processing unit
is linked to the number of words between two contiguous interpunctions, variable Ip, approximately
ranging in Miller’s 7 ± 2 range; the second unit is linked to the number of Ip’s contained in a sentence,
variable MF, ranging approximately from 1 to 6. The overall capacity required to process a sentence
fully ranges from 8.3 to 61.2 words, values that can be converted into time by assuming a reading
speed, giving the range 2.6∼19.5 s for fast-reading and 5.3∼30.1 s for the average reader. Since a
sentence conveys meaning, the surface features we have found might be a starting point to arrive at
an information theory that includes meaning.

Keywords: alphabetical texts; human communication; human mind; information; linguistic
communication channels; Miller’s Law; sentence modeling; short-term memory; universal
readability index

1. Short-Term Memory Capacity Can Be Estimated from Literary Texts

This paper aims to propose that short-term memory (STM)—which refers to the
ability to remember a small number of items for a short period—is likely made by two
consecutive (in series) and uncorrelated processing units with similar capacity. The clues
for conjecturing this model emerge from studying many novels from Italian and English
Literature. Although simple, because only the surface structure of texts is considered, the
model seems to mathematically describe the input-output characteristics of a complex
mental process, which is largely unknown.

To model a two-unit STM processing, we further develop our previous studies based
on a parameter called the “word interval”, indicated by Ip, given by the number of words
between any two contiguous interpunctions [1–8]. The term “interval” arises by noting
that Ip does measure an “interval”—expressed in words—which can be transformed into
time through a reading speed [9], as shown in [1].

The parameter Ip varies in the same range of the STM capacity, given by Miller’s
7 ± 2 law [10], a range that includes 95% of cases. As discussed in [1], the two ranges are
deeply related because interpunctions organize small portions of more complex arguments
(which make a sentence) in short chunks of text, which represent the natural STM input
(see [11–31], a sample of the many papers appeared in the literature, and also the discussion
in Reference [1]). It is interesting to recall that Ip, drawn against the number of words per
sentence, PF, approaches a horizontal asymptote as PF increases [1–3]. The writer, therefore,
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maybe unconsciously, introduces interpunctions as sentences get longer because he/she
also acts as a reader, therefore limiting Ip approximately in the Miller’s range.

The presence of interpunctions in a sentence and its length in words are, very likely,
the tangible consequence of two consecutive processing units necessary to deliver the
meaning of the sentence, the first of which we have already studied with regard to Ip and
the linguistic I-channel [1–8].

A two-unit STM processing can be justified, at least empirically, according to how
a human mind is thought to memorize “chunks” of information in the STM. When we
start reading a sentence, the mind tries to predict its full meaning from what it has already
read, and only when an in-sentence interpunction is found (i.e., comma, colon, semicolon),
it can partially understand the text, whose full meaning is finally revealed when a final
interpunction (question mark, exclamation mark, full-stop) is found. This first processing,
therefore, is revealed by Ip, the second processing is revealed by PF and by the number of
word intervals I′Ps contained in the sentence, the latter indicated by MF [1–8].

The longer a sentence is, with many clauses, the longer the ideas remain deferred
until the mind can establish its meaning from all its words, resulting in the text being
less readable. The readability can be measured by the universal readability index, which
includes the two-unit STM processing [6].

In synthesis, in the present paper, we conjecture that in reading a full sentence, humans
engage a second STM capacity—quantitatively measured by MF—which works in series
with the first STM—quantitatively measured by Ip. We refer to the second STM capacity as
the “extended” STM (E-STM) capacity. The modeling of the STM capacity with IP has never
been considered in the literature [11–31] before our paper in 2019 [1]. The number MF,
of I′Ps contained in a sentence studied previously in I-channels [4], is now associated with
the E-STM.

The E-STM should not be confused with the intermediate memory [32,33], not to
mention the long-term memory. It should also be clear that the E-STM is not modeled by
studying neuronal activity but from counting words and interpunctions, whose effects
hundreds of writers—both modern and classic—and millions of people have experienced
through reading.

The stochastic variables IP, PF, MF, and the number of characters per word, CP, are
loosely termed deep-language variables in this paper, following our general statistical
theory on alphabetical languages and their linguistic channels, developed in a series of
papers [1–8]. These parameters refer, of course, to the “surface” structure of texts, not to
the “deep” structure mentioned in cognitive theory.

These variables allow us to perform “experiments” with ancient or modern readers
by studying the literary works read. These “experiments” have revealed unexpected simi-
larities and dependence between texts because the deep-language variables may not be
consciously controlled by writers. Moreover, the linear linguistic channels present in texts
can further assess, by a sort of “fine tuning”, how much two texts are mathematically simi-
lar.

In the present paper, we base our study on a large database of texts (novels) belonging
to Italian literature spanning seven centuries [1] and to English Literature spanning four
centuries [5]. In References [1,5], the reader can find the list of novels considered in the
present paper with their full statistics on the linguistic variables recalled above.

In the following sections, we will show that the two literary corpora can be merged to
study the surface structure of texts; therefore, they make a reliable data set from which the
size of the two STM capacities can be conjectured.

After this introduction, Section 2 recalls the deep-language parameters and shows
some interesting relationships between them, applied to Italian and English Literature.
Section 3 recalls the nature of linguistic communication channels present in texts. Section 4
shows relationships with a universal readability index. Section 5 models the two STM
processing units in series. Section 6 concludes and proposes future work.
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2. Deep-Language Parameters and Their Relationships

Let us consider a literary work (e.g., a novel) and its subdivision in disjoint blocks
of text long enough to give reliable average values, such as chapters, as we have done
in References [1–8]. Let nS be the number of sentences contained in a text block, nW the
number of words contained in the nS sentences, nC the number of characters contained
in the nw words and nI the number of punctuation marks (interpunctions) contained in
the nS sentences. In the texts analyzed, all other alphanumeric symbols and notes have been
deleted, thus leaving only words and interpunctions. The four deep-language variables are
defined as [1]:

CP =
nC
nW

(1)

PF =
nW
nS

(2)

IP =
nI
nW

(3)

MF =
nIP

nS
(4)

Notice that Equation (4) can be written also as:

MF =
PF

IP
(5)

As recalled above, MF gives the number of word intervals I′Ps contained in a sentence.
The relationships between these linguistic variables show very interesting and funda-

mental features of texts, practically indistinguishable in the two literatures, as we show next.

2.1. Sentences versus Words

Figure 1 shows the scatterplot of sentences per chapter, nS, versus words per chapter,
nW, for the Italian Literature—blue circles, 1260 chapters—and the English Literature—red
circles, 1114 chapters—for a total of 2374 samples. Table 1 reports the slopes and correlation
coefficients of the two regression lines drawn in Figure 1. There are no significant differences
between the two literary corpora, thereby underlining the fact that the mathematical surface
structure of alphabetical languages—a creation of the human mind—is very deeply rooted
in humans, independently of the particular language used. This issue will be further
discussed by considering the theory of linguistic channels in Section 3.

Table 1. Slope m and correlation coefficient r. of nS versus nW of the regression lines drawn in
Figure 1.

m r

Italian 0.0474 0.877
English 0.0493 0.819

2.2. Interpunctions versus Sentences

Figure 2 shows the scatterplot of interpunctions, nI , versus sentences, nS, for the
Italian and the English literature. Table 2 reports slopes and correlation coefficients of the
two regression lines drawn in Figure 2. The two literary corpora almost coincide—as far
as the slope is concerned—as if the samples were extracted from the same database. This
issue will be further discussed by considering the theory of linguistic channels in Section 3.
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Figure 1. Scatterplot of sentences  𝑛  versus words 𝑛𝑊 . Italian Literature: blue circles and blue 
regression line; English Literature: red circles and red regression line. Samples refer to the averages 
found in the chapters: 1260 in Italian Literature, 1114 in English Literature; total: 2374. The blue and 
red lines are the regression lines with slope and correlation coefficients reported in Table 1. 
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Table 2. Slope m and correlation coefficient r of interpunctions per chapter, nI , versus sentences per
chapter, nS, of the regression lines drawn in Figure 2.

m r

Italian 2.994 0.913
English 2.969 0.853

2.3. Words per Sentence versus Word Interval per Sentence

Figure 3 shows the scatterplot of words per sentence, PF, versus word intervals per
sentence, MF. It is interesting to notice a tight, similar linear relationship in both literatures;
see slopes and correlation coefficients in Table 3. This issue will be further discussed by
considering the theory of linguistic channels in Section 3.
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Table 3. Slope m and correlation coefficient r of PF versus MF of the regression lines drawn in
Figure 3.

m r

Italian 6.763 0.937
English 6.421 0.914

The linear relationship shown in Figure 3 states that as a sentence gets longer, writ-
ers introduce more I′Ps, regardless of the length of IP. This seems to be a different
mechanism—compared to that concerning the words that build-up IP—that writers use to
convey the full meaning of a sentence. We think that MF describes another STM processing
beyond that described by IP and uncorrelated with it, as it can be deduced from the findings
reported in the next sub-sections.
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2.4. Word Intervals versus Words per Sentence

Figure 4 shows the scatterplot of the word interval, IP, versus the words per sen-
tence, PF, for the Italian Literature (blue circles) and the English Literature (red circles). The
magenta lines refer to Miller’s 7 ± 2 law range (95% of samples). The black curve models
the best fit relating IP to PF for all samples shown in Figure 4, as done in [1,2], given by:

IP = (IP∞ − 1)×
{

1 − e
− (PF−1)

(PFo−1)

}
+ 1 (6)
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The black curve is given by Equation (6), and it is the best-fit curve for all samples. The magenta lines
refer to Miller’s 7 ± 2 law range of STM capacity.

As discussed in [1–4] and recalled above, Equation (6) models the saturation of Ip as PF in-
creases. Italian and English texts show no significant differences, therefore underlining a
general behavior of human readers/writers independent of language.

In Equation (6), Ip∞ = 7.08 and PFo = 7.88. It is striking to notice that Miller’s
range—which, as recalled, refers to 95% of samples—contains about 95% of all samples
of IP shown in the ordinate scale of Figure 4 (precisely in the range from 4.8 to 8.6; see
Section 2.6 below) and that the horizontal asymptote (Ip∞ = 7.08) is just Miller’s range
center value.

Defined the error ε = Ip − IP,model , between the experimental datum and that given by
Equation (6), the average error is −0.067 for Italian and 0.063 for English, with standard
deviations of 0.852 and 0.956, respectively. Therefore, the two literary corpora are very
similarly scattered around the black curve given by Equation (6).

In conclusion, the two literary corpora, for the purpose of the present study, can be
merged together, and the findings obtained reinforce the conjecture that IP does describe
the STM capacity defined by Millers’ Law.

2.5. Word Intervals per Sentence versus Word Intervals

Figure 5 shows the scatterplot of word intervals per sentence, MF, versus word inter-
vals, IP. The correlation coefficient is r = 0.248 in the Italian Literature and r = −0.035 in
the English Literature, values which practically state that the two linguistic variables
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are uncorrelated. Similar values are also found for log values. The decorrelation be-
tween MF and IP strongly suggests the presence of two processing units acting indepen-
dently of one another because zero correlation in Gaussian processes also means indepen-
dence, a model we discuss further in Section 5.
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In the next sub-section, dealing with linguistic communication channels, we reinforce
the fact that the two literary corpora can be merged together; therefore, they can give
a homogeneous database of alphabetical texts sharing a common surface mathematical
structure from which two STM processing units can be modeled.

2.6. Probability Distributions

In the previous sub-sections, we have noticed that there are no significant differences
between the statistical features of Italian and English novels. Therefore, we are allowed
to merge the two literary corpora for estimating the probability distributions of the deep-
language variables. These are shown in Figures 6–8, respectively, for IP, PF and MF. These
probability distributions can be modeled with a three-parameter log-normal probability
density function, as done for Italian Literature for IP in Reference [1], given by the general
expression (natural logs):

f (x) =
1√

2πσx(x − 1)
exp

{
−1

2

[
ln( x − 1)− µx)

σx

]2
}

x ≥ 1 (7)
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In Equation (7), µx and σx are, respectively, the average value and standard deviation.
These constants are obtained as follows. Given the linear average value mx and the linear
standard deviation sx of the random variable x, the standard deviation σx and the average
value µx of a three-parameter log-normal probability density function, defined for x ≥ 1,
are given by [34]:

σ2
x = ln

[(
sx

mx − 1

)2
+ 1

]
(8)

µx = ln
[
(mx − 1)− σ2

x
2

]
(9)

Table 4 reports these values for the indicated parameters and the error statistics
between the number of experimental samples and that predicted by the log-normal model.
Table 5 reports some important linear statistical values that we will use in the next section.
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Table 4. Average value µx and standard deviation σx of the indicated variables and the average value
and standard deviation of the error defined as the difference between the number of experimental
samples and that predicted by the log-normal model.

µx σx Average Error Standard Deviation of Error

IP 1.689 0.180 0.002 56.92

PF 3.038 0.441 0.049 12.44

MF 0.849 0.483 0.126 12.72

Table 5. Linear mean, standard deviation, and 95% probability range (Miller’s range) of the indi-
cated variables.

Mean Standard Deviation Miller’s Range (95%)

IP 6.50 1.00 4.80~8.60

PF 23.98 10.64 21.00~51.00

MF 3.63 1.36 1.72~7.12

3. Linguistic Communication Channels in Texts

To study the chaotic data that emerge in any language, the theory developed in
Reference [2] compares a text (the reference, or input text, written in a language) to another
text (output text, “cross–channel”, written in any language) or to itself (“self-channel”),
with a complex communication channel—made of several parallel single channels, two of
which were explicitly considered in [2,4,5,7]—in which both input and output are affected
by “noise”, i.e., by diverse scattering of the data around a mean linear relationship, namely
a regression line, as those shown in Figures 1–3 above.

In Reference [3], we have applied the theory of linguistic channels to show how an
author shapes a character speaking to diverse audiences by diversifying and adjusting
(“fine tuning”) two important linguistic communication channels, namely the Sentences
channel (S-channel) and the Interpunctions channel (I-channel). The S-channel links nS of
the output text to nS of the input text for the same number of words. The I-channel
links MF (i.e., the number of I′Ps) of the output text to MF of the input text for the same
number of sentences.

In Reference [5], we have further developed the theory of linguistic channels by
applying it to Charles Dickens’ novels and to other novels of English Literature (the same
literary corpus considered in the present paper) and found, for example, that this author
was very likely affected by King James’ New Testament.

In S–channels, the number of sentences of two texts is compared for the same number
of words; therefore, they describe how many sentences the writer of text j (output) uses to
convey a meaning, compared to the writer of text k (input)—who may convey, of course, a
diverse meaning—by using the same number of words. Simply stated, it is about how a
writer shapes his/her style for communicating the full meaning of a sentence with a given
number of words available; therefore, it is more linked to the author’s style. These channels
are those described by the scatterplots and regression lines—shown in Figure 1—in which
we get rid of the independent variable nW .

In I-channels, the number of word intervals IP of two texts is compared for the
same number of sentences; therefore, they describe how many short texts make a full
sentence. Since IP is connected to the STM capacity (Miller’s Law) and MF is linked—in
our present conjecture—to the E-STM, the I-channels are more related to how the human
mind processes information than to the authors’ style. These channels are those described
by the scatterplots and regression lines—shown in Figure 2—in which we get rid of the
independent variable nS.
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In the present paper, for the first time, we consider linguistic channels which com-
pare PF of two texts for the same number of MF; therefore, these channels are connected
with the E-STM, as they are a kind of “inverse” channel of the I-channels. These channels
are those described by the scatterplots and regression lines—shown in Figure 3—in which
we get rid of the independent variable MF. We refer to these channels as the PF-channels.

Recall that regression lines, however, consider and describe only one aspect of the
linear relationship, namely that concerning (conditional) mean values. They do not consider
the scattering of data, which may not be similar when two regression lines almost coincide,
as Figures 1–3 show. The theory of linguistic channels, on the contrary, by considering both
slopes and correlation coefficients, provides a reliable tool to compare two sets of data fully,
and it can be applied to any discipline in which regression lines are found.

To apply the theory of linguistic channels [2,3], we need the slope m and the correlation
coefficient r of the regression line between (a) nS and nW to study the S–channels (Figure 1);
(b) nI and nS to study the I-channels (Figure 2); (c) PF and MF to study PF—channels
(Figure 3), values listed in Tables 1–3.

In synthesis, the theory calculates the slope mjk and the correlation coefficient rjk of the
regression line between the same linguistic parameters by linking the input k (independent
variable) to the output j (dependent variable) of the virtual scatterplot in the three linguistic
channels mentioned above.

The similarity of the two data sets (regression lines and correlation coefficients) are
synthetically measured by the theoretical signal-to-noise ratio Γth (dB) [2]. First, the noise-
to-signal ratio R, in linear units, is calculated from:

R =
(

mjk − 1
)2

+
1 − r2

jk

r2
jk

m2
jk (10)

Secondly, from Equation (7), the total signal-to-noise ratio is given (in dB) by:

Γth(dB) = −10 × log10R (11)

Notice that when a text is compared to itself Γth = ∞, because r = 1, m = 1.
Table 6 shows the results when Italian is the input language k and English is the output

language j; Table 7 shows the results when English is the input language k and Italian is
the output language j.

Table 6. Slope mjk and correlation coefficient rjk of the regression line between the same linguistic
parameter of the two languages and the signal-to-noise ratio Γth (dB) in the linguistic channel. Input
channel: Italian; output channel: English.

mjk rjk Γth

S-channel nS,Eng versus nS,Ita 1.040 0.994 18.37

I-channel nI,Eng versus nI,Ita 0.992 0.992 17.80

E-channel PF,Eng versus PF,Ita 0.949 0.998 22.18

Table 7. Slope mjk and correlation coefficient rjk of the regression line between the same linguistic
parameter of the two languages and the signal-to-noise ratio Γth (dB) in the linguistic channel. Input
channel: English; output channel: Italian.

mjk rjk Γth

S-channel nS,Ita versus nS,Eng 0.962 0.994 19.01

I-channel nI,Ita versus nI,Eng 1.009 0.992 17.65

E-channel PF,Ita versus PF,Eng 1.053 0.998 21.46
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From Tables 6 and 7, we can observe the following:

(a) The slopes are very close to unity, implying, therefore, that the two languages are very
similar in average values (i.e., the regression line).

(b) The correlation coefficients are very close to 1, implying, therefore, that data scattering
is very small.

(c) The remarks in (a) and (b) are synthesized by Γth which is always significantly large.
Its values are in the range of reliable results (see the discussion in References [2–7]).

(d) The slight asymmetry of the two channels, Italian → English (Table 6) and En-
glish → Italian (Table 7), is typical of linguistic channels [2–7].

In other words, the “fine tuning” done through the three linguistic channels strongly
reinforces the conclusion that the two literary corpora are “extracted” from the same data
set, from the same “book”, whose “text” is interweaved in a universal surface mathematical
structure that human mind imposes to alphabetical languages. The next section further
reinforces this conclusion when text readability is considered.

4. Relationships with a Universal Readability Index

In Reference [6], we have proposed a universal readability index that includes the
STM capacity, modeled by IP, applicable to any alphabetical language, given by:

GU = G − 6(IP − 6) (12)

With
G = 89 − 10kCP + 300/PF (13)

k = < CP,ITA >/< CP > (14)

In Equation (12), the E-STM is also indirectly present with the variable PF of Equation (13).
Notice that text readability increases (text more readable) as GU increases.

The observation that differences between the readability indices give more insight
than absolute values has justified the development of Equation (12).

By using Equations (13) and (14), the average value < 10 × kCP > of any language
is forced to be equal to that found in Italian, namely 10 × 4.48. In doing so, if it is of
interest, GU can be linked to the number of years of schooling in Italy [1,6].

There are two arguments in favor of Equation (14); the first is that Cp affects a read-
ability formula much less than PF [1]. The second is that CP is a parameter typical of a
language which, if not scaled, would bias GU without really quantifying the change in
reading difficulty of readers who are accustomed to reading shorter or longer words in
their language, on average, than those found in Italian. This scaling, therefore, avoids
changing GU only because in a language, on average, words are shorter or longer than in
Italian.

Figure 9 shows the histogram of GU . The mean value is 55.0, the standard deviation
is 11.0, and the 95% range is 35.0~78.5.

Figure 10 shows the scatterplot of GU versus IP in the Italian and English Literature.
There are no significant differences between the two languages; therefore, we can merge all
samples. The vertical black lines are drawn at the mean value IP = 6.50, and at the values
exceeded with probability 0.025 ( IP = 4.8) and 0.975 ( Ip = 8.6

)
. The range 4.8~8.6 includes,

therefore, 95% of the samples, and it corresponds to Miller’s range (Table 5).
Figure 11 shows the scatterplot of GU versus PF. The vertical black lines are drawn at

the mean value PF = 24.0, and at the values exceeded with probability 0.025 ( PF = 11.0) and
0.975 ( PF = 51.0). The range 11.0~51.0 includes 95% of the merged samples corresponding
to Miller’s range (Table 5). The horizontal green lines refer to GU (95% range 35.0~78.5).
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Figure 10. Scatterplot of the universal readability index GU versus the word interval IP. Italian
Literature: blue circles; English Literature: red circles. The vertical black lines are drawn at the mean
value IP = 6.5, and at the values IP is exceeded with a probability of 0.025 ( IP = 4.8) and 0.975
( Ip = 8.6

)
. The range 4.8~8.6 includes 95% of the samples, corresponding to Miller’s range 7 ± 2.

The horizontal green lines refer to GU (95% range 35.0~78.5).

Figure 12 shows the scatterplot of GU versus MF. The vertical black lines are drawn at
the mean value MF = 3.58, and at the values exceeded with probability 0.025 ( MF = 1.72)
and 0.975 ( MF = 7.12). The range 1.72~7.12 includes, therefore, 95% of the samples, and it
corresponds to Miller’s range (Table 5). The horizontal green lines refer to GU (95% range
35.0~78.5).
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After the previous sentence, a new sentence starts: The words 𝑝 , 𝑝 ,… 𝑝  are stored in 
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Figure 12. Scatterplot of the universal readability index GU versus the word intervals MF. Italian
Literature: blue circles and blue regression line; English Literature: red circles and red regression
line. The vertical black lines are drawn at the mean value MF = 3.58, and at the values exceeded
with probability 0.025 ( MF = 1.72) and 0.975 ( MF = 7.12). The range 1.72~7.12 includes 95% of
the samples; therefore, it corresponds to Miller’s range. The horizontal green lines refer to GU (95%
range 35.0~78.5).
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In all cases, we can observe that GU , as expected, is inversely proportional to the
deep-language variable involved in the STM processing. In other words, the larger the
independent variable, the lower the readability index.

5. Two STM Processing Units in Series

From the findings reported in the previous sections, we are justified to conjecture that
the STM elaborates information with two processing units, regardless of language, author,
time, and audience. The model seems to be universally valid, at least according to how this
largely unknown surface processing is seen through the lens of the most learned writings
down several centuries. The main reasons to propose this conjecture are the following.

According to Figure 5, MF and IP are decorrelated. Moreover, because of log normality
and correlation coefficients that are practically zero between log values, we can even say
that the two variables are independent. This suggests the presence of two independent
processing units working with different, although similar, “protocols”, the first capable of
processing approximately 7 ± 2 items (Miller’s Law)—capacity measured by IP—and the
second capable of processing 1~6 items—capacity measured by MF.

Figure 13 shows how these two capacities are related at equal probability exceeded.
We can see that the relationship is approximately linear in the range 5~8 of IP (2~6 of MF).
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Figure 14 shows the ideal flowchart of the two STM units that process a sentence.
After the previous sentence, a new sentence starts: The words p1, p2,. . . pj are stored in the
first buffer, with the capacity given by a number approximately in Miller’s range, until an
interpunction is introduced to fix the length of IP. The word interval IP is then stored in
the E-STM buffer up to k = MF items, from about 1 to 6, until the sentence ends. The two
buffers are afterward cleared, and a new sentence can start.
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Figure 14. Flowchart of the two processing units that make a sentence. The words p1, p2,. . . pj are
stored in the first buffer up to j items, approximately in Miller’s range, until an interpunction is
introduced to fix the length of IP. The word interval IP is then stored in the E-STM buffer up to k items,
from about 1 to 6 items, until the sentence ends.

Let us calculate the overall capacity required by the full processing described in
Figure 14. If we consider the 95% range in both processing units (Table 5), we get
4.80 × 1.72 = 8.26 words and 8.60 × 7.12 = 61.23 words.

We can roughly estimate the time necessary to complete the cycle of a sentence by
converting the capacity expressed in words into a time interval required to read them by
assuming a reading speed, such as 188 words for Italian or very similar values for other
languages [9]. Notice, however, that this reading speed refers to a fast reading reader, not
to a common reader of novels, whose pace can be slower, down to approximately 90 words
per minute [35]. Reading 188 words in 1 min gives 2.6 and 19.5 s, respectively, values that
become 5.3 and 30.1 s when reading 90 words per minute, which is very well contained in
experimental findings concerning the STM processing [11–31].

6. Conclusions

We have shown that during a sentence, the alphabetical text is processed by the short-
term memory (STM) with two independent processing units in series, with similar capacity.
The clues for conjecturing this model has emerged by considering many novels belonging
to the Italian and English Literatures.

We have shown that there are no significant mathematical/statistical differences
between the two literary corpora by considering deep-language variables and linguistic
communication channels. This finding underlines the fact that the mathematical surface
structure of alphabetical languages—a creation of human mind—is very deeply rooted in
humans, independently of the particular language used, therefore we have merged the two
literary corpora in one data set and obtained universal results.

The first processing unit is linked to the number of words between two contiguous
interpunctions, variable indicated by Ip, approximately ranging in Miller’s 7± 2 law range;
the second unit is linked to the number of Ip’s contained in a sentence, variable indicated
by MF and referred to as the extended STM, or E-STM, ranging approximately from 1 to 6.

We have recalled that a two-unit STM processing can be empirically justified according
to how a human mind is thought to memorize “chunks” of information contained in a
sentence. Although simple and related to the surface of language, the model seems to
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describe mathematically the input-output characteristics of a complex mental process,
largely unknown.

The overall capacity required by the full processing of a sentence ranges from 8.3 to
61.2 words, values that can be converted into time by assuming a reading speed. This
conversion gives the range 2.6~19.5 s for a fast-reading reader and 5.3~30.1 s for a common
reader of novels, values well supported by experiments reported in the literature.

A sentence conveys meaning, therefore, the surface features we have found might be
a starting point to arrive at the Information Theory that includes meaning.

Future work should be done on the readers of other literature of Western languages
and on ancient readers of Greek and Latin Literature to assess whether their STM processing
was, very likely, similar to that discussed in the present paper.
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