
Citation: Chang, Y.-H.; Liu, C.-H.;

You, S.D. Scheduling for the Flexible

Job-Shop Problem with a Dynamic

Number of Machines Using Deep

Reinforcement Learning. Information

2024, 15, 82. https://doi.org/

10.3390/info15020082

Academic Editor: Antonio

Jiménez-Martín

Received: 20 December 2023

Revised: 23 January 2024

Accepted: 31 January 2024

Published: 1 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Scheduling for the Flexible Job-Shop Problem with a Dynamic
Number of Machines Using Deep Reinforcement Learning
Yu-Hung Chang, Chien-Hung Liu and Shingchern D. You *

Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 106, Taiwan; hung61601@gmail.com (Y.-H.C.); cliu@ntut.edu.tw (C.-H.L.)
* Correspondence: scyou@ntut.edu.tw; Tel.: +886-2-2771-2171 (ext. 4234)

Abstract: The dynamic flexible job-shop problem (DFJSP) is a realistic and challenging problem
that many production plants face. As the product line becomes more complex, the machines may
suddenly break down or resume service, so we need a dynamic scheduling framework to cope
with the changing number of machines over time. This issue has been rarely addressed in the
literature. In this paper, we propose an improved learning-to-dispatch (L2D) model to generate a
reasonable and good schedule to minimize the makespan. We formulate a DFJSP as a disjunctive
graph and use graph neural networks (GINs) to embed the disjunctive graph into states for the
agent to learn. The use of GINs enables the model to handle the dynamic number of machines and
to effectively generalize to large-scale instances. The learning agent is a multi-layer feedforward
network trained with a reinforcement learning algorithm, called proximal policy optimization. We
trained the model on small-sized problems and tested it on various-sized problems. The experimental
results show that our model outperforms the existing best priority dispatching rule algorithms, such
as shortest processing time, most work remaining, flow due date per most work remaining, and most
operations remaining. The results verify that the model has a good generalization capability and,
thus, demonstrate its effectiveness.

Keywords: dynamic flexible job-shop problem; deep reinforcement learning; graph isomorphism
networks

1. Introduction

The job scheduling problem is a well-known and challenging optimization problem
that occurs in many manufacturing and transportation scenarios [1]. For example, suppose
a plant has several jobs to complete, and each job requires a sequence of tasks or operations.
The plant also has some machines that can perform each task with a known processing
time for each job. The goal is to assign the tasks to the machines so that the total com-
pletion time of all the jobs is minimized. This is a practical and important problem for
efficient production.

A job scheduling problem consists of three basic elements: jobs, tasks, and machines.
A job is a collection of one or more tasks, and a machine can process only one task at a
time without interruption. Depending on the shop environments, job scheduling problems
can be classified into different types, such as single-machine, parallel-machine, flow-shop,
job-shop, and open-shop problems [2].

A single-machine problem involves multiple jobs, each with only one task. The goal is
to find the optimal order of the jobs for a single machine. A parallel machine problem has
multiple jobs, each with multiple tasks. A flow-shop problem has all jobs following the
same sequence of tasks. A job-shop problem has different sequences of tasks for different
jobs. This problem is NP-hard [3] and a major research topic in academia. An open-shop
problem is similar to a job-shop problem, but the order of the tasks for each job does
not matter.

Information 2024, 15, 82. https://doi.org/10.3390/info15020082 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15020082
https://doi.org/10.3390/info15020082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1947-9379
https://orcid.org/0000-0002-8745-1300
https://doi.org/10.3390/info15020082
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15020082?type=check_update&version=1

Information 2024, 15, 82 2 of 15

A job-shop scheduling problem (JSSP) involves several jobs, each with a different
number of tasks. Each task type has only one machine available. A flexible job-shop
scheduling problem (FJSP) is a variant of the JSSP that allows for multiple machines for
each task type. However, in some situations, new jobs may arrive or some machines may
break down over time. This leads to a dynamic flexible job-shop scheduling problem
(DFJSP), which is explained in detail in Section 3.

The job-shop scheduling problem (JSSP) is NP-hard, so finding optimal solutions for
large problems is impractical. Therefore, priority dispatching rules (PDR) are often used,
and many PDRs have been studied and compared in previous works [4]. However, deep
reinforcement learning (DRL) methods have recently shown better performance than PDR
methods for various DFJSPs.

Most of the existing DFJSP methods only consider dynamic job arrival, not dynamic
machine availability. In this paper, we propose a scheduling method that can cope with
dynamic machine availability and achieve efficient job scheduling with an end-to-end
architecture, called the learning to dispatch (L2D) framework [5]. The L2D was initially
designed for JSSP, which does not include any dynamic events. We adapt it to handle
DFJSPs with dynamic machine availability. The contributions of this paper are as follows:

• We revise the end-to-end L2D framework to handle DFJSP with dynamic machine availability.
• We perform a simulation-based evaluation of the revised L2D algorithm.
• We enrich the node features in the graph representation of s DFJSP.
• We incorporate a baseline policy to compute rewards for improved performance.
• We open our source code for further research and development.

The outline of this paper is as follows: Section 2 covers the related work. Section 3 is the
proposed approach to handle DFJSPs with a dynamic machine number. Section 4 contains
the experiments and results, and Section 5 presents the conclusions and future research
directions. To help the reader, we have included a list of acronyms in the Abbreviations.

2. Literature Review

According to Wikipedia, reinforcement learning (RL) is an area of machine learning to
study how an agent takes actions in a dynamic environment to maximize the cumulative
reward [6]. Recently, incorporating neural networks in RL agents has received lots of
attention [7–10]. There are several types of RL algorithms based on different optimality
criteria. One type is the value-based algorithms, such as Q learning [11], deep Q-learning
(DQN) algorithm [12], and double deep Q-learning (DDQN) [13]. The Q-learning and
DQN approaches have been widely used in production scheduling problems [14–22], as
discussed below. Another type of RL algorithms is the actor–critic type and its variants,
such as proximal policy optimization (PPO) [23]. The PPO algorithm has also been used in
production scheduling problems [5,24–26].

Conventional Q-learning has been applied to production scheduling problems with
success. Fonseca-Reyna et al. [14] used it for solving job-shop scheduling problems. They
achieved better results in a shorter computing time. Shahrabi et al. [15] applied it to
update the parameters of the variable neighborhood search algorithm, which is used as
the scheduling algorithm for the studied dynamic job-shop scheduling problems with
random job arrivals. Wang et al. [16] proposed a multi-agent approach for solving JSSP.
They used a weighted Q-learning algorithm to determine the most suitable operation with
better performance. Wang et al. [17] used two Q-learning agents for assembly job-shop
scheduling, which consists of job-shop scheduling and an additional stage to assemble
parts to jobs according to a bill of material. Their results showed that better results could
be obtained than the single Q-learning and other scheduling rule approaches.

For applications of DQN to DFJSPs, Luo [18] showed promising results for random job
arrivals by letting the DQN agent select dispatching rules. Luo et al. [19] subsequently used
a two-hierarchy deep Q network to handle online multi-objective rescheduling for DFJSPs,
such as new job arrivals and machine breakdowns. In their approach, the higher-level
DQN determines the optimization goals, and the lower one selects the dispatching rules.

Information 2024, 15, 82 3 of 15

Heger et al. [20] used Q-learning to handle DFJSPs with varying job arrival times and
product flows, and they demonstrated the feasibility of their method in unseen scenarios.
Turgut et al. [21] used the deep Q-network (DQN) to solve DFJSP with dynamic job arrivals,
where the agent has to select and assign one of the waiting tasks to the first available
machine. Their method outperformed the shortest processing time (SPT) and earliest due
date (EDD), two conventional PDR methods. Chang et al. [22] used DDQN to solve a DFJSP
with stochastic job arrivals and showed that their method outperformed existing RL and
heuristic methods in dynamic scheduling problems.

Graph neural networks (GNNs) are a type of artificial neural networks that can process
data that have a graph structure [27]. GNNs can learn from the graph data by using a
message passing mechanism and update internal representations based on the local and
global structures of the graph. A variant of the GNN is the graph isomorphism network
(GIN), which is suitable for graph classification tasks [28]. Several studies have combined
GIN and PPO to solve DFJSPs with a dynamic job arrival [5,24,25]. Zhang et al. introduced
the L2D framework [5], which combines the graph neural network (GNN) and proximal
policy optimization (PPO) to solve JSSP. They proposed a novel idea of using jobs and
machines as the state space and letting the reinforcement-learning agent assign tasks based
on the state representation. L2D learns the policy in an end-to-end manner without relying
on predefined rules. A modified version of L2D open-source software can be found in [29].
Lei et al. [24,25] extended the L2D framework to handle dynamic job arrival problems. Their
approach incorporated a high-level agent, based on double deep Q-networks (DDQN),
to cache and dispatch the newly arrived jobs. Thus, a DFJSP can be transformed into
static FJSPs and solved by the low-level L2D agent. Zhang et al. [26] introduced a multi-
agent-based distributed scheduling architecture, which reduces the workload on the central
server. They used a scheduling model based on the PPO algorithm, which can handle
unpredictable events, such as new job arrivals and machine breakdowns.

From the above review, we know that most of the existing studies use reinforce-
ment learning algorithms to select dispatch functions based on designed features [14–22].
However, this is not the ultimate goal that neural-network researchers are aiming for: an
end-to-end architecture that can solve a problem [30]. By using an end-to-end architecture,
the learning algorithm can adjust its internal representations to better fit the problem.

The end-to-end L2D model was originally proposed for solving the JSPP. Although it
was later extended to solve the DFJSP with a stochastic job arrival, it did not address the
dynamic change in the number of machines. In fact, only a few papers have ever considered
the breakdown of a machine, let alone the dynamic number of machines. We believe that
this problem has not been adequately investigated in the literature.

3. Proposed Approach

This section describes the proposed approach and all necessary materials. This section
starts with the mathematical description of the DFJSP. It is followed by a Markov decision
process, the graph representation of the states, the node features, the calculation of rewards,
and the proposed approach.

3.1. Dynamic Flexible Job-Shop Scheduling Problem

Before we formally define the studied problem, we first describe the JSSP. A JSSP in-
stance consists of a set of jobs J = {J1, J2, · · · , Jn} and a set of machines
M = {M1, M2, · · · , Mm}. Each job Ji contains multiple tasks Oij, 1 ≤ j ≤ mi, where
mi indicates the number of machines that Ji needs to visit to complete the job. The size
of a JSSP instance is expressed as |J| × |M|, where |·| denotes the cardinality (i.e., the
number of elements) of the set. The JSSP has three constraints: (i) each task Oij needs
to be processed by a specified machine Mk ∈ M. (ii) Tasks

{
Oi1, Oi2, · · · , Oimi

}
must be

processed in order, expressed as Oi1 → Oi2 → · · · → Oimi , which is known as “precedence
constraint”. (iii) Each machine can only process one task at a time, and the processing
is non-preemptive.

Information 2024, 15, 82 4 of 15

For a specific task Oij, its makespan is ci,j = sij + pij, where sij is the staring time of
the task, and pij ∈ N is the processing time. The optimal solution of a JSSP instance is to
minimize cmax = max

i,j
cij.

The flexible job-shop scheduling problem (FJSP) allows for more than one machine for
each task type. Let M = { M1, M2, . . . , Mm } be the set machine types, where each type Mk
has lk identical machines, i.e., Mk =

{
Mk1, Mk2, . . . , Mklk

}
. Unlike the JSSP, Oij can now

be processed by any machine in Mk, instead of one dedicated machine.
In this paper, we study the problem of dynamic machine numbers in the FJSP. We

assume that the number of machines of each type follows a Poisson distribution and
changes randomly over time. Therefore, the value lk will vary over time with an upper
bound of nk, i.e., lk ∈ {1, 2, . . . , nk}. The details of the Poisson distribution and the
formula for increasing and decreasing the number of machines are given in Section 4.1.

3.2. Markov Decision Process for Scheduling JSSP

Before we describe the proposed approach, we first explain how to solve a JSSP by
using a Markov decision process (MDP), which contains states and actions.

States. Let O be the set of nodes containing tasks, let C be the set of directed arcs
(conjunction) that connect two tasks based on the precedence constraints, and let D be the set
of nondirectional edges (disjunctions) that connect two tasks that need the same machine for
processing. We define the state St of an MDP at step t as a graph G = (O, C ∪ Du(t), D(t))
that represents the solution up to t, where Du(t) ⊆ D is the set of edges that have been
assigned a direction up to t, D(t) is the set of the remaining D, and t = {0, 1, . . . , T},
where T is the maximum number of decision steps. Each node Oij has two features: the
first feature c̃i,j is the lower bound of the makespan ci,j of the task, and the second feature
is a binary indicator I

(
Oij, St

)
∈ {0, 1}, which is 1 if Oij has been scheduled before St, and

0 otherwise.
As an example, we use a simple JSSP instance, shown in Figure 1. The dummy nodes

(begin and end) are omitted for simplicity. The instance has three jobs, each with three
tasks. Each task is represented by a circle, and the color of the circle indicates the machine
type (A, B, or C) required for the task. The solid arrows indicate the precedence constraints
of the jobs. The two numbers above each node (task) are the features explained earlier. As
shown in Figure 1, the first feature is the lower bound of its makespan of the task, which
depends only on the precedence constraints, since no task has been scheduled yet.

Information 2024, 15, x FOR PEER REVIEW 4 of 16

instance is expressed as |J| × |M|, where | ∙ | denotes the cardinality (i.e., the number of
elements) of the set. The JSSP has three constraints: (i) each task 𝑂 needs to be processed
by a specified machine 𝑀 ∈ 𝑴. (ii) Tasks {𝑂 , 𝑂 , ⋯ , 𝑂 } must be processed in order,
expressed as 𝑂 → 𝑂 → ⋯ → 𝑂 , which is known as “precedence constraint”. (iii) Each
machine can only process one task at a time, and the processing is non-preemptive.

For a specific task 𝑂 , its makespan is 𝑐 , = 𝑠 + 𝑝 , where 𝑠 is the staring time
of the task, and 𝑝 ∈ ℕ is the processing time. The optimal solution of a JSSP instance is
to minimize 𝑐 = 𝑚𝑎𝑥, 𝑐 .

The flexible job-shop scheduling problem (FJSP) allows for more than one machine
for each task type. Let 𝑴 = { 𝑴 , 𝑴 , … , 𝑴 } be the set machine types, where each type 𝑴 has 𝑙 identical machines, i.e., 𝑴 = 𝑀 , 𝑀 , … , 𝑀 . Unlike the JSSP, 𝑂 can
now be processed by any machine in 𝑴 , instead of one dedicated machine.

In this paper, we study the problem of dynamic machine numbers in the FJSP. We
assume that the number of machines of each type follows a Poisson distribution and
changes randomly over time. Therefore, the value 𝑙 will vary over time with an upper
bound of 𝑛 , i.e., 𝑙 ∈ {1, 2, … , 𝑛 }. The details of the Poisson distribution and the formula
for increasing and decreasing the number of machines are given in Section 4.1.

3.2. Markov Decision Process for Scheduling JSSP
Before we describe the proposed approach, we first explain how to solve a JSSP by

using a Markov decision process (MDP), which contains states and actions.
States. Let 𝑶 be the set of nodes containing tasks, let C be the set of directed arcs

(conjunction) that connect two tasks based on the precedence constraints, and let D be the
set of nondirectional edges (disjunctions) that connect two tasks that need the same ma-
chine for processing. We define the state 𝑆 of an MDP at step t as a graph 𝐺 = 𝑶, 𝑪 ∪𝑫 𝑡 , 𝑫 𝑡 that represents the solution up to t, where 𝑫 𝑡 ⊆ 𝑫 is the set of edges that
have been assigned a direction up to t, 𝑫 𝑡 is the set of the remaining 𝑫 , and 𝑡 ={0, 1, … , 𝑇}, where T is the maximum number of decision steps. Each node 𝑂 has two
features: the first feature �̃� , is the lower bound of the makespan 𝑐 , of the task, and the
second feature is a binary indicator 𝐼 𝑂 , 𝑆 ∈ {0, 1}, which is 1 if 𝑂 has been scheduled
before 𝑆 , and 0 otherwise.

As an example, we use a simple JSSP instance, shown in Figure 1. The dummy nodes
(begin and end) are omitted for simplicity. The instance has three jobs, each with three
tasks. Each task is represented by a circle, and the color of the circle indicates the machine
type (A, B, or C) required for the task. The solid arrows indicate the precedence constraints
of the jobs. The two numbers above each node (task) are the features explained earlier. As
shown in Figure 1, the first feature is the lower bound of its makespan of the task, which
depends only on the precedence constraints, since no task has been scheduled yet.

Figure 1. A simple JSSP instance.

Action. An action 𝑎 ∈ 𝑨 is a task that can be scheduled at step t. The action space 𝑨 is a set whose elements are feasible tasks in the current state 𝑆 . Feasible tasks are de-
termined by the precedence constraints and the availability of the required machine.

Figure 1. A simple JSSP instance.

Action. An action at ∈ At is a task that can be scheduled at step t. The action space At is
a set whose elements are feasible tasks in the current state St. Feasible tasks are determined
by the precedence constraints and the availability of the required machine. Figure 2a
illustrates the action space of a JSSP in a specific state, S3. Note that O11, O31, O32 are filled
with purple color to indicate that they have been scheduled (as indicated by the I

(
Oij, st

)
indicators in these nodes). Therefore, they will not be in the action space anymore. Feasible
tasks are the ones that are ready to be processed for each job. For instance, O22 is not a
feasible task because O21 has not been scheduled yet. All feasible tasks are filled with
yellow color in Figure 2a, i.e., A3 = {O12, O21, O33}.

Information 2024, 15, 82 5 of 15

Information 2024, 15, x FOR PEER REVIEW 5 of 16

Figure 2a illustrates the action space of a JSSP in a specific state, 𝑆 . Note that 𝑂 , 𝑂 , 𝑂 are filled with purple color to indicate that they have been scheduled (as in-
dicated by the 𝐼 𝑂 , 𝑠 indicators in these nodes). Therefore, they will not be in the ac-
tion space anymore. Feasible tasks are the ones that are ready to be processed for each job.
For instance, 𝑂 is not a feasible task because 𝑂 has not been scheduled yet. All feasi-
ble tasks are filled with yellow color in Figure 2a, i.e., 𝑨 = {𝑂 , 𝑂 , 𝑂 }.

Figure 2. An example of state transition. A dash line shows the sequence of machine A in processing
tasks. The red numbers indicate the changed feature values after taking the action. (a) Before taking
the action. (b) After taking the action.

State Transition. When an action 𝑎 is selected in state 𝑆 , the state transitions to 𝑆 . This changes 𝐷 𝑡 in the graph 𝐺 and some node features accordingly. Figure 2b
shows an example after the transition. When 𝑎 = 𝑂 is chosen, machine C moves from 𝑂 to 𝑂 to start processing, so an edge is directed from 𝑂 to 𝑂 in 𝐷 𝑡 . The dashed
lines in Figure 2b show the assignments of machines A (in red circles) and C (in blue cir-
cles) to tasks. Then, task 𝑂 and its successors 𝑂 , 𝑂 (under precedence constraints)
update their first features, as �̃� = 𝑟 + 𝑝 . If 𝑎 = 𝑂 , then 𝑟 = 𝑠 , the start time of the
task based on the machine availability. Otherwise, 𝑟 is set as �̃� of 𝑂 . The second
feature of 𝑂 is also set to 1. Note that �̃� may be updated only based on �̃� ; there-
fore, it is not the actual makespan of task 𝑂 .

3.3. Graph Representation for the Proposed Approach
To apply the L2D model, we first need to represent the problem as a graph. Recall

that in the DFJSP instance, each task type has a dynamic number of identical machines.
Therefore, each, 𝑂 has multiple parallel subtasks 𝑂 ∈ 𝑂 , 1 ≤ 𝑗 ≤ 𝑚 , 1 ≤ 𝑞 ≤ 𝑙 .
Each 𝑂 has a processing time 𝑝 ∈ ℕ for all 𝑞. A task 𝑂 is considered scheduled if
any of the subtasks is scheduled.

We define the initial state 𝑆 of the graph 𝐺 = 𝑶, 𝑪, 𝑫 with 𝑶, 𝑪, and 𝑫 defined
previously. If 𝑂 exists, then 𝑂 → 𝑂 , 1 ≤ 𝑞 ≤ 𝑙 . This represents the prece-
dence constraint between nodes. Each node 𝑂 can only be processed by one specific
machine 𝑀 . If the number of machines changes, for example, if machine 𝑀 is re-
moved, then we need to remove the set of nodes 𝑂 , 𝑂 … , 𝑂 that are processed by 𝑀 from the graph G, and also the precedence constraints related to these nodes. The
same idea applies when adding a new machine to a type.

Figure 3a illustrates the initial state 𝑆 of the problem. There are three machine types: 𝑴 with one machine {𝑀 }, 𝑴 with two machines {𝑀 , 𝑀 }, and 𝑴 with three ma-
chines {𝑀 , 𝑀 , 𝑀 } . Each task of each job has multiple parallel nodes in the graph,

Figure 2. An example of state transition. A dash line shows the sequence of machine A in processing
tasks. The red numbers indicate the changed feature values after taking the action. (a) Before taking
the action. (b) After taking the action.

State Transition. When an action at is selected in state St, the state transitions to St+1.
This changes Du(t) in the graph G and some node features accordingly. Figure 2b shows
an example after the transition. When a3 = O21. is chosen, machine C moves from O31 to
O21 to start processing, so an edge is directed from O31 to O21 in Du(t). The dashed lines
in Figure 2b show the assignments of machines A (in red circles) and C (in blue circles) to
tasks. Then, task O21 and its successors O22, O23 (under precedence constraints) update
their first features, as c̃ij = rij + pij. If at = Oij, then rij = sij, the start time of the task based
on the machine availability. Otherwise, rij is set as c̃ij of O(i−1)j. The second feature of O21
is also set to 1. Note that c̃ij may be updated only based on c̃i(j−1); therefore, it is not the
actual makespan of task Oij.

3.3. Graph Representation for the Proposed Approach

To apply the L2D model, we first need to represent the problem as a graph. Recall
that in the DFJSP instance, each task type has a dynamic number of identical machines.
Therefore, each, Oij has multiple parallel subtasks Oijq ∈ Oij, 1 ≤ j ≤ mi, 1 ≤ q ≤ lk. Each
Oijq has a processing time pij ∈ N for all q. A task Oijq is considered scheduled if any of
the subtasks is scheduled.

We define the initial state S0 of the graph G = (O, C, D) with O, C, and D defined
previously. If Oi(j+1)q exists, then Oijq → Oi(j+1)q, 1 ≤ q ≤ lk . This represents the prece-
dence constraint between nodes. Each node Oijq can only be processed by one specific
machine Mkr. If the number of machines changes, for example, if machine Mkr is removed,
then we need to remove the set of nodes

{
O1jq, O2jq . . . , Oijq

}
that are processed by Mkr

from the graph G, and also the precedence constraints related to these nodes. The same
idea applies when adding a new machine to a type.

Figure 3a illustrates the initial state S0 of the problem. There are three machine
types: M1 with one machine {M11}, M2 with two machines {M21, M22}, and M3 with
three machines {M31, M32, M33}. Each task of each job has multiple parallel nodes in the
graph, representing the same task processed by different machines. These parallel nodes
are considered as one task, and only one of them can be scheduled. The other parallel
nodes will be in the graph, but become invalid actions, once one of them is scheduled. It is
possible to remove the unused parallel nodes. However, our preliminary experiments show
that keeping them in the graph achieves better performance. The solid arrows indicate the
precedence constraints between different tasks, as shown in Figure 3a. The construction of
Du(t) follows the same procedure as before.

Information 2024, 15, 82 6 of 15

Information 2024, 15, x FOR PEER REVIEW 6 of 16

representing the same task processed by different machines. These parallel nodes are con-
sidered as one task, and only one of them can be scheduled. The other parallel nodes will
be in the graph, but become invalid actions, once one of them is scheduled. It is possible
to remove the unused parallel nodes. However, our preliminary experiments show that
keeping them in the graph achieves better performance. The solid arrows indicate the
precedence constraints between different tasks, as shown in Figure 3a. The construction
of 𝐷 𝑡 follows the same procedure as before.

Figure 3. Removing a machine in the DFJSP. (a) Before removing 𝑀 . (b) After removing 𝑀 .

Suppose we randomly remove one machine from 𝑀 , for example, 𝑀 . Then, we
also have to delete all the nodes that 𝑀 processed, as Figure 3b illustrates. However,
this representation has a drawback: the graph will grow very large as the number of ma-
chines increases.

3.4. Proposed Features for Each Node
As mentioned in Section 3.2, the original L2D approach uses only two features. How-

ever, these features are not enough to differentiate the states of the same task on different
machines. Hence, we introduce a third feature 𝑠 as the actual start time of the task 𝑂 .
We compute it as follows: 𝑠 = max �̃� − 𝑝 , 𝑠 𝑀 , (1)

where 𝑠 𝑀 is the start time of machine 𝑀 . The start time of the task depends on
both the end time of the previous task and the start time of the machine. The task can
begin processing only when the previous task is completed and the machine is free. Thus,
the actual start time of the task is the maximum of these two values.

Let us use Figure 4 as an example. The rightmost feature is the new feature we added.
Suppose the current state has an action space of 𝑨 = {𝑂 , 𝑂 }, and 𝑀 is busy with
other tasks until time 20. Then, 𝑀 can start processing 𝑂 at time 20. 𝑀 is idle, so
it can start processing 𝑂 at time 0. Without the third feature, we cannot tell the differ-
ence between the feature values of 𝑂 and 𝑂 . Using (1), we get 𝑠 = max 30 −20, 20 = 20 , where 𝑝 = 20. Similarly, we get 𝑠 = max 30 − 20, 0 = 10 . Thus, we
can distinguish the same task on different machines with the third feature.

Figure 3. Removing a machine in the DFJSP. (a) Before removing M33. (b) After removing M33.

Suppose we randomly remove one machine from M3, for example, M33. Then, we
also have to delete all the nodes that M33 processed, as Figure 3b illustrates. However,
this representation has a drawback: the graph will grow very large as the number of
machines increases.

3.4. Proposed Features for Each Node

As mentioned in Section 3.2, the original L2D approach uses only two features. How-
ever, these features are not enough to differentiate the states of the same task on different
machines. Hence, we introduce a third feature sijq as the actual start time of the task Oijq.
We compute it as follows:

sijq = max
(
c̃ijq − pij, s(Mkr)

)
, (1)

where s(Mkr) is the start time of machine Mkr. The start time of the task depends on both
the end time of the previous task and the start time of the machine. The task can begin
processing only when the previous task is completed and the machine is free. Thus, the
actual start time of the task is the maximum of these two values.

Let us use Figure 4 as an example. The rightmost feature is the new feature we added.
Suppose the current state has an action space of A1 = {O121, O122}, and M21 is busy with
other tasks until time 20. Then, M21 can start processing O121 at time 20. M22 is idle, so it can
start processing O122 at time 0. Without the third feature, we cannot tell the difference be-
tween the feature values of O121 and O122. Using (1), we get s121 = max(30 − 20, 20) = 20,
where p12 = 20. Similarly, we get s122 = max(30 − 20, 0) = 10. Thus, we can distinguish
the same task on different machines with the third feature.

Information 2024, 15, x FOR PEER REVIEW 7 of 16

Figure 4. Example of calculating features.

3.5. State Transition for the Proposed Approach
We use Figure 5 to demonstrate the state transition of our approach. Let the action

space of state 𝑆 be 𝐴 = {𝑂 , 𝑂 , 𝑂 , 𝑂 } , the leftmost nodes on Figure 5. If we
choose 𝑂 as the action, the action space becomes 𝑨 = {𝑂 , 𝑂 }, and we cannot
select 𝑂 and 𝑂 . The action also updates the features, as the right part of Figure 5
shows. Note that we update 𝑠 and 𝐼 𝑂 , 𝑆 according to Section 3.3, and we mark
the changed feature values in red.

Figure 5. Example of state transition of the proposed approach. Red numbers indicate the change
of the features.

3.6. Reward in the Proposed Approach
Following Duan et al. [31], who used a REINFORCE algorithm with a deterministic

greedy rollout to train the agent, we implemented a Baseline policy to compute the re-
ward. Figure 6 illustrates the reward calculation process. We start with random weights
to generate an agent with a Baseline policy Pθ . We want to learn a reinforcement-learn-
ing policy Pθ. At the start of an episode, we use Pθ to find 𝐷 ,P

θ 𝑇 and makespan 𝑐 ,P
θ of a training instance. Then, we iterate time step t from 0 to T and let actions 𝑎 , ⋯ , 𝑎 be determined by Pθ and the remaining actions 𝑎 , ⋯ , 𝑎 by Pθ to find the

makespan of the training instance, denoted as 𝑐 ,Pθ . We calculate the reward as

Figure 4. Example of calculating features.

3.5. State Transition for the Proposed Approach

We use Figure 5 to demonstrate the state transition of our approach. Let the action
space of state St be At = {O111, O211, O212, O213}, the leftmost nodes on Figure 5. If we

Information 2024, 15, 82 7 of 15

choose O211 as the action, the action space becomes At+1 = {O111, O221}, and we cannot
select O212 and O213. The action also updates the features, as the right part of Figure 5
shows. Note that we update sijq and I

(
Oijq, St

)
according to Section 3.3, and we mark the

changed feature values in red.

Information 2024, 15, x FOR PEER REVIEW 7 of 16

Figure 4. Example of calculating features.

3.5. State Transition for the Proposed Approach
We use Figure 5 to demonstrate the state transition of our approach. Let the action

space of state 𝑆 be 𝐴 = {𝑂 , 𝑂 , 𝑂 , 𝑂 } , the leftmost nodes on Figure 5. If we
choose 𝑂 as the action, the action space becomes 𝑨 = {𝑂 , 𝑂 }, and we cannot
select 𝑂 and 𝑂 . The action also updates the features, as the right part of Figure 5
shows. Note that we update 𝑠 and 𝐼 𝑂 , 𝑆 according to Section 3.3, and we mark
the changed feature values in red.

Figure 5. Example of state transition of the proposed approach. Red numbers indicate the change
of the features.

3.6. Reward in the Proposed Approach
Following Duan et al. [31], who used a REINFORCE algorithm with a deterministic

greedy rollout to train the agent, we implemented a Baseline policy to compute the re-
ward. Figure 6 illustrates the reward calculation process. We start with random weights
to generate an agent with a Baseline policy Pθ . We want to learn a reinforcement-learn-
ing policy Pθ. At the start of an episode, we use Pθ to find 𝐷 ,P

θ 𝑇 and makespan 𝑐 ,P
θ of a training instance. Then, we iterate time step t from 0 to T and let actions 𝑎 , ⋯ , 𝑎 be determined by Pθ and the remaining actions 𝑎 , ⋯ , 𝑎 by Pθ to find the

makespan of the training instance, denoted as 𝑐 ,Pθ . We calculate the reward as

Figure 5. Example of state transition of the proposed approach. Red numbers indicate the change of
the features.

3.6. Reward in the Proposed Approach

Following Duan et al. [31], who used a REINFORCE algorithm with a deterministic
greedy rollout to train the agent, we implemented a Baseline policy to compute the reward.
Figure 6 illustrates the reward calculation process. We start with random weights to gen-
erate an agent with a Baseline policy Pθ BL . We want to learn a reinforcement-learning
policy Pθ. At the start of an episode, we use Pθ BL to find Du,P

θ BL (T) and makespan
cmax,P

θ BL of a training instance. Then, we iterate time step t from 0 to T and let ac-
tions a0, · · · , at be determined by Pθ and the remaining actions at+1, · · · , aT by Pθ BL

to find the makespan of the training instance, denoted as cmax,Pθ(St). We calculate the
reward as R(at, St) = cmax,Pθ(St) − cmax,Pθ(St+1). Thus, if Pθ selects a better action at+1,
cmax,Pθ(St+1) will decrease, and the reward is positive. At the end of each episode, if
cmax,P

θ BL > cmax,Pθ(ST)
, we replace parameters of the baseline policy θ BL with θ and begin

the next episode training.

Information 2024, 15, x FOR PEER REVIEW 8 of 16

𝑅 𝑎 , 𝑆 = 𝑐 ,Pθ − 𝑐 ,Pθ . Thus, if Pθ selects a better action 𝑎 , 𝑐 ,Pθ
will decrease, and the reward is positive. At the end of each episode, if 𝑐 ,P

θ 𝑐 ,Pθ , we replace parameters of the baseline policy θ with θ and begin the next
episode training.

Figure 6. Proposed reward calculation.

3.7. Network Model of the Proposed Approach
L2D architecture. Our method follows the same overall architecture as L2D [5],

which has two components: state embedding and learning policy, as shown in Figure 7.
State embedding maps the graph G at 𝑆 to an internal representation using a graph iso-
morphism network (GIN). The GIN can handle graphs with varying numbers of nodes
and edges, but each node must have the same number of features. L2D uses a PPO algo-
rithm as the learning policy to evaluate and select the best action. For brevity, we skip the
details of the L2D method. Please see [5] for more information.

Figure 7. Architecture of L2D.

The proposed approach. The L2D framework was initially developed for JSSP, which
does not contain any dynamic events. Hence, it uses only two features per node, and its
reward function was merely the difference in the makespan in two successive steps. To
adapt the L2D framework to our problem, we need to tackle the dynamic problem with a
better reward design.

Figure 8 illustrates our proposed approach. We focus on the implementation details
of our model, rather than the theoretical background, for brevity. The source code of our
model is given in the Supplementary Materials section of this paper. As Figure 8 shows,
the first step, neighboring, performs a matrix multiplication of the adjacency matrix and
the feature matrix. The feature matrix has a size of 𝑛 × 𝑓, where 𝑛 is the number of nodes

Figure 6. Proposed reward calculation.

Information 2024, 15, 82 8 of 15

3.7. Network Model of the Proposed Approach

L2D architecture. Our method follows the same overall architecture as L2D [5], which
has two components: state embedding and learning policy, as shown in Figure 7. State
embedding maps the graph G at St to an internal representation using a graph isomorphism
network (GIN). The GIN can handle graphs with varying numbers of nodes and edges,
but each node must have the same number of features. L2D uses a PPO algorithm as the
learning policy to evaluate and select the best action. For brevity, we skip the details of the
L2D method. Please see [5] for more information.

Information 2024, 15, x FOR PEER REVIEW 8 of 16

𝑅 𝑎 , 𝑆 = 𝑐 ,Pθ − 𝑐 ,Pθ . Thus, if Pθ selects a better action 𝑎 , 𝑐 ,Pθ
will decrease, and the reward is positive. At the end of each episode, if 𝑐 ,P

θ 𝑐 ,Pθ , we replace parameters of the baseline policy θ with θ and begin the next
episode training.

Figure 6. Proposed reward calculation.

3.7. Network Model of the Proposed Approach
L2D architecture. Our method follows the same overall architecture as L2D [5],

which has two components: state embedding and learning policy, as shown in Figure 7.
State embedding maps the graph G at 𝑆 to an internal representation using a graph iso-
morphism network (GIN). The GIN can handle graphs with varying numbers of nodes
and edges, but each node must have the same number of features. L2D uses a PPO algo-
rithm as the learning policy to evaluate and select the best action. For brevity, we skip the
details of the L2D method. Please see [5] for more information.

Figure 7. Architecture of L2D.

The proposed approach. The L2D framework was initially developed for JSSP, which
does not contain any dynamic events. Hence, it uses only two features per node, and its
reward function was merely the difference in the makespan in two successive steps. To
adapt the L2D framework to our problem, we need to tackle the dynamic problem with a
better reward design.

Figure 8 illustrates our proposed approach. We focus on the implementation details
of our model, rather than the theoretical background, for brevity. The source code of our
model is given in the Supplementary Materials section of this paper. As Figure 8 shows,
the first step, neighboring, performs a matrix multiplication of the adjacency matrix and
the feature matrix. The feature matrix has a size of 𝑛 × 𝑓, where 𝑛 is the number of nodes

Figure 7. Architecture of L2D.

The proposed approach. The L2D framework was initially developed for JSSP, which
does not contain any dynamic events. Hence, it uses only two features per node, and its
reward function was merely the difference in the makespan in two successive steps. To
adapt the L2D framework to our problem, we need to tackle the dynamic problem with a
better reward design.

Figure 8 illustrates our proposed approach. We focus on the implementation details
of our model, rather than the theoretical background, for brevity. The source code of our
model is given in the Supplementary Materials section of this paper. As Figure 8 shows, the
first step, neighboring, performs a matrix multiplication of the adjacency matrix and the
feature matrix. The feature matrix has a size of n × f , where n is the number of nodes in the
graph and f = 3 is the number of features in one node. The graph itself is represented by
an adjacency matrix of size n × n with the rows indicating the end nodes and the columns
indicating the start nodes. Then, we divide each row of the product matrix of size n × f by
the degree of the node to achieve average pooling.

Information 2024, 15, x FOR PEER REVIEW 9 of 16

in the graph and 𝑓 = 3 is the number of features in one node. The graph itself is repre-
sented by an adjacency matrix of size 𝑛 × 𝑛 with the rows indicating the end nodes and
the columns indicating the start nodes. Then, we divide each row of the product matrix of
size 𝑛 × 𝑓 by the degree of the node to achieve average pooling.

Figure 8. Proposed approach.

We use two multi-layer perceptrons (MLPs) to implement the GIN. Each MLP is a
fully connected feedforward network with a rectified-linear-unit (ReLU) activation func-
tion and 64 hidden units. The first MLP takes inputs of size 𝑓 × 1, so we need to collect
the outputs n times to get the full output of size 𝑛 × 64. This enables the network to han-
dle graphs with varying sizes, such as those with a dynamic number of machines. The
second neighboring layer performs the same operations mentioned previously.

The second neighboring layer repeats the same steps as the input neighboring layer,
except that it uses the output of the first MLP as the feature matrix. The graph pooling
performs average pooling to aggregate information from multiple nodes into one. How-
ever, it only averages the nodes in the action list 𝑨 (i. e. , |𝑨 | = 𝑐). This layer has an out-
put size of 1 × 64. The concatenating layer concatenates the average-pooled outputs and
the unaveraged outputs. To be able to concatenate, the outputs of the average pooling is
copied 𝑐 times to form a 𝑐 × 64 matrix.

The PPO network is also a multi-layer feedforward network. It takes 128 input values,
has 64 hidden units, and produces one output value at a time, corresponding to the current
node in the action list 𝑨 . Suppose that we feed the first row of the concatenated outputs
to the PPO network and get 𝑦 . Then, we feed the second row and get 𝑦 . We repeat this
process until we get 𝑦 . Next, we apply a softmax function to all y . Since the PPO net-
work only computes softmax for valid actions, this is equivalent to using an action mask
to exclude invalid actions [32].

To handle the dynamic change of machine number, we have to reconstruct the graph
and the node features whenever a machine goes online or offline at time 𝑡 = 𝑡 . We also
have to recalculate 𝑐 ,P

θ from 𝑡 = 0, using the previously chosen actions for 𝑡 𝑡 .
To train the PPO with a variable number of machines, we first collect the values of the
surrogate objective, the advantage estimator, and the entropy over the entire episode, and
then apply backpropagation with the collected values.

4. Experiments and Results
We designed two experiments to evaluate our proposed approach. The first experi-

ment compared our method with existing PDR methods. The second experiment tested
the generalization ability of our approach, using the trained model to solve DFJSP in-
stances of various sizes.

Figure 8. Proposed approach.

Information 2024, 15, 82 9 of 15

We use two multi-layer perceptrons (MLPs) to implement the GIN. Each MLP is a fully
connected feedforward network with a rectified-linear-unit (ReLU) activation function and
64 hidden units. The first MLP takes inputs of size f × 1, so we need to collect the outputs
n times to get the full output of size n × 64. This enables the network to handle graphs with
varying sizes, such as those with a dynamic number of machines. The second neighboring
layer performs the same operations mentioned previously.

The second neighboring layer repeats the same steps as the input neighboring layer,
except that it uses the output of the first MLP as the feature matrix. The graph pooling
performs average pooling to aggregate information from multiple nodes into one. However,
it only averages the nodes in the action list At (i.e., |At| = c). This layer has an output
size of 1 × 64. The concatenating layer concatenates the average-pooled outputs and the
unaveraged outputs. To be able to concatenate, the outputs of the average pooling is copied
c times to form a c × 64 matrix.

The PPO network is also a multi-layer feedforward network. It takes 128 input values,
has 64 hidden units, and produces one output value at a time, corresponding to the current
node in the action list At. Suppose that we feed the first row of the concatenated outputs
to the PPO network and get y1. Then, we feed the second row and get y2. We repeat this
process until we get yc. Next, we apply a softmax function to all yi. Since the PPO network
only computes softmax for valid actions, this is equivalent to using an action mask to
exclude invalid actions [32].

To handle the dynamic change of machine number, we have to reconstruct the graph
and the node features whenever a machine goes online or offline at time t = t0. We also
have to recalculate cmax,P

θ BL from t = 0, using the previously chosen actions for t < t0.
To train the PPO with a variable number of machines, we first collect the values of the
surrogate objective, the advantage estimator, and the entropy over the entire episode, and
then apply backpropagation with the collected values.

4. Experiments and Results

We designed two experiments to evaluate our proposed approach. The first experiment
compared our method with existing PDR methods. The second experiment tested the
generalization ability of our approach, using the trained model to solve DFJSP instances of
various sizes.

4.1. Experimental Setup

We randomly generated all the datasets used in the experiments. The processing time
of each task ranged from 1 to 99. We denoted the size of each problem as |J| × |M|. Initially,
each type of machines was set to |Mi|= n ± 20%, 1 ≤ i ≤ |M| with a minimum of 1, where
n = log2(|J|/|M|) + 1 is the average number of machines in all types. The number of
processes (i.e., adding or removing a machine) follows a non-standard asymmetric random
walk, with the step time inter-arrivals following an exponential distribution with mean(

1
λ

)
, where

λ =
|J|·|M|

n
, (2)

And where · is the multiplication. If an event occurs, a machine of type Mi has a

probability of
UMi−CMi
UMi−LMi

to add a machine and 1 − UMi−CMi
UMi−LMi

to remove a machine, where UMi

is the maximum number of machines of type Mi, CMi is the current number of machines of
type Mi, and LMi is the lower-bound of the machine, i.e., 1. We randomly generated a DFJSP
instance for each of the 10,000 training episodes. The test set contained 30 DFJSP instances.

The experiments were conducted through computer simulations. The programming
language was Python, and the deep learning package was PyTorch. The equipment and
software versions are listed in Tables 1 and 2.

Information 2024, 15, 82 10 of 15

Table 1. Equipment specifications.

Computer 1 Computer 2 Computer 3

Processor Intel Core i7-9700
3.00 GHz × 8

Intel Core i7-7700
3.60 GHz × 8

Intel Core i7-4770
3.40 GHz × 8

Memory 16 GB 40 GB 16 G
OS Windows 10 Ubuntu 18.04 Ubuntu 18.04

Table 2. Software version.

Library Version

PyTorch 1.13.1
OR-Tools 9.6.2534
Python 3.10

4.2. Experiment One

We compare our method with four traditional PDRs: Shortest Processing Time (SPT),
Most Work Remaining (MWKR), Flow Due Date per Most Work Remaining (FDD/MWKR),
and Most Operation Remaining (MOPNR). SPT is a common PDR in the industry, whereas
the others are the best PDRs on the Taillard test set [2]. This experiment evaluated the
performance of these four PDRs and our method.

In DFJSPs, each task has multiple machine options. However, the PDRs we compared
only had priority rules for tasks, not for machines. So, we introduced a second rule for
these PDRs: pick the machine that can start the earliest. This rule enhances the performance
of the PDRs.

We trained two models with FJSP datasets of sizes 6 × 3 and 15 × 5 and tested them
on the same-sized test sets. We compared our models with four conventional PDRs and
OR-Tools [33], a tool provided by Google for solving combinatorial optimization problems.
We limited the OR-Tools to have a maximum execution time of 600 s, as it took too long
to solve some instances. Table 3 shows the simulation results, where “Gap” indicates the
performance difference between OR-Tools and each method, “Time (s)” is the average
execution time of a method, and “Reschedule” is the average number of dynamic events.
Dynamic events change the number of online machines, requiring the rescheduling of all
the work after that point. If a machine to be removed is processing a task at that time, the
task needs to be interrupted and reassigned to another machine of the same type. We used
our approach to explore all dynamic events before OR-Tools solved the problem, so it knew
the number of online machines at any time. Therefore, OR-Tools did not need to handle
any dynamic events.

Table 3. Simulation results for experiment one.

Size Avg.
Mi

SPT MWKR FDD/MWKR MOPNR Prop. OR-Tools

6 × 3 2

Makespan 507.8 375.7 362.3 368.0 342.5 313
Gap 62.2% 20.0% 15.8% 17.6% 9.4% 0.0%

Time (s) 0.037 0.026 0.025 0.024 0.086 0.081
Reschedule 9.4 6.5 5.9 5.9 5.3 -

15 × 5 2.58

Makespan 1373.1 736.6 704.7 717.7 679.7 560.6
Gap 144.9% 31.4% 25.7% 28.0% 21.2% 0.0%

Time (s) 1.501 0.768 0.730 0.690 1.655 13.445
Reschedule 47.7 24.5 22.7 22.0 21.1 -

Table 3 shows that our method outperforms the existing PDRs. Our method is slower
than PDRs, but the execution time is reasonable. However, OR-Tools takes much longer
to solve larger problems. We notice that the Gaps of the compared methods grow much

Information 2024, 15, 82 11 of 15

larger in bigger problems. We believe this is because changing the number of machines
dynamically causes some machines to be idle whenever rescheduling happens. Recall that
a bigger problem has more machines of each type, and, therefore, a higher rescheduling
rate according to (2).

4.3. Experiment Two

We tested the generalization ability of our model by using the 15 × 5 model trained
in the first experiment to solve DFJSP instances with different sizes of jobs and machines.
Table 4 shows the results, where we added a row “ORT < 600” to show the percentage
of instances that OR-Tools could solve within 600 s. Table 4 reveals that OR-Tools takes
much longer time to solve larger problems. Thus, OR-Tools is not suitable for large-scale
problems. In fact, for 30 × 10 and 60 × 5 problems, the “ORT < 600” value was zero,
indicating unoptimized solutions.

Table 4. Simulation results for experiment two.

Size Avg.
Mi

SPT MWKR FDD/MWKR MOPNR Prop. OR-Tools

6 × 6 1

Makespan 1116.9 661.1 628.0 646.3 570.3 489.5
Gap 128.2% 35.1% 28.3% 32.0% 16.5% 0.0%

Time (s) 0.014 0.014 0.013 0.013 0.062 0.034
Reschedule 0.0 0.0 0.0 0.0 0.0 -
ORT < 600 100%

15 × 10 1.58

Makespan 3391.2 1333.3 1279.6 1240.2 1209.3 918.4
Gap 269.3% 45.2% 39.3% 35.0% 31.7% 0.0%

Time (s) 21.757 7.613 7.173 6.740 16.921 124.383
Reschedule 229.7 87.5 83.0 78.6 76.6 -
ORT < 600 100%

30 × 10 2.58

Makespan 4249.8 1613.9 1532.9 1493.6 1466.1 1358.0
Gap 212.9% 18.8% 12.9% 10.0% 8.0% 0.0%

Time (s) 75.657 25.667 24.342 23.099 34.357 600.000
Reschedule 318.9 117.8 111.1 104.7 103.7 -
ORT < 600 0%

60 × 10 3.58

Makespan 6327.3 2301.9 2229.7 2107.1 2086.2 4490.6
Gap 40.9% −48.7% −50.3% −53.1% −53.5% 0.0%

Time (s) 449.958 162.277 150.711 140.851 203.364 600.000
Reschedule 346.3 122.5 118.6 109.9 109.6 -
ORT < 600 0%

Table 4 also shows that our method outperforms the PDRs, and even OR-Tools, on
60× 10 problems. The performance gap between our method and the PDRs does not shrink
much as the problem size grows, suggesting that our method generalizes well.

4.4. Complexity and Execution Time

This subsection briefly discusses the execution time of the proposed approach. The
training phase took a few hours for the proposed approach. The training time is not very
important in actual application for two reasons. First, the scheduling agent can generalize
its ability to different problem sizes than the training one, so the training is not urgent,
and we can train the model offline at spare time. Second, the training time depends on
the number of training episodes. We trained the models in 10,000 training episodes in
the experiments, but the loss function reached the floor quickly within 5000 episodes.
Therefore, we can reduce the training time by cutting the number of training episodes.

Information 2024, 15, 82 12 of 15

We have already presented the results of the execution time for test cases in
Tables 3 and 4. The execution time is not linearly related to the problem size (|J|·|M|).
The L2D is a cascade of the GIN and PPO agent, which are both MLPs. The complexity of
the L2D, thus, depends on the number of input vectors to the GIN. The number of input
vectors equals the number of nodes in the graph. The number of nodes changes when a
machine goes online or offline. For example, Figure 9 shows that removing two machines
in a simple problem eliminates four nodes in the graph. The adjacency matrix (each row
is an input vector to the GIN) needs to be rebuilt after adding or removing nodes. It is
hard to estimate the complexity of rebuilding the adjacency matrix, so we cannot provide a
theoretical complexity analysis of the proposed approach.

Information 2024, 15, x FOR PEER REVIEW 12 of 16

30 × 10 2.58

Makespan 4249.8 1613.9 1532.9 1493.6 1466.1 1358.0
Gap 212.9% 18.8% 12.9% 10.0% 8.0% 0.0%

Time (s) 75.657 25.667 24.342 23.099 34.357 600.000
Reschedule 318.9 117.8 111.1 104.7 103.7 -
ORT < 600 0%

60 × 10 3.58

Makespan 6327.3 2301.9 2229.7 2107.1 2086.2 4490.6
Gap 40.9% −48.7% −50.3% −53.1% −53.5% 0.0%

Time (s) 449.958 162.277 150.711 140.851 203.364 600.000
Reschedule 346.3 122.5 118.6 109.9 109.6 -
ORT < 600 0%

4.4. Complexity and Execution Time
This subsection briefly discusses the execution time of the proposed approach. The

training phase took a few hours for the proposed approach. The training time is not very
important in actual application for two reasons. First, the scheduling agent can generalize
its ability to different problem sizes than the training one, so the training is not urgent,
and we can train the model offline at spare time. Second, the training time depends on the
number of training episodes. We trained the models in 10,000 training episodes in the
experiments, but the loss function reached the floor quickly within 5000 episodes. There-
fore, we can reduce the training time by cutting the number of training episodes.

We have already presented the results of the execution time for test cases in Tables 3
and 4. The execution time is not linearly related to the problem size (|𝑱| ∙ |𝑴| . The L2D is
a cascade of the GIN and PPO agent, which are both MLPs. The complexity of the L2D,
thus, depends on the number of input vectors to the GIN. The number of input vectors
equals the number of nodes in the graph. The number of nodes changes when a machine
goes online or offline. For example, Figure 9 shows that removing two machines in a sim-
ple problem eliminates four nodes in the graph. The adjacency matrix (each row is an
input vector to the GIN) needs to be rebuilt after adding or removing nodes. It is hard to
estimate the complexity of rebuilding the adjacency matrix, so we cannot provide a theo-
retical complexity analysis of the proposed approach.

Figure 9. Removing two nodes. Note that a renumbering of nodes is necessary after the removal of
machines for generating the adjacency matrix.

We observe that the MOPNR has the shortest execution time among the compared
approaches, while MRWK and FDD/MWKR also have a low execution time, slightly
higher than the MOPNR. The proposed approach needs relatively more computing time
but less than twice the execution time of the MOPNR. The longer execution time is a

Figure 9. Removing two nodes. Note that a renumbering of nodes is necessary after the removal of
machines for generating the adjacency matrix.

We observe that the MOPNR has the shortest execution time among the compared
approaches, while MRWK and FDD/MWKR also have a low execution time, slightly higher
than the MOPNR. The proposed approach needs relatively more computing time but less
than twice the execution time of the MOPNR. The longer execution time is a drawback, but
for moderate-sized problems, such as 30 × 10, the time difference is only about 10 s.

Finally, the DFJSP is an NP-hard problem [3], so finding the optimal solution for a
large-sized problem is practically impossible. The OR-Tools needs a very long execution
time to find a good solution for a large-sized problem, such as 60 × 10. As a result, it cannot
provide an acceptable solution within a reasonable time, such as 600 s, as Table 4 shows. In
contrast, the other methods can find better solutions in about 200 s. Therefore, OR-Tools is
only suitable for small problems or problems that do not need fast rescheduling results.

5. Discussions

Despite the success of the proposed approach, it has some limitations and implications.
First, we generated the simulation data artificially, not from actual industry data. Although
using artificial data in simulations is common [5,22], it still introduces uncertainty when
applying the proposed approach to a real problem. For example, the simulation assumes
that a certain distribution governs the online or offline status of available machines. This
may not be realistic, as planned machine maintenance and other factors can affect the
availability. Making artificial data more realistic is a challenging problem.

Second, Table 4 shows that the proposed approach loses its edge over conventional
approaches (in terms of % gap) when the number of machines in each type increases (i.e.,
Avg. Mi). This phenomenon makes sense. More machines in each machine type give
the algorithm more flexibility to make acceptable (or suboptimal) scheduling without too
many constraints. Therefore, we need more studies to know how to train an agent that can
perform better with larger problems and a higher Avg. Mi.

Information 2024, 15, 82 13 of 15

6. Conclusions

The DFJSP with dynamic machine availability has been rarely investigated in previous
studies, as most studies have focused on the dynamic job arrival. Moreover, many newly
developed algorithms used RL algorithms to select dispatching rules, making it hard for
learning-based improvement. In this paper, we propose a framework to tackle this issue
based on the modified end-to-end L2D framework to minimize the makespan. By using a
dynamic graph representation with a GIN, our framework can directly handle the dynamic
number of available machines within the framework. We also use an RL agent network
trained with PPO to select the task to be scheduled. By adding additional node features
and improved reward calculation, our method outperforms the traditional PDRs, such as
SPT, MWKR, FDD/MWKR, and MOPNR, under the dynamic rules we adopted, and it
generalizes well to different sizes of jobs and machines. To facilitate the academic research
on the proposed framework, the experimental code is publicly available.

From the experimental results, we observe that the proposed approach gradually loses
its advantage as the number of available machines in each type increases. To improve this
situation, we plan to add more features, such as those related to the number of machines, to
enhance the RL agent’s ability to allocate the same type of machines. Moreover, the features
may also include machine average utilization rate and task delay ratio to further improve
the performance of the method. Furthermore, in the current method, the DFJSP dynamic
events only affect the graph structure. Therefore, the agent is not aware of the occurrence
of the dynamic event, and, thus, cannot learn the scheduling rules more efficiently. It is
worthwhile to investigate the performance improvement by adding an event indicator to
the feature set, such as the time span since the last event or the type of event, to enable the
agent to learn the appropriate scheduling rules according to the indicator.

Currently, we only aim to minimize the makespan. In real working plants, other goals
are also important, and we can explore different objective functions to meet the production
goals, such as the work load balance between the machines and the product profit obtained
within the time. With such an exploration, we believe that the proposed approach can be a
useful tool for the manufacturing industry to solve various problems.

Supplementary Materials: The source code can be downloaded at: https://github.com/t110598027
hung1/scheduling_problem/tree/refactor, accessed on 23 January 2024.

Author Contributions: Conceptualization, C.-H.L. and S.D.Y.; methodology, Y.-H.C., C.-H.L. and
S.D.Y.; software, Y.-H.C.; validation, Y.-H.C., C.-H.L. and S.D.Y.; formal analysis, Y.-H.C., C.-H.L. and
S.D.Y.; investigation, Y.-H.C., C.-H.L. and S.D.Y.; resources, S.D.Y.; data curation, Y.-H.C.; writing—
original draft preparation, S.D.Y.; writing—review and editing, C.-H.L.; visualization, Y.-H.C.;
supervision, C.-H.L. and S.D.Y.; project administration, C.-H.L. and S.D.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code randomly generated test data for simulations.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
List of acronyms used in this paper.
Acronym Full name
DDQN Double deep Q learning
DQN Deep Q learning
DRL Deep reinforcement learning
EDD Earliest due date
FDD/MWKR Flow Due Date per Most Work Remaining

https://github.com/t110598027hung1/scheduling_problem/tree/refactor
https://github.com/t110598027hung1/scheduling_problem/tree/refactor

Information 2024, 15, 82 14 of 15

FJSP Flexible job-shop scheduling problem
FDJSP Dynamic flexible job-shop scheduling problem
GIN Graph isomorphism network
GNN Graph neural network
JSSP Job-shop scheduling problem
L2D Learning to dispatch
MDP Markov decision process
MLP Multi-layer perceptron
MOPNR Most operations remaining
PDR Priority dispatching rules
PPO Proximal policy optimization
ReLU Rectified linear unit
RL Reinforcement learning
SPT Shortest Processing Time

References
1. Rinnooy Kan, A.H.G. Machine Scheduling Problems: Classification, Complexity and Computations; Springer: New York, NY, USA, 1976.
2. Allahverdi, A. The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 2015, 246,

345–378. [CrossRef]
3. Job-Shop Scheduling. Available online: https://en.wikipedia.org/wiki/Job-shop_scheduling#NP-hardness (accessed on 18

December 2023).
4. Sels, V.; Gheysen, N.; Vanhoucke, M. A comparison of priority rules for the job shop scheduling problem under different flow

time-and tardiness-related objective functions. Int. J. Prod. Res. 2012, 50, 4255–4270. [CrossRef]
5. Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.S.; Chi, X. Learning to Dispatch for Job Shop Scheduling via Deep Reinforce-

ment Learning. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12
December 2020.

6. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
7. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal

Process. Mag. 2017, 34, 26–38. [CrossRef]
8. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
10. Sierla, S.; Ihasalo, H.; Vyatkin, V. A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air

Conditioning Systems. Energies 2022, 15, 3526. [CrossRef]
11. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
12. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
13. van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
14. Fonseca-Reyna, Y.C.; Martinez, Y.; Rodríguez-Sánchez, E.; Méndez-Hernández, B.; Coto-Palacio, L.J. An Improvement of

Reinforcement Learning Approach to Permutational Flow Shop Scheduling Problem. In Proceedings of the 13th International
Conference on Operations Research (ICOR 2018), Beijing, China, 7–9 July 2018.

15. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop
scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

16. Wang, Y.-F. Adaptive job shop scheduling strategy based on weighted Q-learning algorithm. J. Intell. Manuf. 2018, 31, 417–432.
[CrossRef]

17. Wang, H.; Sarker, B.R.; Li, J.; Li, J. Adaptive scheduling for assembly job shop with uncertain assembly times based on dual
Q-learning. Int. J. Prod. Res. 2020, 59, 5867–5883. [CrossRef]

18. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

19. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.
Eng. 2021, 159, 107489. [CrossRef]

20. Heger, J.; Voss, T. Dynamically Changing Sequencing Rules with Reinforcement Learning in a Job Shop System with Stochastic
Influences. In Proceedings of the 2020 Winter Simulation Conference, Orlando, FL, USA, 14–18 December 2020.

21. Turgut, Y.; Bozdag, C.E. Deep Q-network Model for Dynamic Job Shop Scheduling Problem Based on Discrete Event Simulation.
In Proceedings of the 2020 Winter Simulation Conference, Orlando, FL, USA, 14–18 December 2020.

22. Chang, J.; Yu, D.; Hu, Y.; He, W.; Yu, H. Deep reinforcement learning for dynamic flexible job shop scheduling with random job
arrival. Processes 2022, 10, 760. [CrossRef]

https://doi.org/10.1016/j.ejor.2015.04.004
https://en.wikipedia.org/wiki/Job-shop_scheduling#NP-hardness
https://doi.org/10.1080/00207543.2011.611539
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1145/3065386
https://doi.org/10.3390/en15103526
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1007/s10845-018-1454-3
https://doi.org/10.1080/00207543.2020.1794075
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.3390/pr10040760

Information 2024, 15, 82 15 of 15

23. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347v2.

24. Lei, K.; Guo, P.; Wang, Y.; Xiong, J.; Zhao, W. An End-to-end Hierarchical Reinforcement Learning Framework for Large-scale
Dynamic Flexible Job-shop Scheduling Problem. In Proceedings of the 2022 International Joint Conference on Neural Networks,
Padua, Italy, 18–23 July 2022.

25. Lei, K.; Guo, P.; Wang, Y.; Zhang, J.; Meng, X.; Qian, L. Large-scale dynamic scheduling for flexible job-shop with random arrivals
of new jobs by hierarchical reinforcement learning. IEEE Trans. Ind. Inform. 2024, 20, 1007–1018. [CrossRef]

26. Zhang, Y.; Zhu, H.; Tang, D.; Zhou, T.; Gui, Y. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent
manufacturing systems. Robot. Comput. Integr. Manuf. 2022, 78, 102412. [CrossRef]

27. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2008, 20, 61–80. [CrossRef] [PubMed]

28. Kim, B.H.; Ye, J.C. Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Front. Neurosci. 2020,
14, 630. [CrossRef] [PubMed]

29. A Job-Shop Scheduling Problem (JSSP) Solver Based on Reinforcement Learning. Available online: https://github.com/jolibrain/
wheatley (accessed on 18 December 2023).

30. Humphrey, E.J.; Bello, J.P.; Lecun, Y. Moving Beyond Feature Design: Deep Architectures and Automatic Feature Learning in
Music Informatics. In Proceedings of the 13th International Society for Music Information Retrieval Conference, Porto, Portugal,
8–12 October 2012.

31. Duan, L.; Zhan, Y.; Hu, H.; Gong, Y.; Wei, J.; Zhang, X.; Xu, Y. (Efficiently Solving the Practical Vehicle Routing Problem: A Novel
Joint Learning Approach. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, San Diego, CA, USA, 6–10 July 2020.

32. Tang, C.Y.; Liu, C.H.; Chen, W.K.; You, S.D. Implementing action mask in proximal policy optimization (PPO) Algorithm.
ICT Express 2020, 6, 200–203. [CrossRef]

33. OR-Tools. Available online: https://developers.google.com/optimization (accessed on 18 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2023.3272661
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1109/TNN.2008.2005605
https://www.ncbi.nlm.nih.gov/pubmed/19068426
https://doi.org/10.3389/fnins.2020.00630
https://www.ncbi.nlm.nih.gov/pubmed/32714130
https://github.com/jolibrain/wheatley
https://github.com/jolibrain/wheatley
https://doi.org/10.1016/j.icte.2020.05.003
https://developers.google.com/optimization

	Introduction
	Literature Review
	Proposed Approach
	Dynamic Flexible Job-Shop Scheduling Problem
	Markov Decision Process for Scheduling JSSP
	Graph Representation for the Proposed Approach
	Proposed Features for Each Node
	State Transition for the Proposed Approach
	Reward in the Proposed Approach
	Network Model of the Proposed Approach

	Experiments and Results
	Experimental Setup
	Experiment One
	Experiment Two
	Complexity and Execution Time

	Discussions
	Conclusions
	References

