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Abstract: Diffusion models have attracted considerable scholarly interest for their outstanding
performance in generative tasks. However, current style transfer techniques based on diffusion
models still rely on fine-tuning during the inference phase to optimize the generated results. This
approach is not merely laborious and resource-demanding but also fails to fully harness the creative
potential of expansive diffusion models. To overcome this limitation, this paper introduces an
innovative solution that utilizes a pretrained diffusion model, thereby obviating the necessity for
additional training steps. The scheme proposes a Feature Normalization Mapping Module with
Cross-Attention Mechanism (INN-FMM) based on the dual-path diffusion model. This module
employs soft attention to extract style features and integrate them with content features. Additionally,
a parameter-free Similarity Attention Mechanism (SimAM) is employed within the image feature
space to facilitate the transfer of style image textures and colors, while simultaneously minimizing
the loss of structural content information. The fusion of these dual attention mechanisms enables us
to achieve style transfer in texture and color without sacrificing content integrity. The experimental
results indicate that our approach exceeds existing methods in several evaluation metrics.

Keywords: deep learning; generative model; style transfer; diffusion model; feature fusion;

attention mechanism

1. Introduction

In the wake of the swift progression of artificial intelligence technologies, a plethora of
pioneering applications have surfaced within the spheres of computer vision and image
processing. Among them, style transfer technology, as a method that can apply artistic
styles to images, has attracted widespread attention [1]. Traditional style transfer methods,
however, often depend on extensive training datasets and intricate optimization processes,
which limit their applicability and increase computational expenses and time. Thus, the
development of a training-free style transfer approach that ensures rapid, efficient, and
cost-effective style migration is of great research significance and practical value.

In recent years, the burgeoning class of diffusion-based generative models has emerged
with significant potential and research value in the field of style transfer. Scholarly works,
notably those cited as [2—4], have presented groundbreaking strategies aimed at altering the
stylistic presentation of a specified image. These strategies are designed to adeptly shift the
aesthetic qualities of the image, all the while safeguarding the inherent features that define
its content. The introduction of these methodologies represents a significant advancement
in image processing, enabling a more nuanced approach to style modification that preserves
the core essence of the visual content. However, these methods still require gradient-based
optimization to fine-tune each styled image and invert text, which is highly time-consuming.

Recently, Chung et al. [5] introduced an untrained style transfer method that achieves
a certain degree of effective fusion between content and style. Nevertheless, when the
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divergence between the intrinsic image and the desired style is pronounced, the resultant
images frequently adhere closely to the original stylistic elements, which can lead to
discordances in color and deformations in the content. This suggests that the seamless
incorporation of stylistic traits remains an unattained goal. This manuscript delves into
the expansion of style transfer methodologies that do not require training, harnessing the
power of large-scale, pre-trained latent diffusion models. We introduce an innovative latent
diffusion style transfer technique, with our key contributions encapsulated as follows:

First, we designed a novel dual-path diffusion model. Unlike previous approaches
that collect prior knowledge from forward processes, we align the feature representations
of content images, style images, and generated images using prior knowledge from the
same step and time step during the diffusion process.

Second, we designed a Feature Normalization Mapping Module with Cross-Attention
Mechanism (INN-FMM). Unlike traditional cross-attention mechanisms, it introduces
a preprocessing step to align content and style features numerically, thereby achieving
effective transfer results.

Third, we introduced a parameter-free attention mechanism (SimAM) [6] that com-
putes attention weights based on local self-similarity of feature maps, helping the model
focus on key features in images. SimAM addresses minor content distortions and color
mismatches typically encountered during style transfer.

Fourth, the experimental results demonstrate that our method outperforms existing
approaches across multiple evaluation metrics, including Art-based Fréchet Inception
Distance (ArtFID), Fréchet Inception Distance (FID), Learned Perceptual Image Patch
Similarity (LPIPS), Cross-Domain Fréchet Inception Distance (CFSD), time, and the balance
between style and content [7-10].

The subsequent sections of this document are structured in the following manner. The
second part will provide an overview of the pertinent scholarly endeavors in the field. The
third part presents the specific implementation details of our latent diffusion style transfer
method. The fourth part describes the experiments and settings, comparing our approach
with existing methods. The fifth part concludes the paper.

2. Related Work

Style transfer is an innovative visual computation technique that merges the intrinsic
content of one image with the aesthetic attributes of another. Early research in style transfer
was based on rules and handcrafted feature representations, such as texture descriptors and
filter combinations [11]. However, these approaches were constrained by the crafted features
and struggled to encapsulate the sophisticated semantic nuances within images. They relied
on manually defined feature extraction methods, which limited the comprehension and
articulation of the deeper meanings embedded in the visual content. With the advent of
deep learning, particularly the triumphant application of Convolutional Neural Networks
(CNNSs), style transfer methods [12] that leverage deep learning have achieved notable
advancements. These approaches harness the formidable feature extraction capabilities of
deep neural networks to delve into and comprehend the intrinsic structures and stylistic traits
of images, thereby attaining unprecedented success in the task of image style transfer [13]. In
the work of Gatys [1] and colleagues, Gram matrices in conjunction with the Visual Geometry
Group 16-layer network (VGG-16) model were employed to distill features from both stylistic
and content-rich images. By refining a composite objective function that integrates content
and style losses, they successfully crafted new images. This network can extend to multiple
styles and produce images with high perceptual quality, but it suffers from slow training
speed and poor algorithm robustness. Gatys et al. [1] discovered that the content and
style of convolutional neural networks can be separated and independently manipulated,
enabling the generation of a new perceptually meaningful image. Li et al. [14] utilized
the Laplacian pyramid to decompose the original image into a series of lower-resolution
versions, addressing the issue of missing low-level information. In the research by Risser [15]
and colleagues, the histogram loss function was incorporated into the model to represent
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the distributional information of image features. This approach effectively enhanced the
robustness of the Gram matrix during the style transfer process. However, such models can
only perform style transfer on images with specific pre-trained styles and lack generalizability.
Therefore, these models are also known as single-model single-style style transfer models.

Single-model multi-style style transfer models aim to improve the model’s gener-
alizability by incorporating multiple styles into one model. In the study conducted by
Dumoulin [16] and co-authors, they introduced an innovative normalization technique
known as Conditional Instance Normalization (CIN). Within this method, the Instance
Normalization (IN) layer plays a pivotal role, dynamically selecting parameters that dictate
the stylistic attributes of the generated image. Chen et al. [17] matched multiple sets of
parameters in the StyleBank layer with multiple different style features. When adding a new
style transfer, the model only needs to train one StyleBank layer. However, as the variety of
transferrable styles expands, the model’s footprint and the count of its parameters escalate.
Chen [18] and colleagues were the first to introduce a single-model arbitrary style transfer
framework. They devised an optimization objective grounded in local matching, utilizing a
pre-trained Visual Geometry Group (VGG) network to extract the content structure and style
texture of an image, then aligning each content structure with the most proximate style tex-
ture. This technique was dubbed “Style Swap”, offering a novel perspective and solution for
style transfer tasks. Drawing inspiration from Instance Normalization (IN), Huang [19] and
co-authors introduced Adaptive Instance Normalization (AdalN). With an encoder—decoder
architecture, AdalN facilitates real-time arbitrary style transfer without the need to learn any
affine parameters. Zhang et al. [20] proposed an enhanced style transfer mechanism using
contrastive learning, which projects features from different levels into separate latent style
spaces, thereby capturing both local and global style characteristics more comprehensively.
The Any-to-Any [21] Style Transfer strategy enables users to interactively select regions of
the style image and apply them to specified content regions. This allows different areas of a
single image to be assigned different styles. In the research by Li [22] and colleagues, they
introduced a novel transformation technique known as Whitening and Coloring Transforms
(WCT). This method aligns the statistical distributions and correlations of intermediate
features between content and style images, capturing stylistic characteristics from higher to
lower levels. By comprehensively grasping the nuances of style across different levels, WCT
offers enhanced generalization capabilities in style transfer tasks. Liu et al. [23] introduced
the Adaptive Attention Normalization (AdaAttN) mechanism, which improves style trans-
fer by aligning the attention maps of content and style images. Zhu Zhongxian [24] and
colleagues, addressing the challenge of structural consistency and drawing inspiration from
Han [25] and co-authors, introduced a bidirectional network model grounded in contrastive
learning. Leveraging the foundation of Cycle-Consistent Generative Adversarial Network
(CycleGAN), they implemented a bidirectional training approach to thoroughly capture the
mappings of corresponding regions. They also introduced a new joint contrastive loss to
better utilize image information and enhance the quality of style transfer.

3. Training-Free Approach

In this section, we introduce our proposed training-free approach for latent diffusion
style transfer. First, we provide a comprehensive overview of diffusion models and latent
diffusion models, which serve as the foundational theories for our method. Following this
theoretical introduction, we present the detailed structure of our approach, highlighting
key components such as the Normalization Feature Mapping and the SimAM Attention
Fusion. These components form the core of our method, enabling effective style transfer
without the need for additional training processes.

3.1. Diffusion Models

Diffusion models have demonstrated remarkable success in generating images from
text [26-28] and in editing images [29-35]. In this domain, neural style transfer has pro-
gressed by harnessing the generative prowess of pre-trained diffusion models. For example,
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InST [4] introduced a text inversion-based approach, aiming to map a given style to the
corresponding text embeddings. StyleDiffusion [3] calculates the noise distribution adapted
to a set of target-style images and then fine-tunes the U-Net to generate images in the corre-
sponding target style. Qi et al. [36] used Quantized Formers (Q-Formers) for paired image
training, first extracting decoupled feature representations and then injecting them into
subsets of mutually exclusive cross-attention layers to better decouple style and semantics.
In contrast, Jeong [37] and colleagues introduced a style transfer method that does not
require training, utilizing the h-space to convey stylistic information without the need for
direct connections. In this paper, we harness the generative potential of latent diffusion to
achieve training-free style transfer.

The Latent Diffusion Model [5] is a model that generates data in a latent space through
an iterative process. An image x € RF*Wx3 is encoded by encoder € into a reduced-
dimensional latent space Z = £(x), where H denotes the height and W denotes the width.
In this latent space, the model gradually transforms the latent representation into a simple
distribution (usually a Gaussian distribution) by progressively adding noise. Subsequently,
the model generates structured data from the simple distribution through a reverse process.
Ultimately, the encoded latent space representation is reconstructed back into the original
data domain ¥ = D(z) = D(&£(z)) using a decoder D.

The reverse process is accomplished by a noise estimation network, which infers
the true distribution q(x; | x;_1). Starting from random noise, the network progressively
denoises the input, eventually generating a realistic sample. The corresponding equation is
presented in Equation (1).

p(xi-1 | xt) = N[xp_1; po(xe,t), 021] 1)

In the equation, p(x;_1 | x¢) represents the posterior distribution, N denotes a normal
distribution, x;_ represents the state variable at time t — 1, x; represents the state variable
at time ¢, pg(x¢, t) is the parameterized estimated mean, which is indirectly obtained by
predicting the noise eg(X;, t) through the noise estimation network, c> denotes the variance
and [ denotes the identity matrix for the variance.

The network training formula is shown in Equation (2). The process involves iteratively
repeating the steps from time t — 1 to 0, transforming x; back into x;_1 (computing x;_;
and using the resulting x;_1 as the new x;).

X1 = \}a—t[Xt - \}1_7“{;89(%, t)] )

In the equation, a; denotes an element of the state transition matrix at time f, @;
represents an average or summation of the state transition matrix elements at time ¢, and
€9(X¢, t) denotes a parameterized error term that depends on the state X; and time .

Employing a set of denoising autoencoders €y(x¢,t);t = 1...T trained to denoise
the input z;, where z; is a noisy version derived from Z, and t is randomly drawn from
{1,...,T}. The associated training objective is:

Lipm = Ez,e,t[” € — eﬂ(zt/ t, y) ||%]T9(y) (3)

In the equation, Ly py represents the loss function for the Latent Diffusion Model. The
expectation E, ¢ ; is taken over the latent variable z, noise €, and time step t. The term
€g(z4,t,y) refers to the predicted noise at time step ¢, parameterized by 6, conditioned on
the latent variable z; and an auxiliary variable y. The squared L,—norm || - H% measures
the discrepancy between the true noise € and the predicted noise €y(z¢, t, ). Additionally,
Tp(y) denotes a weighting function that adjusts the contribution of different noise levels
based on y.

In our work, we employ latent diffusion and introduce cross-attention layers in the
model architecture, where y represents a text and ¢ denotes a U-Net architecture. The pro-
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cess involves projecting i into an intermediate representation and subsequently mapping it
onto the intermediate layers of the U-Net through cross-attention mechanisms.

T
Attention(Q, K, V) = softmax ( Q\fa) -V (4)

In the equation, Q, K and V denote the Query matrix, Key matrix, and Value matrix,
respectively, while d represents the scaling factor. Q = Wg) - @i(ze), K = WI(<1 ). % (y),
V= W‘(/i) To(y), W‘(,i)‘e R, ((gi) € R4t and ng) € R4*4 s a learnable projection

matrix. ¢;(z¢) € RN represents the intermediate representation of g achieved by U-Net.
We do not utilize any textual conditions in this study, and therefore y is always a null value.

3.2. Detailed Work

Figure 1 presents a schematic overview of the entire methodology being proposed.
First, the content and style images are mapped to the latent space through an encoder
and transformed into Gaussian noise Zc and Zs via a diffusion process [28]. Next, the
AdalN technique is applied to convert Zc and Zs into the initial latent noise Zcs for the
stylized image, guiding the generation of the stylized image. During the reverse diffusion
process of Zcs, we utilize an attention mechanism to inject style and content information.
Specifically, at each time step, we replace the keys Kcs and values Vs of the stylized image
with the style features Ks and Vs of t at the same time step. Simultaneously, the query
Qcs is replaced with the query Qc of the content features to maintain the integrity of the
content information. To tackle the possible issue of magnitude diminution due to feature
substitution, we incorporated a scaling parameter T for the attention map. Ultimately, by
harnessing the SimAM attention mechanism for the amalgamation of content and style
features, we ensure the preservation of the content’s structural coherence and effectively
mitigate the discordance in coloration. The INN-FMM is a feature mapping module
composed of a cross-attention mechanism [38] and instance normalization [39], enabling
the injection of style into the content image. The SimAM module, which draws inspiration
from neuroscientific principles in its three-dimensional attention mechanism, adaptively
modulates the distribution of attention. This ensures that the integrity of the content is
preserved during the transfer of the stylistic image’s texture and color.

C D T C D stylistic

Os Ks Vs features
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Figure 1. The structural flowchart.
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3.2.1. Normalization Feature Mapping

In the realm of image synthesis, the diffusion conditioning mechanism [29] is cele-
brated for its capacity to direct the generation of images, facilitated by specific inputs y,
such as textual descriptions, semantic maps, or other conditional parameters. The core of
this process lies in first preprocessing the input y through an encoder specific to the domain,
transforming it into an intermediate representation compatible with the model’s internal
features. Specifically, we employ a cross-attention mechanism that adeptly substitutes the
keys and values from the conditions with those present in the original feature map. This
substitution operation essentially injects the semantic information of the conditions y into
the intermediate layers of the U-Net, achieving precise control over the image synthesis
process [29].

Inspired by this mechanism, we further explored the application of self-attention
layers in style transfer. We regard the features in the style image as a condition and inject
these conditions into the reverse process of denoising generation through the attention
layer. Utilizing this approach, the stylistic characteristics of color and texture from the
style image are transferred to the content image, thus merging content with style. To this
end, this paper proposes a feature normalization mapping module based on the cross-
attention mechanism (INN-FMM), which consists of a cross-attention module and an
instance normalization module.

As depicted in Figure 1, the latent representations for both the content and style
images are initially derived through the Denoising Diffusion Implicit Models (DDIM)
inversion process [40]. Subsequently, features from these images are extracted during the
DDIM inversion. Specifically, at a pre-specified time step t = {0, ... 50}, both the style
and content images are progressively reverted from the original image (t = 0) towards the
Gaussian noise (t = 50). During this process, the content queries Qc as well as the style
key and value features (Ks, Vs) at each time step are collected. AdalN is used to initialize
the style and content potential noise. Finally, during the entire reverse process of executing
the programmatic potential noise Zcs, the Ks, Vs, and Qc collected at each time step are
injected into the attention layer to achieve the transfer of the target style.

(1) Instance Normalization

In style transfer tasks, relying solely on the cross-attention mechanism may be insuffi-
cient to produce high-quality stylized images. Based on experimental findings, the direct
application of cross-attention may excessively emphasize the color and texture features of
the original content image, thereby impacting the effectiveness of style transfer. To mitigate
this issue, we introduced a preprocessing step to normalize the queries from the content
image and the keys from the style image. This step aims to make the two features more
consistent in numerical scale, thereby facilitating their integration. The transformation
process of the instance normalization submodule is as follows:

Qc = norm(Qc) 5)
Ks = norm(Ks) (6)

In the above two equations, Qc denotes the content Query, and Ks denotes the style
Key. Through this normalization process, the numerical differences between content and
style features are reduced, which helps to balance the weights between the two and prevents
excessive residue of content features.

(2) Cross-Attention

In the domain of image synthesis, the cross-attention mechanism is pivotal for adeptly
capturing semantic information between content feature maps and style feature maps,
facilitating the generation of stylized content feature maps. This mechanism takes two
input sequences and maps them into query, key, and value matrices through different linear
transformations. The similarity matrix between the Qc and Ks matrices is then computed,
and the Vs matrix is multiplied by the attention weight matrix, which is processed by the
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softmax function, to obtain the weighted output matrix. The calculation formula can be
expressed as follows: -
A = Softmax(Qc @ Ks) x T (7)

M=Vs® AT (8)

In the above two equations, the symbol ‘®” denotes matrix multiplication, ‘T rep-
resents the attention scaling parameter, and Vs denotes the style Value. Utilizing the
cross-attention mechanism, the color and texture information encoded in the style image
can be imparted onto the content image, thereby accomplishing the fusion of content
and style.

3.2.2. SImAM Attention Fusion

In the domain of image style transfer, diffusion models are renowned for their ex-
ceptional generative capabilities. Nevertheless, maintaining a high level of consistency
with the original content image in terms of content remains challenging when transferring
one style to another image. Our objective is to accurately capture and preserve the core
structure and essential features of the content image during the style transfer process,
thereby achieving a seamless integration of style and content.

SimAM is a lightweight, parameter-free convolutional neural network attention mech-
anism [6] designed to provide a more computationally efficient way to enhance feature
representation in content regions for deep learning models. The core concept of SimAM
is based on the local self-similarity within images. In images, adjacent pixels typically
exhibit higher similarity, whereas similarity decreases between pixels that are farther apart.
SimAM calculates attention weights by assessing the similarity between each pixel and its
neighboring pixels in the feature map. The attention mechanism of SimAM can be defined
through the following energy function:

462+ A)

)
(t—02)* +262 +2A

e; =

where e is the optimal estimate of the prediction error, 62 the variance of the estimate,A the
regularization parameter, ¢ the current time point, and 7 the control input of the estimate.

According to the formula, lower energy values indicate greater differentiation be-
tween the neuron ¢ and its surrounding neurons, thereby signifying a higher importance
of the neuron. Therefore, neuron importance can be determined based on 1/¢;. Further-
more, according to the definition of the attention mechanism, we need to enhance the
following features:

X = sigmoid(%) o X (10)

where X denotes the transformed input data after the application of the activation function;
E denotes a constant; X denotes the original input data.

After the injection of the attention style, we faced slight distortions in the image content
structure and some disharmonies in color. To address these challenges, we immediately
introduced SimAM after the cross-attention module to dynamically adjust the distribution
of attention. This adjustment strategy ensures that the integrity of the content remains
undamaged while harmonizing the colors to achieve a visually cohesive unity.

4. Experiments and Results Analysis

In this section, we conduct a series of experiments to evaluate the performance of our
training-free latent diffusion style transfer method. We begin by describing the datasets
and experimental setup used for evaluation. Next, we present the Style Arbitrariness
Experiment to verify the generalization capability of our approach. This is followed by a
Comparative Experiment, where we qualitatively and quantitatively assess the effectiveness
and advancement of our method against existing techniques. Additionally, we perform an
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ablation study to validate the contribution of individual components, and a balance test
between style and content to explore trade-offs. We examine the impact of the attention
injection step through a dedicated experiment. Lastly, we discuss the selection of datasets
and the details of the model choices for the inference time comparison experiments to
provide a comprehensive understanding of our methodology and results.

4.1. Dataset and Experimental Setup

This study conducted experiments using the Microsoft Common Objects in Context
(MS-COCO) [41] dataset for content images and the WikiArt Dataset [42] for style images.
We employed a latent diffusion model, utilized a pre-trained text-to-image model, and
conducted 50-step DDIM sampling.

4.2. Style Arbitrariness Experiment

In this study;, a set of images was randomly selected from the MS-COCO and WikiArt
datasets to serve as content and style images. Specifically, five style images and three content
images were selected to evaluate the method’s generalization performance. As depicted in
Figure 2, the approach successfully mimics arbitrarily chosen styles, effectively capturing
and reproducing the color distribution and texture characteristics of the style images.

ABBEY
ROAD NW8

Figure 2. The method in this paper produces images of arbitrary style transfer.

4.3. Comparative Experiment

To comprehensively validate the effectiveness and advancement of our method, we
conducted a series of comparative experiments evaluating our approach against several
popular style transfer methods. Below are the methods involved in the comparative
experiments and their brief characteristics:

AdalN [19]: Adjusts the mean and variance of the content image to match the statistical
properties of the style image, thereby transferring the texture and color distribution of the
style image to the content image.

StyTR? [43]: Integrates the self-attention mechanism of transformers with multi-scale
processing strategies to achieve style transfer.

Diffusion [44]: Based on diffusion models, it introduces a Contrastive Language-Image
Pretraining (CLIP)-based style separation loss to decouple style and content.
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StyleID [5]: Utilizes a unique attention injection approach within a diffusion model to
perform style transfer.

InST [4]: Also based on a diffusion model, this method converts style into learnable
textual descriptions and uses text inversion for image style transfer.

DiffStyle [28]: Utilizes a diffusion model to leverage hidden space and adjusts skip
connections to convey style and content information separately.

MAST [45]: The core of the paper is the introduction of a multi-adaptation network that
achieves a seamless fusion of content and style through multi-level adaptive adjustments,
enabling arbitrary style transfer.

CAST [20]: The core of the paper is the introduction of a domain-enhanced arbitrary
image style transfer method using contrastive learning, which improves style representation
and content preservation by incorporating domain features.

4.3.1. Quantitative Comparison

(1) Comparison of ArtFID and other metrics: To ensure the fairness of the comparison
when evaluating style transfer methods, we adopted a series of recently proposed metrics,
including ArtFID, FID, LPIPS, and CFSD. FID measures the similarity between generated
images and real images. Lower FID values mean the generated images are closer to real
ones. ArtFID is a version of FID that focuses on evaluating the artistic quality of generated
images, particularly in style transfer tasks. LPIPS measures how similar two images
are from a perceptual perspective. Lower values mean the images look more alike to
humans. CFSD evaluates how well a generated image balances content retention and style
transformation. Lower values indicate a better balance. As shown in Table 1, our method
demonstrates superiority over traditional style transfer methods in terms of the ArtFID
evaluation metric, closely matching human visual preferences. Additionally, our approach
exhibits lower FID values, indicating a high level of consistency between the generated
images and the target style. Our method scores significantly lower on CFSD compared to
existing techniques, highlighting our advantage in maintaining spatial consistency of the
content image. Furthermore, the LPIPS scores further demonstrate our method’s ability to
preserve content integrity during style transfer. The experimental results indicate that the
method performs exceptionally well in comparison.

Table 1. Comparison of Metric Results.

Metrics Ours AdaIN StyTR? MAST CAST DiffuselT StyleID
ArtFID 4 28.124 30.933 30.720 31.282 34.685 40.721 28.801
FiD 4 17.891 18.242 18.890 18.199 20.395 23.065 18.131
Lpips 0.4705 0.6076 0.5445 0.6293 0.6212 0.6921 0.5055
crsp | 0.2156 0.3155 0.3011 0.3043 0.2918 0.3428 0.2281

In the figure, arrow ! indicates that the lower the metric, the better the style transfer performance.

(2) Time Comparison: Due to their complex network structures and multiple iterative
steps, diffusion models generally take longer for synthesis inference compared to tradi-
tional methods. Using a single NVIDIA GeForce RTX 4090 GPU, which is manufactured
by NVIDIA Corporation based in Santa Clara, California, United States, we conducted
inference time measurements for a pair of content and style images. In these experiments,
we examined a total of 20 images with a resolution of 640 x 480. We performed the
inference measurements five times for each image pair and recorded the minimal, max-
imal, average times, and standard deviation from these measurements. As indicated in
Table 2, our method achieves an average total inference time of 60.59 s, which is notably
faster compared to other diffusion-based approaches. These detailed statistics provide a
comprehensive understanding of the inference time performance.
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Table 2. Comparison of Time Results.
Metrics DiffuselT InST DiffStyle Ours Unit
Average time 149.02 153.55 66.89 60.59 second
Minimum time 145.00 150.00 64.00 58.00 second
Maximum time 153.00 157.00 70.00 63.00 second
Standard deviation 2.50 2.80 2.00 1.80 second

Based on the data, we can provide an analysis of the performance of our model
as follows:

1. Minimum Time: Our model achieves a minimum inference time of 58.00 s, which is
faster than DiffuselT (145.00 s) and InST (150.00 s), and faster than DiffStyle (64.00 s).
This indicates that our model performs efficiently in the best-case scenarios, achieving
the fastest minimum time among all models.

2. Maximum Time: The maximum inference time for our model is 63.00 s. This is lower
than the maximum times recorded for DiffuselT (153.00 s) and InST (157.00 s), and
also lower than DiffStyle (70.00 s). This suggests that our model generally maintains
efficient performance and does not experience the longest inference times compared
to all models.

3.  Standard Deviation: Our model’s standard deviation of 1.80 s is the lowest among the
models compared. This indicates less variability in the inference times compared to
DiffuselT (2.50 s), InST (2.80 s), and DiffStyle (2.00 s). A smaller standard deviation
reflects greater consistency and stability in performance, which is advantageous for
reliable and predictable inference times.

In summary, while our model shows competitive performance in both minimum and
maximum inference times, it particularly excels in consistency, as evidenced by the lowest
standard deviation. This highlights the efficiency and reliability of our model.

4.3.2. Qualitative Comparison

Figure 3 illustrates results from various style transfer methods applied to content and
style images. Each output shows the artistic transformation of the content image using
different algorithms and techniques to capture and transfer elements such as color tones,
textures, and brushstrokes from the style image. Comparing these outputs reveals how
each method integrates the style of the style image while preserving the content image’s
distinctive features. Observations indicate that the AdaIN method is overly conservative in
preserving the content color, resulting in a less pronounced style transfer effect. Although
the MAST method achieves impressive style transfer, the presence of numerous color blocks
in the image significantly compromises the integrity of the content structure. Although
the CAST method performs well in transferring content and color, the texture transfer is
either subtle or shows discontinuities. While the StyTR? method exhibits strong style color
penetration, it lacks sufficient harmony with the original style colors, leading to a visual
mismatch. The DiffuselT method performs well in terms of stylization but falls short in the
clarity of image contours, causing an overall slightly blurred visual effect. Although the
StyleID method demonstrates good structural clarity, there is still room for improvement in
preserving content colors. Compared to these methods, our approach not only captures
and transfers artistic features from the style image, like color tones and textures, but also
preserves the fundamental structure and characteristics of the content image. This balance
enables us to generate artistic effects while retaining critical details and forms of the original
content, resulting in outputs that are more natural and aligned with expectations.
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Figure 3. Comparison Experiment Chart.

4.4. Ablation Study

In this paper, we conducted an ablation study to evaluate the effectiveness of the
SimAM module. As shown in Figure 4, we found that integrating the SimAM module
significantly enhances the detail expression capability during style transfer. The generated
images closely approximate the artistic effects of the original style images in terms of color
and texture. Moreover, the SimAM module outperforms the standalone INN-FMM module
in preserving the integrity of the content structure.

Style INN-FMM

Figure 4. Ablation Study.

4.5. Achieving a Harmony between Style and Content

Our method allows for flexible adjustment of the balance between content and style
by tuning parameter . In the INN-FMM module, the content query and the AdalN-
stylized query can be allocated and combined into a new query based on weights, using
the following formula:

Q=Qesx (1-7)+Qc (11)

The parameter -y represents the proportion of the content query in the total query. As
illustrated in Figure 5, a smaller value tends to emphasize style features but may sacrifice
some original content details, while a larger - value helps preserve content but may reduce
the prominence of style features. This design grants users greater autonomy, allowing them
to adjust the intensity of style transfer according to their personal aesthetic preferences. By
adjusting the parameter, users can balance between stylization effects and content fidelity,
achieving a personalized visual experience. In this paper, to maximize content structure
preservation, we adopted a parameter value v = 1, using the content image query entirely.
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Figure 5. Trade-off Between Style and Content.

4.6. Impact of Attention Injection Step

As shown in Figure 6, we conducted an analysis and exploration of the impact of the
attention injection step on the generated results. By injecting attention at both the early
and later stages of the denoising process, we observed that later injection yields better
results at the same time step (this is clearly seen in the comparison between the fourth
and sixth columns). On the other hand, increasing the overall denoising steps makes the
style patterns more prominent without affecting the content structure (as evident in the
comparison between the fifth, sixth, and seventh columns). Therefore, we chose to inject
attention throughout the entire denoising process to achieve optimal stylization results.

I \ A I \ 4 X
step0-10 step0-30 step0-50 step20-50 step30-50

Figure 6. Injecting Attention at Different Denoising Steps.

4.7. Discussion and Explain

In this study, the proposed method demonstrates outstanding performance on the
MSCOCO and WikiArt datasets, particularly in handling complex content and diverse
styles. Compared to previous works, our method exhibits significant advantages in both
style transfer quality and inference time. We chose the MSCOCO and WikiArt datasets
because they are widely used in current style transfer research with diffusion models.
To ensure fairness in comparative experiments, we selected images from these datasets.
Additionally, these datasets are highly diverse, covering a wide range of image types, which
we believe ensures the method’s generalization across different styles and content. Lastly,
our training-free style transfer method directly utilizes pre-trained models for inference, and
the generalization capability of these models has already been validated in previous studies.
Therefore, we assume the generalization during the inference process does not require
further consideration, although its reliability may require further experimental verification.

Diffusion models have gained widespread recognition due to their powerful gener-
ative capabilities. However, this powerful capability is accompanied by a large model
scale, hundreds to thousands of iterative steps, and complex reverse inference processes.
These factors inherently lead to longer time consumption compared to traditional models.
Therefore, in our inference time experiments, we focus primarily on comparisons with
other diffusion models and do not consider non-diffusion models. Today, diffusion models
are considered the mainstream approach for image generation tasks. However, the increase
in training and inference time significantly impacts experimental efficiency. One of our
research focuses is to reduce the time cost of diffusion models while maintaining high image
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quality. We employ pre-trained models to avoid lengthy training processes and use prior
knowledge from forward inference to guide reverse inference, thus saving inference time.
Finally, we validate the effectiveness of our time-saving approach through comparisons
with other diffusion models.

5. Conclusions and Future Work

This study addresses the challenges faced by diffusion-based methods in style transfer,
where diffusion models possess significant potential for generating images. However,
traditional approaches often encounter limitations such as lengthy optimization processes
or underutilization of these models’ capabilities. To overcome these issues, we propose
a novel method introducing a dual-attention dual-chain diffusion model, which requires
no additional training and achieves style transfer by adjusting a pre-trained model. Our
approach manipulates self-attention features, simulating cross-attention mechanisms by
injecting the style image’s keys and values into the content generation process to integrate
content and style characteristics. This method not only preserves the integrity of content
structures but also imparts a novel visual style to the images. To further enhance style
transfer effectiveness, we employ SimAM technology, significantly boosting vibrancy and
adaptability in style transfer, ensuring that transferred images exhibit visual harmony and
naturalness. In summary, our method, through innovative dual-attention mechanisms,
improves both efficiency and visual quality in style transfer processes.

Our future work will focus on the following:

1.  Expanding Application Areas: We will investigate and illustrate how our method
can be adapted and utilized in various fields such as medical imaging, video pro-
cessing, and other domains where style transfer or latent diffusion techniques may
be beneficial.

2. Case Studies: We will conduct case studies and provide concrete examples to showcase
the practical utility and versatility of our approach in different real-world scenarios.

3. Benchmarking: We plan to benchmark our method against existing solutions in these
new application areas to evaluate its effectiveness and advantages in practical settings.

Author Contributions: Conceptualization, Z.X.; Methodology, L.X. and X.W.; Formal analysis, X.W.;
Writing—original draft preparation X.W.; Experiment X.W.; Project administration, L.X. and Z.X;
Validation Z.X. and L.X.; Writing—review and editing, L.X. and Y.M.; Resources L.X. and X.Y.; Data
curation X.Y. and Y.M.; Supervision, L.X. and X.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by Philosophy and Social Science Planning Cross-disciplinary Key
Support Subjects of Zhejiang Province (No. 22JCXK08Z), Ningbo Natural Science Foundation (No.
2022]162), Ningbo Philosophy and Social Science Research Base Project (No. JD6-228).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Please contact author for data requests.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.
2.

Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural Algorithm of Artistic Style. arXiv 2015, arXiv:1508.06576. [CrossRef]

Everaert, M.N.; Bocchio, M.; Arpa, S.; Siisstrunk, S.; Achanta, R. Diffusion in style. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Paris, France, 2-6 October 2023; pp. 2251-2261.

Wang, Z.; Zhao, L.; Xing, W. Stylediffusion: Controllable disentangled style transfer via diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Paris, France, 2—-6 October 2023; pp. 7677-7689.

Zhang, Y.; Huang, N.; Tang, F.; Huang, H.; Ma, C.; Dong, W.; Xu, C. Inversion-based style transfer with diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17-24 June 2023;
pp- 10146-10156.


https://doi.org/10.1167/16.12.326

Information 2024, 15, 588 14 of 15

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Chung, J.; Hyun, S.; Heo, J.P. Style injection in diffusion: A training-free approach for adapting large-scale diffusion models for
style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
16-22 June 2024; pp. 8795-8805.

Yang, L.; Zhang, R.Y,; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In
Proceedings of the International Conference on Machine Learning, Online, 18-24 July 2021; pp. 11863-11874.

Wright, M.; Ommer, B. Artfid: Quantitative evaluation of neural style transfer. In Proceedings of the DAGM German Conference
on Pattern Recognition, Konstanz, Germany, 27-30 September 2022; pp. 560-576.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4-9 December 2017; p. 30.

Zhang, R.; Isola, P; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018;
pp. 586-595.

Naeem, MLE; Oh, S.J.; Uh, Y,; Choi, Y.; Yoo, ]. Reliable fidelity and diversity metrics for generative models. In Proceedings of the
37th International Conference on Machine Learning, Online, 13-18 July 2020; pp. 7176-7185.

Banar, N.; Sabatelli, M.; Geurts, P.; Daelemans, W.; Kestemont, M. Transfer learning with style transfer between the photorealistic
and artistic domain. In Proceedings of the IS&T International Symposium on Electronic Imaging 2021, Computer Vision and
Image Analysis of Art 2021, Online, 11-28 January 2021.

Li, H.; Wan, X.X. Image style transfer algorithm under deep convolutional neural network. In Proceedings of the Computer
Engineering and Applications, Guangzhou, China, 18-20 March 2020; pp. 176-183.

Chen, C.J. Chinese Painting Style Transfer Based on Convolutional Neural Network; Hangzhou Dianzi University: Hangzhou,
China, 2021. [CrossRef]

Li, S.; Xu, X;; Nie, L.; Chua, T.S. Laplacian-steered neural style transfer. In Proceedings of the 25th ACM International Conference
on Multimedia, Mountain View, CA, USA, 23-27 October 2017; pp. 1716-1724.

Risser, E.; Wilmot, P.; Barnes, C. Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv
2017, arXiv:1701.08893.

Dumoulin, V,; Shlens, J.; Kudlur, M. A learned representation for artistic style. arXiv 2016, arXiv:1610.07629.

Chen, D.; Yuan, L.; Liao, J.; Yu, N.; Hua, G. Stylebank: An explicit representation for neural image style transfer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 1897-1906.

Chen, T.Q.; Schmidt, M. Fast patch-based style transfer of arbitrary style. arXiv 2016, arXiv:1612.04337.

Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22-29 October 2017; pp. 1501-1510.

Zhang, Y.; Tang, F.; Dong, W.; Huang, H.; Ma, C.; Lee, T.Y.; Xu, C. Domain enhanced arbitrary image style transfer via contrastive
learning. In Proceedings of the ACM SIGGRAPH 2022 Conference Proceedings, Vancouver, BC, Canada, 7-11 August 2022;
pp- 1-8.

Liu, S.; Ye, ].; Wang, X. Any-to-any style transfer: Making picasso and da vinci collaborate. arXiv 2023, arXiv:2304.09728.

Li, Y,; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; Yang, M.H. Universal style transfer via feature transforms. In Proceedings of the
Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; p. 30.

Liu, S.; Lin, T.; He, D.; Li, E; Wang, M.; Li, X.; Sun, Z; Li, Q.; Ding, E. Adaattn: Revisit attention mechanism in arbitrary neural
style transfer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11-17
October 2021; pp. 6649-6658.

Zhu, Z.X.; Mao, Y.S.; Cai, K.W. Image style transfer method for industrial inspection. In Proceedings of the Computer Engineering
and Applications, Hangzhou, China, 7-9 April 2023; pp. 234-241.

Han, J.; Shoeiby, M.; Petersson, L.; Armin, M.A. Dual contrastive learning for unsupervised image-to-image translation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20-25 June 2021;
pp- 746-755.

Nichol, A.; Dhariwal, P.; Ramesh, A.; Shyam, P.; Mishkin, P.; McGrew, B.; Sutskever, I.; Chen, M. Glide: Towards photorealistic
image generation and editing with text-guided diffusion models. arXiv 2021, arXiv:2112.10741.

Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv
2022, arXiv:2204.06125.

Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022;
pp. 10684-10695.

Avrahami, O.; Lischinski, D.; Fried, O. Blended diffusion for text-driven editing of natural images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022; pp. 18208-18218.
Brooks, T.; Holynski, A.; Efros, A.A. Instructpix2pix: Learning to follow image editing instructions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17-24 June 2023; pp. 18392-18402.


https://doi.org/10.27075/d.cnki.ghzdc.2020.000957

Information 2024, 15, 588 15 of 15

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Cao, M.; Wang, X,; Qi, Z; Shan, Y.; Qie, X.; Zheng, Y. Masactrl: Tuning-free mutual self-attention control for consistent image
synthesis and editing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2-6 October
2023; pp. 22560-22570.

Couairon, G.; Verbeek, J.; Schwenk, H.; Cord, M. Dffedit: Diffusion-based semantic image editing with mask guidance. arXiv
2022, arXiv:2210.11427.

Hertz, A.; Mokady, R.; Tenenbaum, J.; Aberman, K.; Pritch, Y.; Cohen-Or, D. Prompt-to-prompt image editing with cross attention
control. arXiv 2022, arXiv:2208.01626.

Wu, C.H.; De la Torre, F. A latent space of stochastic diffusion models for zero-shot image editing and guidance. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2-6 October 2023; pp. 7378-7387.

Zhang, Z.; Han, L.; Ghosh, A.; Metaxas, D.N.; Ren, ]. Sine: Single image editing with text-to-image diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17-24 June 2023;
pp- 6027-6037.

Qi, T; Fang, S.; Wu, Y,; Xie, H.; Liu, J.; Chen, L.; Zhang, Y. DEADiff: An Efficient Stylization Diffusion Model with Disentangled
Representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
16-22 June 2024; pp. 8693-8702.

Jeong, J.; Kwon, M.; Uh, Y. Training-free style transfer emerges from h-space in diffusion models. arXiv 2023, arXiv:2303.15403.
Lin, H.; Cheng, X.; Wu, X; Shen, D.; Wang, Z.; Song, Q.; Yuan, W. Cat: Cross attention in vision transformer. In Proceedings of the
2022 IEEE International Conference on Multimedia and Expo, Taipei, Taiwan, 18-22 July 2022; pp. 1-6.

Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016,
arXiv:1607.08022.

Song, J.; Meng, C.; Ermon, S. Denoising diffusion implicit models. arXiv 2020, arXiv:2010.02502.

Lin, TY.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Lawrence Zitnick, C.; Dollar, P. Microsoft coco: Common
objects in context. In Proceedings of the Computer Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, 6-12
September 2014; pp. 740-755.

Tan, WR.; Chan, C.S.; Aguirre, H.E.; Tanaka, K. Improved ArtGAN for conditional synthesis of natural image and artwork. I[EEE
Trans. Image Process. 2018, 28, 394—409. [CrossRef] [PubMed]

Deng, Y.; Tang, F.; Dong, W.; Ma, C.; Pan, X.; Wang, L.; Xu, C. Stytr2: Image style transfer with transformers. In Proceedings of the
IEEE/CVEF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022; pp. 11326-11336.
Kwon, G.; Ye, J.C. Diffusion-based image translation using disentangled style and content representation. arXiv 2022,
arXiv:2209.15264.

Deng, Y.; Tang, E; Dong, W.; Sun, W.; Huang, F; Xu, C. Arbitrary style transfer via multi-adaptation network. In Proceedings of
the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12-16 October 2020; pp. 2719-2727.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/TIP.2018.2866698
https://www.ncbi.nlm.nih.gov/pubmed/30136942

	Introduction 
	Related Work 
	Training-Free Approach 
	Diffusion Models 
	Detailed Work 
	Normalization Feature Mapping 
	SimAM Attention Fusion 


	Experiments and Results Analysis 
	Dataset and Experimental Setup 
	Style Arbitrariness Experiment 
	Comparative Experiment 
	Quantitative Comparison 
	Qualitative Comparison 

	Ablation Study 
	Achieving a Harmony between Style and Content 
	Impact of Attention Injection Step 
	Discussion and Explain 

	Conclusions and Future Work 
	References

