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Abstract: Waterfowl populations monitoring is essential for wetland conservation. Lately, deep
learning techniques have shown promising advancements in detecting waterfowl in aerial images. In
this paper, we present performance evaluation of several popular supervised and semi-supervised
deep learning models for waterfowl detection in aerial images using four new image datasets
containing 197,642 annotations. The best-performing model, Faster R-CNN, achieved 95.38% accuracy
in terms of mAP. Semi-supervised learning models outperformed supervised models when the same
amount of labeled data was used for training. Additionally, we present performance evaluation of
several deep learning models on waterfowl classifications on aerial images using a new real-bird
classification dataset consisting of 6,986 examples and a new decoy classification dataset consisting of
about 10,000 examples per category of 20 categories. The best model achieved accuracy of 91.58% on
the decoy dataset and 82.88% on the real-bird dataset.

Keywords: aerial images; waterfowl detection; waterfowl classification; deep learning; computer
vision

1. Introduction

The audience for this paper should be machine learning and data science professionals
who are interested in developing deep learning models for wildlife management and
research. Effective management of waterfowl populations is pivotal in the decision-making
framework outlined by the Missouri Department of Conservation’s Wetland Planning
Initiative [1]. Managers currently employ diverse methods, from informal observations to
structured transect counts, for monitoring waterfowl. However, the lack of standardized
monitoring hampers comparability across locations and diminishes collective learning for
statewide management decisions. Accurate classification of waterfowl using UAS imagery
requires an extensive library of annotated images and a more complete assessment of
performance among alternative machine learning approaches than have currently been
completed. Our work assesses the potential of using Uncrewed Aircraft Systems (UAS)
and deep learning techniques to enhance waterfowl population monitoring [2].

Our previous paper [3] aimed to present aerial-image datasets and to apply deep
learning models to detect and classify waterfowl in these datasets. The focus of the
previous paper was on deep learning on waterfowl detection, while limited works have
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been presented on waterfowl classification. As an extension of our previous paper, this
paper presents our creation of the newest aerial-image datasets and the adaptation and
evaluation of advanced deep learning methods to detect and classify waterfowl in aerial
images. Between 2020 and 2022, we conducted 57 trips to capture real waterfowl imagery
and an additional 5 trips specifically for waterfowl decoy imagery across 10 conservation
areas in Missouri. The distribution of these conservation areas is as shown in Figure 1.
Employing DJI Mavic Pro 2 drones and a custom drone-path-planning app, we captured
images at various altitudes (15 to 90 m) and in diverse lighting conditions (Sunny and
Cloudy), resulting in thousands of aerial images in varying contexts.

Figure 1. A map of Missouri with star marks to indicate the distribution of the habitats in which we
conducted the waterfowl survey.

To create labeled datasets for machine learning, we used a server-based LabelMe
program to collaboratively label the waterfowl instances in the aerial images. This involved
generating labels (bounding boxes) around the contours of the waterfowl instances. We
labeled 197,642 waterfowl across 1237 images for training and assessing deep learning mod-
els for waterfowl detection and classification. However, there were still over 100,000 aerial
images unlabeled. We created an unlabeled detection dataset from these images, which
served as the training data for our semi-supervised models.

For the waterfowl classification, we created a new labeled decoy classification dataset
containing around 10,000 examples and a new labeled real-bird classification dataset by
cropping individual waterfowl from aerial images captured at a 15 m altitude by a drone.
Additionally, we selected a subset of model-filtered waterfowl crops from the images
captured at a 15 m altitude in the unlabeled detection dataset, to create an unlabeled classi-
fication dataset for training semi-supervised models. In total, the waterfowl classification
dataset comprised 6989 labeled waterfowl crops and 235,542 unlabeled waterfowl crops.

The main contributions of this paper are as follows:

1. We created three new labeled datasets specifically designed for waterfowl detection in
aerial images, along with a new dataset for waterfowl classification in aerial images.

2. Through rigorous evaluation using authentic waterfowl datasets, we assessed the
efficacy of cutting-edge supervised deep learning models for both waterfowl detection
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and classification. Our analysis yielded notably accurate outcomes, demonstrating
the models’ robust performance in real-life scenarios.

3. We trained and evaluated semi-supervised learning models for waterfowl detection
and classification. Our experiments’ results showed an improvement in detection and
classification accuracy.

2. Related Work
2.1. Deep Learning Methods for Object Detection

There are two main types of deep learning models for image object detection: one-stage
detectors and two-stage detectors. Two-stage detectors, exemplified by Faster R-CNN [4],
Mask R-CNN [5], and EfficientDet [6], function by proposing regions through a dedicated
network and subsequently classifying those regions via an independent network. Faster
R-CNN, a popular two-stage detector, integrates Region Proposal Network (RPN) for
proposals generation, sharing convolutional layers with the object detection network. It
also employs a Feature Pyramid Network (FPN) to facilitate multi-scale proposal generation,
with specific anchor size adjustments optimized for detecting smaller objects, such as birds
in aerial images.

In contrast, one-stage detectors, such as RetinaNet [7] and SSD [8], operate as end-
to-end deep learning models. While slow in speed, two-stage detectors often offer more
accurate predictions. For instance, RetinaNet, a popular one-stage detector, enhances
prediction accuracy through focal loss, performing direct regression and classification on
individual anchor boxes derived from the feature map. The YOLO (You Only Look Once)
models, such as YOLOv1 [9] and the recent YOLONAS [10], are well-known one-stage
detectors. For example, YOLOv5 [11] demonstrated remarkable performance in 2021, while
YOLONAS [10] attained state-of-the-art (popular) performance in 2023.

Transformer-based object-detection models, such as Detection Transformer (DETR),
have shown promising performance. DETR [12], notable for being the first end-to-end
transformer-based object detector, achieved comparable performance to Faster R-CNN
without the need for Non-Maximum Suppression (NMS) methods to reduce duplicated
proposals. Deformable DETR [13] further enhanced DETR’s convergence time by focusing
on sparse spatial positioning. The state-of-the-art model CODETR [14] has surpassed others
in the COCO detection leaderboard. A key innovation of CODETR lies in its application of
auxiliary heads to increase the number of samples in each training batch.

In the domain of aerial bird detection, the DeepForest Bird Detector, developed by the
Weecology lab at the University of Florida [15], is a leading RetinaNet-based model. Trained
on extensive drone-captured bird images worldwide, this model served as a baseline for
evaluating the bird-detection models developed in our study.

Semi-supervised learning techniques, like Mean Teacher [16], utilize unlabeled data
to bolster the performance of supervised learning. In the student–teacher model, these
methods initially generate predicted labels for unlabeled images through labeling functions
or existing models trained on labeled data. Subsequently, an object detector is trained,
using images containing both accurate and predicted (potentially inaccurate) labels. An-
other approach involves concurrent training of a detection neural network on labeled and
unlabeled images, utilizing the consistency of the predictions as an additional learning ob-
jective [17]. Soft Teacher [18], an end-to-end semi-supervised object-detection model based
on Faster R-CNN, diversifies input images by applying weak augmentation for the teacher
model and strong augmentation for the student model. It also employs a box-jittering
technique to select reliable pseudo-boxes for regression learning. Addressing imbalanced
foreground and background pseudo-labels during training, Unbiased Teacher [19] imple-
ments focal loss and Exponential Moving Average (EMA) training, effectively mitigating
the data-imbalance issue.
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2.2. Deep Learning Methods for Image Classification

The objective of image classification is to predict the categories of distinct objects in
images. In the past decade, deep learning methods in image classification have attained
significant advancements since 2012 [20]. Numerous deep learning models have been
introduced, consistently delivering improved performance [21,22].

ResNet [23] is a highly successful image-classification model, specifically tackling the
vanishing gradient challenge within deep neural networks by introducing a framework for
deep residual learning. EfficientNet [24] introduced the compound coefficient technique.
Unlike random scaling of network depth and width, this technique harmonizes width,
depth, and resolution dimensions using a constant ratio, thereby effectively balancing
the model’s overall architecture. MixMatch [25] is a semi-supervised classification model
published in 2019. MixMatch applies k-rounds augmentation to original images and
employs a sharpening algorithm to generate distinct pseudo-labels for them. Both labeled
and unlabeled data are incorporated into the training process, with prediction consistency
serving as the guiding supervision. FixMatch [26] is another semi-supervised classification
model. It employs a blend of consistency regularization and pseudo-labeling within its
semi-supervised training methodology. Pseudo-labels, serving as the supervision for
predictions on strongly augmented unlabeled images, are generated from the model’s
output on weakly augmented unlabeled images.

3. New Waterfowl Aerial-Image Datasets
3.1. Waterfowl-Detection Datasets

From images collected in Missouri conservation areas, we labeled 1237 aerial images
(drone altitude 15–90 m) with 197,642 waterfowl and decoy labels and created four new
waterfowl-detection datasets: Bird-G, Bird-H, Bird-I, and Bird-J, as shown in Table 1. These
datasets were categorized based on the Missouri conservation areas from which the aerial
images were collected. Compared with datasets Bird-A to Bird-F, these datasets are more
practical as they encompass data collected across various seasons and altitudes, thus
enhancing their comprehensiveness. The number of images, number of birds, drone flight
altitudes, and target objects of each dataset are given in the table. We then divided each
waterfowl-detection dataset into subsets of training (60%), validation (20%), and test (20%).
In addition, we selected over 11,021 unlabeled aerial images to form an unlabeled dataset
for semi-supervised learning experiments.

Table 1. Summary of waterfowl-detection datasets created based on collected aerial images.

Dataset Name No. of Images No. of Birds Altitude (m) Object

Bird-G 181 62,758 15–90 Birds
Bird-H 177 16,738 15–90 Decoys
Bird-I 171 7058 15 Birds
Bird-J 708 111,088 15–90 Birds

Unlabeled-K 11,021 Unknown 15–90 Birds

After the division into training, validation, and test subsets of Bird-G, Bird-I, and
Bird-J, we combined the labeled datasets to form a big dataset named ’real-bird dataset’.
This dataset was used in evaluating model performance across various model and training
parameters. While annotating waterfowl instances, we also annotated the habitat and
weather conditions of the aerial images. The testing data encompassed images captured
at four different altitudes (15, 30, 60, and 90 m) in 11 distinct habitat conditions (i.e.,
HarvestedCrop, Ice, Land, Lotus, etc.) and two weather conditions (Cloudy and Sunny).

3.2. Waterfowl-Classification Dataset

We manually labeled the categories of waterfowl in the Bird-H and Bird-I datasets to
create a real-bird classification dataset and a decoy-bird classification dataset. The real-bird
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classification dataset comprises 6986 waterfowl image crops—individual birds cropped
from 15 m images in the Bird-I dataset. The images belong to 20 categories, including
19 waterfowl categories and 1 ‘Unknown’ category. Figure 2 shows the distribution of
the waterfowl images across the 20 categories. These category labels have been assigned
with high confidence by waterfowl experts within our team. The dataset division between
the training and test sets for the real-bird classification dataset mirrors that of the Bird-I
detection dataset, with a ratio of 5:1. However, it is important to note that this proportion
may not be consistent across all classes.

To create an unlabeled training dataset for semi-supervised learning, we ran a pre-
trained YOLOv5 model on all the images in the Unlabeled-K dataset to extract crops of
bird images and filtered out low-quality crops using a confidence threshold of 0.5. This
process yielded an unlabeled training dataset of 235,452 bird crops. While it is important to
acknowledge that some crops containing waterfowl instances may be mistakenly removed,
potentially reducing the transferability of the model to new datasets, these filtering methods
can significantly decrease the number of crops without waterfowl.

Figure 2. Distribution of waterfowl image examples in training and test sets across 20 categories in
the real-bird classification dataset.

The decoy-bird classification dataset contains around 10,000 decoy-bird crops from
images in the Bird-H dataset. There are 10 different bird categories for images taken at four
different heights. Considering the limited number of waterfowl instances, we divided the
dataset into training and test sets and ignored the validation set. In the test set, we ensured
an equal number of examples across all classes. The remaining examples were placed in the
training set. In the case of the 90 m subset, we excluded the ‘female wigeon’ and ‘female
pintail’ classes due to their limited number of images, which fell below 10, making them
too small for reliable analysis. To investigate the impact of habitat on detection accuracy,
we used three habitat subsets representing OpenWater, StandingCorn, and MoistSoil. Each
subset was further divided into training and test sets, using the 7:3 ratio.

4. Methods

We applied some state-of-the-art deep learning methods to detect and classify water-
fowl in drone images and compared their performances under various conditions.

4.1. Deep Learning Models For Waterfowl Detection

We applied both supervised models—including DeepForest Bird Detector, RetinaNet,
Faster R-CNN, YOLOv5, and YOLONAS—and a semi-supervised model, Soft Teacher,
to our waterfowl detection. The waterfowl objects in our datasets fall within the small-
to-medium object category in object detection by the COCO [27] dataset guidelines. The
bounding-box sizes for the waterfowl ranged from 18 × 18 pixels to 94 × 89 pixels.
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During the Faster R-CNN training, we adjusted the initial size of the anchor boxes
from [32, 64, 128, 256, 512] to [8, 16, 32, 64, 128] to align with typical waterfowl sizes. To
accommodate higher waterfowl density, the RPN positive-sample fraction was increased
from 0.5 to 0.8 and the RPN batch size from 256 to 512 to generate more positive samples
in the Region Proposal Network training. The training parameters were set to 100 epochs,
with early-stop tolerance of 30, a learning rate of 0.001, and a batch size of 4 for all the
models. For input uniformity across the deep learning models, we cropped each training
image into multiple non-overlapping 512 × 512 pixel images, facilitating training across
various models.

During testing, we initially cropped each test image into 512 × 512 pixel images,
which were then fed into the trained deep learning models. The resulting detections were
aggregated to form predictions for the original test images. Performance metrics were
computed based on these predictions and their corresponding ground-truth labels. For the
semi-supervised detection models, unlabeled image crops in the Unlabeled-K dataset were
prepared by cropping all the original aerial images into 512 × 512 pixel images.

4.2. Deep Learning Models for Waterfowl Classification

For the waterfowl classification, we applied two supervised classification models,
EfficientNet and ResNet, and two semi-supervised classification models, MixMatch and
FixMatch. After some basic parameter tuning by exploring a range of parameter values,
we selected parameters that yielded good results across all of our experiments. In training,
we used data augmentation that included random rotation and random horizontal flip. We
tested two backbones, WiderResNet and ResNext, for the semi-supervised models. Across
all the models, we set the training epochs to 300, the learning rate 0.0001, and the batch size
to 32. Regarding the semi-supervised models, each training batch comprised 16 labeled and
16 unlabeled images.

4.3. Data Processing

We collected thousands of RGB aerial images featuring waterfowl and decoys, using
a DJI Mavic Pro 2 drone across various conservation areas in Missouri. This drone has a
20 MP 1-inch CMOS sensor, providing a 66-degree field of view and images at a resolution
of 5472 × 3648 pixels. For the waterfowl detection, we cropped each aerial image into
512 × 512 crops with an overlap of 20%. For the waterfowl classification, we resized
the sizes of the waterfowl crop images to different sizes according to the altitudes of
the drone-captured images. That is, we resized the crops into 128 × 128 pixels for 15 m
images, 64 × 64 pixels for 30 m images, and 40 × 40 pixels for 60 m images. For the semi-
supervised models (FixMatch and MixMatch), we resized the waterfowl crop images to
32 × 32 pixels to match the input requirements of WiderResNet, the backbone of the two
semi-supervised models.

4.4. Evaluation Metrics

When evaluating the detection performance, we used Precision, Recall, F1, and
mAP30 [2]:

Precision =
tp

tp + f p
, Recall =

tp
tp + f n

, (1)

where tp is true positive and f p is false positive.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

. (2)

IoU =
Intersection area o f two bounding boxes

Union area o f two bounding boxes
. (3)
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Note that mAP stands for mean Average Precision and that mAP30 is the mean
Average Precision when the Intersection of Union (IoU) threshold is 30%.

When evaluating the classification performance, we used classification accuracy.

5. Experimental Results

The experiments were run on a Dell AlienWare desktop with Nvidia RTX 2070 GPU
and 8 GB of memory.

5.1. Performance of Detectors Trained Using Individual Datasets

In this experiment, we separately applied Faster R-CNN, YOLOv5, YOLONAS, and
Soft Teacher to each dataset. To elaborate, using the Bird-G dataset as an example, we
trained each deep learning model using its allocated training and validation sets. Subse-
quently, the model’s performance was assessed and reported based on its test set.

Table 2 compares the mAP30 performances of four models on four datasets. YOLONAS
was the best on average, reaching 86.66% mAP. Faster R-CNN and SoftTeacher were slightly
worse than YOLONAS. YOLOv5 was the worst, only 77.16%, mainly due to its poor
performance on Bird-H. None of the models performed the best across all datasets.

Table 2. Test performances of individually trained detection models, in terms of mAP30 (%).

Faster R-CNN YOLOv5 YOLONAS SoftTeacher

Bird-G 89.76 89.42 86.62 88.73
Bird-H 81.77 52.14 91.52 78.56
Bird-I 94.57 88.48 89.2 95.54
Bird-J 73.60 78.61 79.23 71.43

Average 84.92 77.16 86.66 83.31

5.2. Performance of Detectors Trained Using All Datasets Combined

In this experiment, we trained each detection model using the combined training
images from all the detection datasets. For fair comparison, we used the same parameters
when training the detection models: 100 epochs, learning rate 0.01, and batch size 2. Then,
we evaluated these trained models on the test set of each dataset. One exception was Deep-
Forest Bird Detector. We did not re-train it and simply used the pre-trained weight from its
public release.

Table 3 compares the mAP30 performances of six models on four datasets. Again,
YOLONAS was the best on average, reaching 84.3% mAP. The pre-trained DeepForest Bird
Detector was the worst, only 64.64%. None of the models performed the best across all
datasets. YOLONAS was the best on Bird-H. YOLOv5 was the best on Bird-G and Bird-J.
Faster R-CNN was the best on Bird-I.

We compared the results in Table 3 with those in Table 2, to assess the feasibility of
training a generic model capable of achieving performance comparable to models trained on
individual datasets. However, the results indicate that generic models generally perform
worse than those trained on individual datasets, in terms of average mAP30, with the
exception of YOLOv5. We observed that YOLOv5 performed less effectively on small
datasets (Bird-H) during training. Increasing the number of training images can improve
its performance.
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Table 3. Test performances of detection models trained using all datasets, in terms of mAP30 (%).

DeepForest RetinaNet Faster
R-CNN YOLOv5 YOLONAS Soft

Teacher

Bird-G 76.60 89.69 89.67 91.08 84.56 88.56
Bird-H 55.65 81.69 82.88 68.78 88.11 82.45
Bird-I 77.41 85.48 88.85 87.07 87.57 84.46
Bird-J 48.93 74.71 74.48 88.98 76.97 72.20

Average 64.64 82.89 83.71 83.97 84.30 81.91

Table 4 shows the training and inference times of these models. The semi-supervised
model Soft Teacher was the slowest in training, about 30 times slower than RetinaNet,
17 times slower than YOLOv5 and YOLONAS, and 4 times slower than Faster R-CNN. In
terms of inference time, Soft Teacher and Faster R-CNN had the same speed, about 4 times
slower than the other models.

Table 4. Comparison of training and inference times (in seconds) of detection models. The models
were trained for 1000 iterations. Inference time was for one drone image.

DeepForest RetinaNet Faster
R-CNN YOLOv5 YOLONAS Soft

Teacher

Training - 36 247 59 58 1014
Inference 0.9 0.9 4.3 1.1 1.0 4.2

Figure 3 shows an example of the detection results of DeepForest Bird Detector and
Faster R-CNN on an image of a flooded corn field. These results were generated by setting
the models’ confidence threshold to 0.3.

D
ee
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or
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(a) DeepForest Inference. F1 = 0.328.
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er
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(b) FasterRCNN Inference. F1 = 0.841.
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V

5

(c) YOLO Inference. F1 = 0.943.

Y
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N

A
S

(d) YOLONAS Inference. F1 = 0.901.

Figure 3. Detection results of the DeepForest Bird Detector: (a) Faster R-CNN. (b) YOLOV5. (c) YOLONAS.
(d) An image of a flooded corn field. In each image, green boxes denote True Positive (TP) predictions,
yellow boxes denote False Positive (FP) predictions, and red boxes denote False Negative (FN)
predictions.
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To study the influence of environmental factors, e.g., habitats and light conditions, on
detection accuracy, Table 5 compares the performances of those detectors trained using all
datasets on images captured in different habitats and light conditions. The performance of
those detectors exhibited significant variations, ranging from a low of 30% to a high of above
90%. For instance, in the Ice-habitat case, Faster R-CNN and RetinaNet achieved 99.05%
and 89.76%, respectively, under Sunny conditions, but dropped to 70.68% and 34.28% under
Cloudy skies. In comparison, YOLOv5 and YOLONAS performed consistently well in the
Ice case under both Sunny and Cloudy skies. In the Land-habitat case, Faster R-CNN was
the best, reaching 95.82% in Sunny conditions but only 74.29% in Cloudy conditions.

As the results show, for most of the habitats the detectors performed better on Sunny
images. Yet, in the cases of the Wooded, Moist Soil, and StandingCorn habitats, most of the
classifiers performed better on Cloudy images.

Table 5. Test performances of detectors trained using all datasets combined in terms of mAP30 (%)
on bird images in different habitat and light conditions.

Faster R-CNN YOLOv5 YOLONAS RetinaNet Soft Teacher
Sunny Cloudy Sunny Cloudy Sunny Cloudy Sunny Cloudy Sunny Cloudy

HarvestedCrop 91.18 75.41 82.93 36.16 84.15 71.77 56.10 50.15 90.75 72.90
Ice 99.05 70.68 99.37 98.48 99.33 92.69 89.76 34.28 96.66 49.00

Land 95.82 74.29 88.71 66.95 90.56 68.99 73.11 48.85 68.03 61.81
Lotus 88.24 85.70 79.32 66.16 85.59 81.75 88.24 85.88 56.08 74.99

MoistSoil 93.13 90.20 72.98 93.59 86.58 91.99 76.44 84.61 78.65 71.91
OpenWater 98.67 87.18 99.09 93.05 97.89 91.30 98.11 83.98 89.09 44.10
ShrubScrub 93.73 - 56.81 - 89.15 - 64.01 - 84.80 -

StandingCorn 90.75 93.36 55.06 69.46 83.20 86.07 87.27 72.51 75.88 74.70
WaterCorn 95.48 91.69 71.27 68.03 91.78 88.56 94.87 66.24 83.21 52.99

Wooded 81.92 92.88 67.66 92.16 78.02 87.29 89.04 88.13 58.19 75.33

5.3. Performance of Altitude-Specific Detection Models

Based on the altitudes at which the aerial images in the datasets were captured, which
were 15, 30, 60, and 90 m, we partitioned all the real-bird detection datasets (i.e., Bird-G,
Bird-I, and Bird-J) into four distinct subsets. The division between the training and test
sets within each subset remained consistent with the original dataset. We subsequently
conducted separate training and testing of various models on these altitude-specific subsets.

Table 6 compares the performances of five models, in terms of mAP30 on datasets
of different image-capturing altitudes. The results show a decrease in the performances
of all the models as the altitude increased, which can be attributed to the decreasing size
and resolution of waterfowl at higher altitudes. Faster R-CNN was the best for lower-
altitude cases (i.e., 15 and 30 m), reaching 95.38% and 93.25% mAP. The two YOLO models
performed better on higher-altitude images. The semi-supervised model Soft Teacher was
competitive, but not the best for any altitude case.

Table 6. Test performances of altitude-specific models, in terms of mAP30 (%), on images captured at
different altitudes.

Altitude Faster
R-CNN RetinaNet YOLOv5 YOLONAS Soft

Teacher

15 m 95.38 86.20 85.37 93.96 92.59
30 m 93.25 90.54 80.78 91.23 92.27
60 m 87.56 43.93 86.21 91.41 88.58
90 m 81.67 62.94 90.58 88.70 77.23

5.4. Performance of Semi-Supervised Learning Detectors

In this experiment, we utilized the real-bird detection datasets to assess the efficacy
of semi-supervised learning models. We varied the proportions of labeled training data,
ranging from 10% to 50% of the training set for Soft Teacher, while the remainder served
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as unlabeled data. For comparison, Faster R-CNN was trained using the same amount of
labeled data. Both models were trained using identical parameters, including 100 epochs, a
learning rate of 0.01, and a batch size of 4. The performance metric was mAP30.

Table 7 compares the performance of Soft Teacher with that of Faster R-CNN when
different amounts of labeled training examples were used in training. When a small amount
of labeled training examples was used, such as 10%, Soft Teacher outperformed Faster
R-CNN by a large margin (73.45% vs. 64.50%). As the amount of labeled training examples
being used increased, the performances of both Soft Teacher and Faster R-CNN improved,
and the difference between them decreased. Soft Teacher outperformed Faster R-CNN
in all cases. The performance of Faster R-CNN trained by a 100% labeled training set
was similar to that of Soft Teacher trained by a 50% labeled training set. We also noticed
that models trained by 80% labeled images outperformed models trained by 100% labeled
images and we believe that the inaccurate labels for the remaining 20% of images caused
this performance difference.

Table 7. Test performances of Faster R-CNN and Soft Teacher, in terms of mAP30 (%) when trained
using a proportion of the training set (10%, 20%, 50%, and 100%) as labeled data.

Labeled Training Set Proportion

10% 20% 50% 100%

Faster R-CNN 67.50 74.12 78.17 82.79
Soft Teacher 73.45 77.74 82.65 -

5.5. Performances of Classification Models

In this experiment, we evaluated the classification performances of various deep
learning models, including EfficientNet-b5, ResNet18, MixMatch, and FixMatch, using
both our real-bird and decoy classification datasets. All the models were trained with a
learning rate 0.00001 and a batch size of 4 and with early stopping—halting the training
process when the validation accuracy showed no improvement for 15 consecutive epochs.
The maximum number of training epochs was capped at 300. Since all the decoy image
crops were labeled, we utilized unlabeled waterfowl crops from our unlabeled training set
when training the semi-supervised models on the decoy classification training set.

Table 8 shows the classification accuracy of four models on decoy-bird-image crops
taken at altitudes of 15, 30, 60, and 90 m, as well as on real-bird-image crops taken at
an altitude of 15 m. The results show that the classification accuracy of all four models
decreased as the image altitude increased. For instance, EfficientNet reached 91.58% on
15 m images, but only 41.05% on 90 m images. There was a big classification-accuracy drop
from 30 m to 60 m. This leads us to the conclusion that images captured at 15 m and 30 m
altitudes are suitable for bird classification in aerial images, while images captured at 60 m
and 90 m are not.

In terms of overall performance, the two semi-supervised models, MixMatch and
FixMatch, leveraged extra unlabeled training data and outperformed EfficientNet and
ResNet18 on the 30, 60, and 90 m cases. However, EfficientNet was the best on the 15 m
decoy case, whereas MixMatch was the best on the 15 m real-bird case.

Table 8. Classification accuracy (%) of five classification models on 15, 30, 60, and 90 m waterfowl
classification datasets.

EfficientNet ResNet18 MixMatch FixMatch

15 m real bird 81.65 78.37 82.88 80.70
15 m decoy 91.58 89.78 87.54 88.71
30 m decoy 79.98 76.74 81.34 80.09
60 m decoy 43.75 40.66 46.40 48.80
90 m decoy 41.05 36.72 47.92 46.25
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Table 9 compares the performances of the four models on images captured in different
habitats: OpenWater, MoistSoil, and StandingCorn. All the models achieved accuracy of
over 90% on OpenWater images, lower than 80% on StandingCorn images, and from 70%
to 54.78% on MoistSoil images. All the models were competitive in all cases, except that
ResNet18 was much worse on MoistSoil images. These results underscore the considerable
influence of various habitat types on classification accuracy.

Table 9. Classification accuracy (%) of four deep learning models on images captured over three
different habitats in the decoy classification dataset.

EfficientNet ResNet18 MixMatch FixMatch

OpenWater 93.46 91.25 92.18 93.57
MoistSoil 70.77 54.78 71.58 72.53

StandingCorn 83.68 82.44 84.55 81.56

6. Summary and Future Works

This paper presents our recent work, which involved the creation of new aerial-image
datasets for waterfowl detection and classification and the adaptation and evaluation of
popular supervised and semi-supervised deep learning models. Our experimental results
for semi-supervised learning models showed their ability to slightly improve detection and
classification performance using unlabeled data. Furthermore, we showed that altitude-
specific detection models achieved improved detection results over altitude-blind detection
models. Multiple models delivered strong performance, particularly excelling in images
captured at 15 and 30 m, where they achieved detection accuracy exceeding 90%. Our
experimental results also showed that different image contexts, such as different habitat
and weather conditions, had significant impact on detection and classification accuracy.
Additionally, we evaluated several classification models using our classification dataset
and compared their performance across images taken at different heights and in vari-
ous habitats. These models delivered good performance on images captured at 15 and
30 m, achieving accuracy from 80% to 90%.

While labeling aerial images of waterfowl, we observed a disparity in their distribution
across habitats. There was a high-density distribution in habitats such as water and ice,
while habitats like land and crops showed a lower-density distribution. In future work, we
aim to identify the distribution patterns and to adjust the focus of our models accordingly.

When evaluating detection models on waterfowl datasets, we observed a significant
disparity between image crops containing birds (foreground images) and those without
birds (background images). The proportion of negative samples in the training set plays a
critical role in the model’s ability to accurately predict False Positives. Our future work
will focus on developing a dynamic training strategy to determine the optimal proportion
of negative samples in the training set.

Transformer-based object detection and classification models have exhibited promising
performance. Our future work will involve training and testing these models, with a focus
on comparing their performance against convolution-based models.
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