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Abstract: This paper proposes a classification methodology aimed at identifying correlations between
job ad requirements and transversal skill sets, with a focus on predicting the necessary skills for
individual job descriptions using a deep learning model. The approach involves data collection,
preprocessing, and labeling using ESCO (European Skills, Competences, and Occupations) taxonomy.
Hierarchical classification and multi-label strategies are used for skill identification, while augmen-
tation techniques address data imbalance, enhancing model robustness. A comparison between
results obtained with English-specific and multi-language sentence embedding models reveals close
accuracy. The experimental case studies detail neural network configurations, hyperparameters, and
cross-validation results, highlighting the efficacy of the hierarchical approach and the suitability of
the multi-language model for the diverse European job market. Thus, a new approach is proposed
for the hierarchical classification of transversal skills from job ads.

Keywords: transversal skills; job ad analysis; deep learning models; ESCO skill classification; multi-
language sentence embeddings

1. Introduction

The field of text classification, a fundamental subdomain within the natural language
processing (NLP) field of machine learning (ML), has witnessed a remarkable evolution
in recent years. With the exponential increase in the textual data generated across vari-
ous domains, the need for effective text classification methods has become increasingly
pressing. Text classification is the task of assigning predefined labels or categories to
textual documents based on their content. This task holds immense importance across
various industries and applications, including but not limited to sentiment analysis, spam
detection, content recommendation, and news classification. The ability to automatically
organize and categorize large volumes of text can streamline information retrieval, enhance
decision-making processes, and enable efficient data management.

Traditional text classification methods rely on well-established techniques such as
term frequency–inverse document frequency (TF-IDF) representations and traditional ML
algorithms. TF-IDF measures the importance of each term within a document relative
to a corpus of documents, providing a numerical representation of textual data. Classic
ML algorithms, such as k-nearest neighbors, decision trees, naïve Bayes, or random forest,
process the TF-IDF vectors to identify patterns and relationships among terms and have
been successfully applied to text classification tasks.

While classic methods yielded commendable results, the emergence of deep learning
(DL) has brought a new era of text classification. DL models, i.e., neural networks, have
demonstrated unprecedented capabilities in handling the complexity and nuances of
natural language. One of the key breakthroughs in DL for text classification lies in the use
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of word and sentence embeddings that represent words as vectors in high-dimensional
spaces, capturing the semantic relationships between them. Sentence embeddings extend
this idea to encode entire sentences or documents into vector-based representations.

DL models use these embeddings to learn complex patterns and contextual informa-
tion within text data. Recurrent neural networks, e.g., long short-term memory (LSTM)
models, and more advanced architectures such as those based on Transformers have
achieved a state-of-the-art performance across a wide range of text classification tasks.

The motivation behind employing text classification for the identification of skills from
job advertisements is rooted in the ever-evolving job market dynamics and the imperative
need for efficient workforce matching. In today’s fast-paced and highly competitive job
market, where the demand for specific skills is continually changing, exploiting the power
of text classification offers several significant advantages.

First, it allows for precise talent matching. Job seekers possess a diverse range of skills
and employers have specific skill requirements for their open positions. Text classification
ensures that the right individuals with the exact skill sets are efficiently matched with job
opportunities that necessitate those particular competences. This results in reduced skill
mismatches, higher job satisfaction, and increased productivity.

Moreover, the job market is a dynamic entity characterized by rapid skill turnover due
to technological advancements and evolving industry needs. Text classification offers the
ability to perform real-time analysis of job descriptions and skill requirements. By staying
up-to-date with the latest trends and demands, organizations can rapidly adapt, ensuring
that their workforce remains competitive and aligned with market needs.

Furthermore, text classification optimizes resource allocation for human resources
departments and job search platforms. It automates the labor-intensive process of scanning
and categorizing skills from large numbers of job listings or CVs, thus saving valuable time
and effort.

Lastly, another compelling motivation is the identification of skill gaps. For job seekers,
text classification helps individuals pinpoint areas where they may lack necessary skills for
a specific role. This knowledge empowers them to proactively seek out relevant training or
education, fostering lifelong learning and career development.

Our contribution involves the development of classification models that accurately
represent the relationships between job ads and transversal skill bases. The goal is to
automate the identification of standardized transversal skills from the corresponding
phrases in job ad texts. This is a challenging task, considering that the manner in which
transversal skill requirements are expressed in job ads rarely matches standardized skill
names or identifiers from the skill base. We address this problem by developing, training,
and testing models based on neural networks, designed for the classification of job ads
according to the standardized transversal skills from the ESCO platform. To accomplish
this, we created our own dataset, where job ads are manually labeled based on the skills
mentioned in the respective text. We assign skill labels to each phrase in the job ad,
depending on whether or how transversal skill requirements are formulated in the phrase.
Our classifiers consider the hierarchical structure outlined in the ESCO platform, where
skills are organized on two levels, as follows: the higher level comprises more broadly
phrased skills with a wider context, while the lower level encompasses sets of subskills for
each top level skill, providing a more detailed specification.

The rest of the paper is structured as follows: In Section 2, we include a short survey
of the related literature. Section 3 details the proposed methodology, including data
preprocessing and our approach to hierarchical skill classification. In Section 4, we show
the experimental results and in Section 5 we provide a brief discussion of our findings. In
Section 6 we present the conclusions of this work.
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2. Related Work

In general, the biggest obstacles in classifying job ads and identifying relevant skills
can be summarized as follows: the availability of data, particularly pre-labeled sets of job
ads and the corresponding skills that can be used for training supervised classifiers; the
unstructured nature of many job ads, which feature a broad range of formats, phrasings,
different manners of expressing similar requirements, and vagueness when formulating
job requirements. These aspects cause the problem space to increase disproportionately
compared to the available data, making it tedious and difficult to properly preprocess
and standardize the training data, as well as to develop reliable classification models.
Consequently, skill identification is a multifaceted topic addressed in a variety of ways in
the related literature.

One of the more common and reliable methods for skill identification is skill counting.
Manual skill counting relies on expert readers to identify relevant skills in job ads. This can
be achieved without a knowledge base or using an already available skill set. The drawback
of such an approach is that it is time-consuming and tedious; however, the availability of
a prior list of skills to choose from makes the task easier for expert staff. The process can
also be automated if a skill base is available. The competences can be identified either by
Boolean indexing or by using a simple feature such as a word weight, which indicates the
importance of the skill phrasing. A common weighing method makes use of metrics such
as TF-IDF [1].

Early work in the direction of skill identification involved finding exact matches of skill
labels from existing skill bases in job ad phrasing. Such methods are simple to implement
and rely on searching for keywords or keyword combinations [2–4]. In the absence of a
skill base, skill counting mainly relies on the assessment of expert annotators. The topic
of manual or semi-automated content analysis has been a subject of thorough research,
since it has the distinctive advantage of also performing a qualitative search alongside
a quantitative one. Multiple studies employ content analysis for identifying job market
needs, though the general consensus is that manual annotation, while often more reliable,
is time consuming and ineffective for the systematic analysis of large bodies of text [5–8].

Multiple authors handle the skill search task by treating it as a topic modeling problem.
In topic modeling, the main themes of a text are learned in an unsupervised manner, by
determining and analyzing word distributions. The works that employ topic modeling
algorithms identify the most required skills among the topics of the job ad. A common
approach in this sense is to find the formulation of relevant skills in the most frequent
keywords of the identified topics. In this context, the authors of [9] use latent semantic
analysis (LSA) to carry out skill identification from job ads. LSA involves transforming the
job ad set into a term matrix. This matrix is then subjected to dimensionality reduction
via singular value decomposition, which results in sets of highly correlated keywords and
documents. The phrases formed by these keywords are the topics identified in the texts,
which are further subjected to data analysis techniques and expert evaluation. Similar work
is reported by [10–12], where latent Dirichlet allocation (LDA) is used to identify popular
keywords in job ads. Each document is transformed into a probability distribution of topics
and each topic is treated as a probability distribution of words, all sharing a common
Dirichlet prior [13].

Word embeddings have become increasingly popular in generating and classifying text.
Similar to word embeddings, skill embedding methods generate vector representations of
skill keywords, such that similar skills have a high similarity in the corresponding vector
space. The aim of most works is to develop embedding spaces that work with simple
similarity metrics, such as cosine or Jaccard similarities. In [14,15], the authors employ the
Word2vec model [16] to derive vector representations for skill contexts. Subsequently, these
vectors serve as inputs for a clustering algorithm, facilitating the grouping of aggregated
contexts in clusters.

In ref. [17], the authors use Word2vec embeddings to assess the similarity between the
skills mentioned in job ads and in professional standards. These standards encompass a set
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of principles, ethics, and behaviors obligatory for members of a specific profession. The
training of Word2vec on a job ad corpus enables the model to learn contextual information
from job ads, facilitating the clustering of skills based on their presence in the job ad texts.

The authors of [18] first identify skills explicitly, then infer implicit skills from job ads
using Doc2vec [19]. The inference process involves identifying similar job descriptions that
share common features such as location or company, assuming that they would also share
similar skills. Implicit skills, in this context, are those not explicitly stated but considered
important for a given position. Using document-level embeddings, the authors incorporate
inferred skills into those extracted directly from the job ads based on their similarities.

The authors of [20] introduce Skill2vec, a technique aimed at optimizing candidate skill
searches. Also inspired by Word2vec, Skill2vec maps skills into a vector space, revealing
skill relationships. Training involves a neural network where skills are treated as words.
This method creates a relationship graph among recruitment domain skills and can help
candidates in identifying skill gaps relative to job requirements, guiding them towards
suitable training opportunities.

In ref. [21], skill embeddings are determined using FastText [22], trained on job ads, to
ensure the coherence of the extracted skills. This approach handles out-of-vocabulary instances,
generating representations close to the original word, even when misspellings occur.

In ref. [23], the author addresses the evolving Norwegian job market’s needs by
introducing a method to identify groups of words that represent skills in the text of job
listings. The use cases, requirements, datasets, implementation, and design of such a
skill extracting algorithm are described. The work also mentions some issues related to
language ambiguity and semantic differences between datasets, which hinders precise
skill extraction and underscores the need for the computation of semantic similarities to
resolve ambiguity effectively. It also suggests leveraging other NLP techniques, such as
named-entity recognition (NER) and part-of-speech (POS) tagging.

A popular class of methods involves the use of supervised ML algorithms. In par-
ticular, deep neural networks have proven particularly useful for NLP tasks. Various
implementations and architectures have been developed in this direction, with promising
results, often proving superior to unsupervised approaches. While methods based on deep
neural networks have systematically demonstrated their reliability in capturing hidden
word relationships and exhibit promising outcomes for various NLP tasks, they also have
the downside of being data intensive. Achieving favorable results in the context of skill
identification demands large, labeled datasets and meticulous fine-tuning.

In ref. [24], the authors use an LSTM architecture pre-trained to perform NER, i.e., the
identification and classification of entities from unstructured text into predefined classes
such as names, locations, codes, percentages, and organizations [25]. A common practice
in this direction is to rely on manually labeled datasets comprising a large body of job
ads, though the accuracy of manual annotation can greatly affect the reliability of the
resulting models.

In ref. [26], the authors compare models based on convolutional neural networks
(CNNs) and LSTM for a sentence classification problem. The CNN model incorporates
word order criteria by applying a fixed-size window to the input array, consisting of words
and their corresponding word embeddings [27]. The LSTM architecture takes advantage
of the sequential nature of the text, addressing long-term dependencies and enabling
predictions on variable-length inputs.

The authors of [28] rely on advanced language models such as Bidirectional Encoder
Representations from Transformers (BERT) [29] for sentence classification in job ads. BERT
is specifically designed to pre-train deep bidirectional representations from unlabeled text,
considering both left and right contexts in all layers. Consequently, the pre-trained BERT
model is fine-tuned with a single additional output layer, without significant modifications
to the task-specific architecture. Other authors report the successful incorporation of BERT-
based models into the classification pipeline. In [30], a BERT-based sentence transformer
is used to perform initial feature extraction from job ad texts. Following a dimensionality
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reduction phase, a combination of NLP techniques and clustering methods is used to classify
the job ads in the corresponding vector space. Another application of sentence transformers
is by [31], who use the multilingual SBERT model [32] to determine vector representation of
job ad phrases. They demonstrate that the embedding deduced by the transformer model
is significantly more reliable at labeling skills in job ads than the alternative unsupervised
approaches, while achieving accuracies close to manual annotation.

In ref. [33], the authors opt for a multi-label text classification approach to assign skills
to each job description. Rather than classifying individual words in job descriptions, the
authors treat the job descriptions as indicators for the binary relevance of multiple skills. To
achieve this, they employ a BERT encoder and add an extra layer for multi-label classifica-
tion. Additionally, a correlation aware bootstrapping process is introduced, encompassing
structured semantic representations of skills and their co-occurrences to account for missing
skills mentioned in job ads by augmenting the number of training examples.

Paper [34] addresses the scarcity of timely, comprehensive information on EU employ-
ers’ skill needs by proposing a system that analyzes online job vacancies. It aims to create
a pan-European platform of these vacancies for insights into skill requirements, aiming
toward real-time skill demand analysis. This system employs ontologies and ML models to
process multilingual job postings across various European Union languages. ML algorithms
match the job content to predefined terms, refining classification accuracy through expert
validation and continuous ontology updates. In the proposed approach, each variable
(e.g., occupation or region) and language require a separate ML model training, which is
currently focused on occupation classification with plans to extend to other variables.

A few survey papers provide overviews and detailed analyses of the various methods
employed in the related literature for finding relevant sources of job ads in academia [35],
of knowledge extraction from job ads in the IT job market [36], or of skill identification
techniques in terms of methods used, classification granularity, and existing implementa-
tions [37].

3. Proposed Methodology

This study aims to propose a methodology for identifying meaningful relationships
between employers’ requirements in job ads and sets of transversal skills. To this extent,
we generate an original dataset consisting of job ads annotated using labels drawn from
the ESCO skill base. Additionally, our goal is to create a model that can effectively predict
the necessary skills for individual job descriptions. To accomplish this task, our strategy in-
volves the implementation of a deep learning model, considering that DL neural networks,
with their ability to capture complex patterns and associations within data, are well suited
for the nature of this problem. Our approach involves a comprehensive experimental study
focusing on the application of neural network-based classification models for identifying
transversal skills from job ads. The experimental pipeline includes several stages, as fol-
lows: initially, a preprocessing stage filters the job ads and divides them into sentences.
Subsequently, a dataset generation stage creates training and test data using a sentence
embedding model. Finally, the process involves generating and fine-tuning hierarchical
classification models for the two ESCO skill levels.

Figure 1 summarizes the process described above.

3.1. Data Preprocessing

The first step is the data collection and preprocessing phase. Using 219 job ads
downloaded from the EURES online platform [38], we devised an automated script that
parses the text, eliminates personal information, such as web addresses and non-standard
characters, and ultimately identifies the individual sentences in the ads.
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Since the job ads are posted by companies from different European countries, they
can be written in their respective national languages. As we will explain in the following
sections, two approaches are used. The first one is to translate them into English using
an automatic translation tool in order to use an English language sentence embedding
model. The second one is to use a multi-language sentence embedding model applied to
the original text.

These sentences then underwent manual labeling, for classifying them into skill
classes and subclasses, using the skills and competences framework provided by the ESCO
website [39]. ESCO, an initiative affiliated with the European Commission, serves as a
classification system for European Skills, Competences, and Occupations. The framework
includes six main classes of transversal skills, each with additional subclasses:

• T1—Core skills and competences;
• T2—Thinking skills and competences;
• T3—Self-management skills and competences;
• T4—Social and communication skills and competences;
• T5—Physical and manual skills and competences;
• T6—Life skills and competences.

The utilization of ESCO’s well-defined skill and competence framework ensures a
structured and standardized approach to skill labeling. By classifying sentences from job
ads into these skill classes, the ML models can enhance the job matching process and
facilitate a better alignment between job seekers and employers in the European job market.

A sample of the results of the automatic parsing and manual classification of the
dataset is presented in Figure 2. Each line corresponds to a sentence. The complete set of
information has several components, delimited with semicolons. The first component is
an identifier of the job ad and the second one is the identifier of the sentence in the job ad.
The third component is the actual sentence in the form of a list of plain words, without
punctuation marks or other identifiers. The last component includes the skills that the
sentence refers to. One can notice that each sentence can belong to several classes (Tx) or
subclasses (Tx.y). Also, there is a large number of sentences that do not represent transversal
skills (marked with 0).
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3.2. Hierarchical Skill Classification

We propose a hierarchical classification approach for the sentences extracted from the
job ads. Our methodology involves several key steps aimed at enhancing the precision of
skill identification and classification. In order to represent each sentence in a standardized
manner, we employ a pre-trained sentence embedding model implemented in the “Sentence
Transformers” library [32,40], based on the BERT architecture. This model transforms each
sentence into a 768-element vector that captures its meaning. In this way, the text input is
transformed into a numeric representation that can be used for further classification. The
number of total sentences (i.e., instances in the dataset) is 5208.

For the first level of classification, we separately create individual classification models
using neural networks for each type of competence (Tx). This results in the development of
six distinct models, each dedicated to determining whether or not a sentence contains a
specific type of competence. This addresses the fact that a single sentence can potentially
belong to multiple skill classes (Tx).

One of the significant challenges encountered while working with the dataset was the
great imbalance between sentences without skills and those containing skills. The majority
of sentences in job ads typically do not contain explicit references to transversal skills.
To mitigate this imbalance, we implement a data augmentation strategy; specifically, we
employ sentence cloning to augment the dataset by replicating the sentences that contain
skills to an extent where the positive and negative samples have approximately the same
number. This augmentation technique aims to improve the robustness and performance of
the classification models.

An alternative to simple cloning is paraphrasing, i.e., automatically creating other
sentences with different words but the same meaning for a given input sentence. This can be
performed, e.g., using the “Pegasus” library [41,42]. However, this procedure proved to be
time-consuming and the final results did not show improvements compared to the simple
cloning technique. Moreover, the paraphrasing model was created only for the English
language and this posed additional limitations for working directly with multi-language
models, as opposed to using English translations.

For the second level of the hierarchical classification, we employ a multi-label approach
to further refine the classification of sentences into subclasses (Tx.y). While generating
multiple single-label models is the more straightforward and easily interpretable approach,
it has the downside of not accounting for instances which belong to multiple classes, there-
fore oversimplifying the problem. Multi-label models have been successfully employed
for text classification tasks and, while more complex and difficult to train, provide a more
comprehensive representation of the relationships between classes and instances, acknowl-
edging that instances can belong to multiple categories. This level of classification aims
to provide more granular information about the specific competences referred to in the
sentences. However, this stage introduces several significant challenges. The very limited
number of instances available for each subclass affects both the ability to create meaningful
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distinct models and the generalization capabilities of the models. Also, there is a lack of
clear boundaries or distinctions between some of the subclasses, i.e., the same sentence
can be classified into multiple subclasses simultaneously. More specifically, we had 133 in-
stances (i.e., sentences) in T1, 238 instances in T2, 378 instances in T3, 395 instances in T4,
20 instances in T5, and 106 instances in T6. Therefore, we could not train separate models
for each subclass, as we did in the “level 1” classification.

In order to address these issues, we adopted a multi-label classification strategy that
allows a single sentence to be assigned to multiple subclasses simultaneously. One can
see some examples in Figure 3. In this case, for each sentence there are a number of noi
non-mutually exclusive outputs, where noi is the number of subclasses in class i. For the
six main classes, (no1, . . ., no6) = (3, 4, 4, 5, 2, 6). For example, the second line in Figure 3
contains a sentence that belongs to class T1 in the first level, and to T1.1 and T1.3 in the
second level. Since no1 = 3, a binary vector of three elements defines the desired output.
Since only T1.1 and T1.3 are relevant, the corresponding output vector is (1, 0, 1).
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In the previous stages of our research, we relied on a sentence embedding model
tailored for the English language to process and analyze job ads. However, the next step
was to employ a multi-language sentence embedding model directly, to be able to effectively
handle job ads written in their original languages. This broader linguistic coverage better
reflects the multilingual nature of today’s European job market, where job seekers and
employers often interact in languages other than English.

4. Experimental Results
4.1. “Level 1” Classification
4.1.1. The English Language Model

In the experimental study, we tested multiple configurations of neural networks for
the classification of the vectors representing sentences. In order to assess the performance of
a model, cross-validation was used. This method can assess the generalization capabilities
of a ML model, ensuring that it can make accurate predictions on unseen data and avoiding
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overfitting, which occurs when a model is too specific to the training data and performs
poorly on new, real-world examples. k-fold cross-validation is a widely used technique
for model evaluation and selection. In this method, the dataset is divided into k equally
sized subsets or “folds”. The model is trained k times, each time using a different fold as
the testing set and the remaining folds as the training set. This process helps to evaluate the
model performance for different partitions of the data. By averaging the results from the k
iterations, one can obtain a more reliable estimate of the model performance. k-fold cross-
validation also provides a way to tune the hyperparameters and to assess generalization
ability. In our experiments, we used k = 5.

The process of training neural networks involves addressing a considerable search
space encompassing network architecture, e.g., the number of hidden layers, neurons,
and activation functions, as well as hyperparameters such as the choice of the optimizer
(the optimization algorithm), learning rate, and regularization details. The multitude of
these variables results in an overwhelming number of potential configurations, render-
ing exhaustive exploration unfeasible. Consequently, employing a heuristic, empirical
approach becomes imperative to efficiently identify the best available options within this
vast parameter space.

We explored it by iterating through various configurations, initially favoring simpler
ones and progressively trying more complex architectures and conducting multiple trials
with parameter adjustments to estimate their impact.

For each configuration we repeated the training process five times and we computed
the average accuracy values for the testing sets. Although differences exist among different
runs because the data are randomly selected in the cross-validation folds, they were
typically less than 1% between the minimum and maximum obtained values.

In Table 1, we provide a description of the network architecture and hyperparameters
that were tested, the obtained accuracy values, and the primary motivation underlying the
selection of each parameter combination.

Table 1. Neural network configurations evaluated for the English dataset.

No. Trial Architecture and Hyperparameters Motivation

1 768: 128 (elu): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Simple architecture (one
hidden layer)

2
768: 1536 (tanh): 512 (tanh): 128 (tanh):

32 (tanh): 8 (tanh): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Complex architecture (five
hidden layers)

3 768: 20 (lrelu): 4 (lrelu): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Medium size architecture (two
hidden layers), strong

information compression in
the first hidden layer

4 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Medium size architecture (two
hidden layers), balanced
information compression

5 768: 81 (sigmoid): 9 (sigmoid): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Sigmoid activation function in
the hidden layers

6 768: 81 (tanh): 9 (tanh): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Hyperbolic tangent activation
function in the hidden layers

7 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 1000, η = 0.001, opt = RMSprop

Leaky ReLU activation
function in the hidden layers
and the RMSprop optimizer

8 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 1000, η = 0.01, opt = Adam Higher learning rate (0.01)
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Table 1. Cont.

No. Trial Architecture and Hyperparameters Motivation

9 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 10,000, η = 0.01, opt = Adam

Large number of training
epochs (10,000)

10 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 100, η = 0.001, opt = Adam

Small number of training
epochs (100)

In the column “Architecture and hyperparameters”, the network architecture is pre-
sented on the first line in the following format:

(number of inputs) :
(number of neurons in hidden layer 1) (activation function of the neurons in hidden layer 1) :
. . . the same for the other hidden layers . . . :
(number of outputs) (activation function of the neurons in the output layer)

(1)

The activation functions that we used are as follows: sigmoid (the unipolar sigmoid),
tanh (the hyperbolic tangent), elu (exponential linear unit), and lrelu (leaky rectified lin-
ear unit).

Then, the main hyperparameters are mentioned on the second line, as follows: n is the
number of training epochs, η is the learning rate, and opt represents the optimization algorithm.

For all configurations, the binary cross-entropy loss function was used, as it is better-
suited to classification problems.

The best results were obtained with balanced configurations, i.e., those which are
sufficiently complex to capture the underlying patterns of the data but without excessive
complexity that may lead to overfitting. This equilibrium extends to both the architectural
complexity of the network and the number of training epochs.

Furthermore, it is important to note that the best model varies between the different
classes of skills (Tx) and, therefore, different neural models are used in each specific case.

Figure 4 shows the best cross-validation results for the six “level 1” models corre-
sponding to the six main skill classes (Tx). One can see that the accuracy values for all
models are quite high, above 94%, with the best one reaching 99%. We should emphasize
that these values represent the averages obtained for the testing sets, not for the training
sets. Therefore, we can conclude that the “level 1” classification models are well suited for
the given task.

4.1.2. The Multi-Language Model

Our evaluation revealed that the performance results achieved using the multi-
language model were remarkably close to those obtained when using the English-specific
model. In this subsection we show the results for the “level 1” problem, but the hierar-
chical classification methodology designed here is independent of the specific sentence
embedding model. The network architectures and hyperparameters that were tested for
the multi-language sentence embeddings are presented in Table 2.

The results of the experiments, in terms of accuracy, are presented in Table 3. The
“Trial” column corresponds to the configurations in Tables 1 and 2. The rest of the columns
show the accuracy values obtained for the testing sets in the cross-validation procedure.
The best results for each skill class are highlighted in bold red. Still, one can see that
several models can give comparably good results. Therefore, the results that are within a
0.2% range from the best one are also marked in bold italics.
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Table 2. Neural network configurations evaluated for the multi-language dataset.

No. Trial Architecture and Hyperparameters Motivation

1 768: 128 (elu): 1 (sigmoid)
n = 1000, η = 0.001, opt = Adam

Simple architecture (one
hidden layer)

2 768: 128 (elu): 1 (sigmoid)
n = 1000, η = 0.01, opt = Adam Higher learning rate (0.01)

3 768: 128 (elu): 1 (sigmoid)
n = 1000, η = 0.01, opt = RMSprop RMSprop optimizer

4 768: 128 (elu): 1 (sigmoid)
n = 10,000, η = 0.01, opt = Adam

Large number of training
epochs (10,000)

5 768: 128 (lrelu): 1 (sigmoid)
n = 1000, η = 0.01, opt = Adam

Leaky ReLU activation
function in the hidden layer

6 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 1000, η = 0.01, opt = Adam

Medium size architecture (two
hidden layers), balanced
information compression

7 768: 81 (lrelu): 9 (lrelu): 1 (sigmoid)
n = 1000, η = 0.01, opt = RMSprop RMSprop optimizer

Table 3. Accuracy values obtained for the evaluated neural network configurations for the first
level classification.

English Language Model

Trial T1 T2 T3 T4 T5 T6

1 96.91 95.16 92.70 93.68 99.33 96.14

2 95.93 93.55 91.74 93.26 98.52 95.14

3 97.20 94.87 93.03 94.18 99.37 96.76

4 97.50 95.85 93.59 94.60 99.52 97.25

5 97.10 94.68 91.99 93.76 99.17 95.62

6 96.91 94.68 92.34 93.28 99.29 95.80



Information 2024, 15, 151 12 of 18

Table 3. Cont.

English Language Model

Trial T1 T2 T3 T4 T5 T6

7 97.45 95.91 93.59 94.78 99.54 97.33

8 97.48 96.04 93.74 94.84 99.50 97.14

9 97.48 96.24 94.07 94.43 99.58 97.43

10 95.35 90.00 89.55 89.19 97.81 91.03

Multi-Language Model

Trial T1 T2 T3 T4 T5 T6

1 97.14 94.71 92.92 93.26 98.93 96.01

2 97.54 89.11 93.66 94.08 99.03 96.95

3 97.79 95.61 93.80 94.69 99.20 96.70

4 97.56 95.86 93.97 94.67 99.04 96.97

5 97.82 96.01 93.89 94.83 99.27 97.23

6 98.02 95.82 94.12 94.90 99.24 97.08

7 97.98 95.97 94.04 94.56 99.39 97.02

As shown in Figures 4 and 5, the multi-language model has very close accuracy values
compared to the English language model. In Figure 5, we also include the relative difference
between the two models computed with the following equation:

rd =
am

ae
− 1 (2)

where am is the best accuracy obtained with the multi-language embeddings and ae is the
best accuracy obtained with the English language embeddings.
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One can see that the multi-language model is slightly better for the classes T1, T3, and
T4 and slightly worse for the rest, but the accuracy values are all within a 0.55% range.
Given the approximate nature of neural network-based classifications, we can conclude
that the quality of the results obtained in the two situations is basically the same. However,
the multi-language model has the advantage of flexibility and using it avoids the additional
step of detecting the original language and performing an automatic translation that may
even distort the original message to some extent. Therefore, it was selected as the default
model to be used for the classification of skills and also for the results of the second level
classification presented in the next subsection.

4.2. “Level 2” Classification

A similar approach was adopted for the “level 2” classification. However, “level
2” models are designed for multiple classes, as opposed to the binary classifiers used in
the case of “level 1”. Thus, a variable, class-specific number of neurons was used in the
output layer, denoted as no. Because the small number of training instances may lead to
overfitting, we also tested the effect of regularization. The corresponding factor, denoted as
λ, represents the regularization rate.

The evaluated neural network configurations are presented in Table 4.

Table 4. Neural network configurations evaluated for the second level classification.

No. Trial Architecture and Hyperparameters Motivation

1 768: 128 (lrelu): no (sigmoid)
n = 100, η = 0.001, opt = Adam

Simple architecture (one
hidden layer)

2 768: 128 (lrelu): no (sigmoid)
n = 100, η = 0.01, opt = Adam Higher learning rate (0.01)

3 768: 150 (lrelu): 30 (lrelu): no (sigmoid)
n = 100, η = 0.01, opt = Adam

Larger architecture (two
hidden layers)

4 768: 128 (lrelu): no (sigmoid)
n = 100, η = 0.01, λ = 10−5, opt = Adam Regularization

5 768: 128 (lrelu): no (sigmoid)
n = 1000, η = 0.01, λ = 10−5, opt = Adam

Larger number of training
epochs (1000)

6 768: 128 (tanh): no (sigmoid)
n = 100, η = 0.01, λ = 10−5, opt = Adam

Hyperbolic tangent activation
function in the hidden layer

7 768: 128 (lrelu): no (sigmoid)
n = 50, η = 0.01, λ = 10−5, opt = Adam

Smaller number of training
epochs (50)

8 768: 128 (elu): no (sigmoid)
n = 100, η = 0.01, λ = 10−5, opt = Adam

Exponential Linear Unit (ELU)
activation function in the

hidden layer

9 768: 128 (elu): no (sigmoid)
n = 100, η = 0.01, λ = 10−5, opt = RMSprop RMSprop optimizer

10 768: 150 (sigmoid): 30 (sigmoid): no (sigmoid)
n = 100, η = 0.01, λ = 10−5, opt = Adam

Larger architecture (two
hidden layers) with sigmoid

activation function in the
hidden layers

Table 5 presents the results of the experiments for the second level of classification.
The same conventions regarding colors and font styles as in Table 4 are used, as follows:
bold red denotes the best results, while bold italics represent results within 0.2% proximity
to the best. Unlike the results for the first level, the accuracy values for cross-validation are
lower here. The results for the training sets are not included, but they were all above 90%
and the general average across all trials and all skill subclasses was 95.5%.
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Table 5. Accuracy values obtained for the evaluated neural network configurations for the second
level classification.

Trial T1 T2 T3 T4 T5 T6

1 91.46 66.93 72.23 74.49 76.20 81.55

2 92.95 67.69 73.09 76.05 77.47 82.51

3 88.81 65.41 69.83 72.91 73.91 78.61

4 95.89 68.17 73.05 75.23 75.67 84.82

5 92.82 65.47 69.61 73.34 77.13 81.07

6 96.22 67.53 72.44 76.05 80.05 84.32

7 93.19 65.63 70.40 73.34 77.68 81.92

8 91.71 65.09 69.34 72.67 76.87 81.03

9 95.02 66.98 71.46 74.72 78.79 83.02

10 96.35 67.85 72.16 76.21 76.75 83.10

The average training and testing results in terms of accuracy, for the k = 5 cross-
validation folds are presented in Figure 6. Since this is a multi-label classification, the
accuracy value for an instance represents the average of the accuracy values obtained for
all outputs.
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In this case, one can notice that the testing performance is not as good as for the “level
1” task. It is likely that the root causes are the low number of instances, presented in Table 6,
and the ambiguity of the subclass membership.

Table 6. The total number of instances in each subclass.

T1 T2 T3 T4 T5 T6

T1.1: 106 T2.1: 99 T3.1: 186 T4.1: 169 T5.1: 8 T6.1: 8

T1.2: 7 T2.2: 101 T3.2: 176 T4.2: 181 T5.2: 13 T6.2: 10

T1.3: 29 T2.3: 137 T3.3: 94 T4.3: 209 T6.3: 15
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Table 6. Cont.

T1 T2 T3 T4 T5 T6

T2.4: 107 T3.4: 122 T4.4: 142 T6.4: 31

T4.5: 54 T6.5: 32

T6.6: 33

5. Analysis and Discussion

The experimental results show that our models generally perform well in identifying
transversal skills within job ads, considering the limited available data. In particular,
the high accuracies of the “level 1” models allow the reliable screening of job ads that
are lacking in phrases containing transversal skills, which we found to be in the vast
majority. Identifying individual transversal skills requires data in an amount that can
sufficiently cover the space of possible skill-related phrasings. Currently, our “level 2”
models achieve high accuracies for the T1 category, which focuses on language skills. In
this case, the phrasings are generally consistent (e.g., “Has good knowledge of [language]”
or “A good grasp of [language] is beneficial”). High accuracy is also achieved for the
T6 category, where, similarly, the phrasings found in job ads are more consistent than
for other categories. In most cases, some of the best results were obtained using neural
networks consisting of two hidden layers with descending sizes. We found that extending
the architecture with additional layers of greater sizes did not improve the accuracy, instead
resulting in overcomplicated models. However, especially in the case of “level 2” models,
we surmise that a far greater improvement would be achieved with a broader dataset with
better coverage of possible phrasings, than by tweaking our current models.

6. Conclusions

The present work was carried out in order to facilitate the identification of correla-
tions between the phrasings from job advertisements and transversal skills, in order to
predict the required skills from individual job descriptions. This is achieved by developing
classification models according to the hierarchical skill base from the ESCO platform. The
comparison between results obtained with English-specific and multi-language sentence
embeddings reveals a comparable performance, validating the adaptability and efficiency
of multi-language embeddings, subsequently adopted as the default model due to its
flexibility. At the forefront of our approach lie the “level 1” and “level 2” hierarchical classi-
fications, each showcasing high accuracy, yet “level 2” exhibits a lower cross-validation
accuracy, attributed to subclass ambiguity and the limited number of instances.

The main contribution of this approach consists of developing a methodology based
on neural networks for automating the identification of transversal skill requirements
from job ad texts, considering the standardized skill set from the ESCO platform. The
key innovations include an original dataset comprising manually labeled job ads where
specific skills are referenced. The resulting data are used to train, validate, and test multiple
neural network configurations, so that the resulting models can be reliably used for job
ad classification. Furthermore, our classifiers account for the ESCO hierarchical structure,
distinguishing between broader top-level skills and more specialized subskills.

We also acknowledge certain limitations of our work. The accuracy of our models and
their capability for generalization are susceptible to improvement. Currently, only ESCO
skills can be identified using our approach, since we train our models based on standard
identifiers from the ESCO platform. In terms of classifier performance, so far, the main
constraining factor has been the limited availability of data. Consequently, future work will
take place on multiple fronts. We intend to improve subclass identification by developing
higher-accuracy classifiers that can handle the ambiguities often found in job ad texts. We
anticipate that employing advanced augmentation techniques may address the limitations
of our current models and enhance their capability for generalization. Also, investigating
multi-task learning approaches and enabling the simultaneous classification of multiple
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subclasses, could provide a better understanding and finer granularity in skill identifica-
tion. Exploring domain adaptation techniques to address linguistic variations across job
descriptions in different languages remains very important. Additionally, investigating
interpretable models or explainable AI methodologies can aid in understanding model
decisions, fostering trust and applicability in real-world scenarios. Collaborations with
industry partners for larger datasets and validation in diverse job markets would further
validate the efficacy of the proposed solution.
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