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Abstract: The detection of computer-generated (CG) multimedia content has become of utmost
importance due to the advances in digital image processing and computer graphics. Realistic CG
images could be used for fraudulent purposes due to the deceiving recognition capabilities of
human eyes. So, there is a need to deploy algorithmic tools for distinguishing CG images from
natural ones within multimedia forensics. Here, an end-to-end framework is proposed to tackle
the problem of distinguishing CG images from natural ones by utilizing supervised contrastive
learning and arbitrary style transfer by means of a two-stage deep neural network architecture. This
architecture enables discrimination by leveraging per-class embeddings and generating multiple
training samples to increase model capacity without the need for a vast amount of initial data.
Stochastic weight averaging (SWA) is also employed to improve the generalization and stability of
the proposed framework. Extensive experiments are conducted to investigate the impact of various
noise conditions on the classification accuracy and the proposed framework’s generalization ability.
The conducted experiments demonstrate superior performance over the existing state-of-the-art
methodologies on the public DSTok, Rahmouni, and LSCGB benchmark datasets. Hypothesis testing
asserts that the improvements in detection accuracy are statistically significant.

Keywords: multimedia forensics; computer-generated images; supervised contrastive learning;
style transfer

1. Introduction

Artificial intelligence is crucial for detecting disinformation, which threatens demo-
cratic values worldwide. Due to the rapid growth of social media content and the rapid
development of image processing and machine learning, combating disinformation has
become a priority.

Distinguishing computer-generated images (CGIs) from natural images (NIs) is es-
pecially pertinent for addressing the practical challenges posed by deepfakes. Deepfakes,
being advanced forms of computer-generated imagery, underscore the critical need for ro-
bust identification methods. In practical terms, the ability to differentiate between authentic
and manipulated content haws become indispensable for countering the proliferation of
deepfakes across diverse domains. For instance, within media and entertainment, where
deepfakes can deceive audiences by depicting fabricated scenarios or altering the appear-
ance of individuals, the capability to discern these manipulations ensures the preservation
of trust between content creators and their viewers. Moreover, in a forensic analysis and
cybersecurity context, the application of techniques to identify alterations plays a pivotal
role in verifying the authenticity of visual evidence and mitigating the potential for false
information dissemination. This practical application of distinguishing CGIs from NIs ex-
tends its significance into various industries reliant on visual representation, fortifying the
credibility and reliability of presented content, which is crucial in an era where deepfakes
challenge the authenticity of visual information.
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Due to the perpetual and exponential growth of multimedia technologies in conjunction
with the advances in the deployment of tools for CGI creation, CGIs have become so realistic
that individuals are not capable of distinguishing them from NIs with their naked eyes. A
plethora of image processing techniques and 3D image rendering software packages have
contributed to the creation of such sophisticated content. Various high-quality galleries
of CGIs exist, such as the Autodesk A360 rendering gallery [1], the Artlantis gallery [2],
the VRay gallery [3], and the Corona gallery [4]. Notwithstanding the multimedia forgery
outbreak, realistic CGIs have come to be added to the arsenal of fraudsters. As a coun-
termeasure, there is an urgent need to deploy algorithms that can accurately and reliably
discriminate between CGIs and NIs. Thus, multimedia forensics draws the community’s
attention to methods to encounter all kinds of attacks within image forensics [5], including
approaches for universal image forensics [6], copy–move forgery detection [7], splice detec-
tion [8], and face anti-spoofing detection [9]. Many approaches have also been introduced in
the context of image forgery detection that leverage gradient-based illumination [10], deci-
sion fusion [11], pairwise relations [12], and transformed spaces based on image illuminant
maps [13].

Digital forensics can be useful for determining the difference between NIs and CGIs.
A scenario where CGIs can cause harm is through image manipulation for political propa-
ganda, making authenticity validation a crucial aspect. Another challenging scenario is
verifying the authenticity of images, particularly when offenders attempt to manipulate
child pornography photos digitally so as to appear like CGIs. In all circumstances, attesting
to the validity of the photographs is a key challenge in forensics.

Distinguishing CGIs from NIs can be treated as a classification task. Until recently,
many approaches have proposed hand-crafted features [14–18] to cope with the afore-
mentioned classification problem, while the majority of recent state-of-the-art methods
utilize deep neural network (DNN) methods, e.g., [19–24]. The latter methods tend to be
more efficient in discovering hidden patterns and structures in images. On top of that, the
generalization ability of DNN methods allows for automation, which is crucial in real-life
applications, even when large training datasets are unavailable.

In this paper, to take full advantage of NN methods in terms of learning complex
data representations and automatically deriving highly accurate decisions, an end-to-
end convolutional neural network (CNN)-based framework is proposed to discriminate
between CGIs and NIs. To the best of the authors’ knowledge, this is the first attempt to
demonstrate the potential of supervised contrastive learning in the context of discrimination
between CGIs and NIs. The proposed framework consists of two stages. First, a CNN is
proposed, which is based on the ResNet-18 [25] architecture that employs the supervised
contrastive (SupCon) loss presented in [26]. On top of this, and apart from the data
augmentation, a complementary style transfer module is introduced to enhance training by
enriching the network with additional negative samples to those of the original dataset.
Handcrafted image augmentations (e.g., cropping, blurring, flipping) provide insufficient
variation in visual features, limiting the performance of contrastive learning techniques that
employ them. The style transfer module creates synthetic images (e.g., deepfakes) but they
can also add artificial visual features to real images. The core idea behind integrating style
transfer is to enable more accurate training by using only the original dataset, even when
insufficient training samples exist. The paper demonstrates that style transfer improves
the accuracy of contrastive learning. During the second stage, the trained model is fed to a
linear classifier for further training using the cross-entropy loss.

Contrastive learning forces samples of the same class to stay close to each other, while
samples that belong to different classes are pushed far away. Supervised contrastive learn-
ing leverages the label information, providing many positive samples to the network instead
of self-supervised contrastive learning. Positive samples are fed into the classifier using
data augmentation procedures. Moreover, stochastic weight averaging (SWA) is employed
on the network outputs after each stage to improve robustness. The style transfer module
operates in real time and takes advantage of the NIs that constitute the positive class. It in-
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troduces a progressive attentional manifold alignment. Thus, it can dynamically reposition
the style features of some arbitrarily chosen CGIs by repeated attention operations to align
the content manifold to the style manifold. With the contribution of the style transfer
module, the training procedure is enriched with additional incoming samples, allowing
models with datasets that consist of a limited number of training samples to be more
robust and effective. Overall, the proposed framework aims at identifying and mitigating
deceptive visuals, fortifying the trustworthiness and reliability of visual content across
diverse applications and sectors.

The experimental results are disclosed on the public benchmark DSTok [27], Rah-
mouni [24], and LSCGB [28] datasets, demonstrating that the proposed framework ac-
curately distinguishes CGIs and NIs, outperforming the state-of-the-art approaches and
motivating further research. On top of that, the generalization ability of the proposed
framework trained on the DSTok dataset is tested on the publicly available Rahmouni
dataset. Moreover, CoStNet is trained on the most recent state-of-the-art LSCGB dataset
and tested on the challenging DSTok dataset and is compared against state-of-the-art ap-
proaches. The impact of various parameters during the training is assessed. When the test
samples are infected with salt-and-pepper or Gaussian noise, an extensive evaluation of
the proposed approach is performed to attest to its ability to deliver accurate results under
various conditions. When insufficient training samples are available, an ablation study is
undertaken to examine the impact of the style transfer module. Furthermore, hypothesis
testing is performed to assess whether the improvements in detection accuracy delivered
by the proposed framework against state-of-the-art approaches are statistically significant.

The main contributions of the paper are as follows:

• A novel CNN-based framework is designed to discriminate between CGIs and NIs,
abbreviated as CoStNet. To the best of the authors’ knowledge, this is the first attempt
to conduct such discrimination based on supervised contrastive learning and style
transfer in the benchmark DSTok, Rahmouni, and LSCGB datasets.

• A complementary style transfer module, which operates in real-time, is employed
to increase the training CGIs even when a limited number of training samples is
available, thus enhancing the training procedure.

• CoStNet achieves state-of-the-art accuracies in the benchmark DSTok, Rahmouni, and
LSCGB datasets, underscoring its remarkable advancement in the field.

• The generalization capability of CoStNet, initially trained on the LSCGB dataset, is
evaluated through testing on the DSTok dataset. Additionally, CoStNet undergoes
training on the DSTok dataset and is subsequently tested on the Rahmounis’ dataset
to assess its broader applicability.

• The proposed framework is robust against high salt-and-pepper and Gaussian noise
at various corruption levels.

• Multiple tests are conducted to empirically demonstrate that CoStNet is less sensitive
to modifications of the training parameters, such as the number of training epochs
and the batch size.

• An ablation study is performed to assess the impact of the style transfer module when
limited training samples are available.

• Hypothesis testing confirms that the improvements in detection accuracy between
CoStNet and methods reported in the literature are statistically significant.

In summary, the proposed CoStNet framework is a CNN-based novel architecture
that utilizes real-time style transfer and supervised contrastive learning to discriminate
CGIs from NIs. CoStNet is demonstrated to accurately discriminate CGIs and NIs across
benchmark datasets such as the DSTok, the Rahmouni, and the LSCGB datasets. The incor-
poration of the style transfer module allows for the augmentation of CGIs based on existing
image content, thus offering additional training CGIs. By doing so, the challenge of training
sample scarcity for CGIs prevalent in real-world forensic scenarios is addressed. CoStNet’s
robust performance in handling various noise levels and parameter settings, as well as
its generalization ability in testing, further underscores its versatility and effectiveness
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under diverse conditions. CoStNet’s resilience to variations is also evaluated in scenarios
with limited training data through an ablation study, demonstrating its capabilities in
CGI discrimination.

The rest of this paper is organized as follows. Section 2 briefly surveys the literature on
the discrimination of CGIs from NIs. Section 3 details the proposed framework. Benchmark
datasets are described in Section 4. Experimental evaluation is presented in Section 5.
Conclusions are drawn, and limitations and future work are discussed in Section 6.

2. Related Work

The advances in multimedia forensics, on the one hand, and the sophisticated soft-
ware that enables the ever-increasing creation of realistic CGIs, on the other hand, have
challenged scientists to develop new methods to encounter fraudulent manipulations
arising from such technological advances. A transfer learning and convolution block
attention module, which considers both the shallow content features and the deep semantic
features of the image, was introduced in [19] to tackle the problem of distinguishing NIs
from CGIs. Parallel to the evolution of algorithms, ever-challenging datasets were released.
In [28], the new large-scale CG benchmark dataset (LSCGB) was released, consisting of
71,168 CG and 71,168 natural annotated images. A baseline texture-aware network was
proposed to address the discrimination problem on their benchmark dataset. A novel
two-branch network was proposed to tackle the generalization problem in the blind detec-
tion of CGIs by introducing different initializations in the first layer so that more diverse
features were extracted [20]. However, no prior knowledge of new distributions was used
to develop a rigorous formulation. In [22], the color and texture characteristics of local
patches were integrated within a dual-input CNN framework, and a directed acyclic graph
recurrent neural network was employed to model the spatial dependence of local patterns.

A statistical model for NIs was proposed in [29], built upon a wavelet-like decomposi-
tion. Higher-order wavelet statistics showed substantial differences that made it possible
to distinguish between CGIs and NIs. In [16], a geometry-based model was proposed that
utilized the physical characteristics of CGIs and NIs in the classification process. Local
patches of the image intensity function were employed to form a patch distribution, which
enabled, in combination with the geometry model, to uncover the distinctive physical
characteristics of NIs and CGIs. The statistical characteristics of local edge patches were
examined in [18], and a visual language was created to handle the discrimination between
CGIs and NIs. In [30], a technique based on sensor pattern noise was developed that used
three high-pass filters to filter out low-frequency signals. A five-layer CNN was utilized
to classify the input image patches, and a majority vote scheme was employed to extend
the classification results to the full-sized images. A CNN was presented in [31], promoting
the so-called local-to-global strategy. Forensic decisions were derived from local patches,
and a global decision based on majority voting of the full-sized images was implemented.
In [24], a CNN with a custom pooling layer was proposed. Local estimates of the class
probabilities were employed to predict the full-size image label. A deep convolutional
recurrent attention model was proposed to classify CGIs and NIs, employing a local-to-
global strategy [32]. Image patches were trained, and the full-sized images were classified
using the simple majority vote rule. An attention-based dual-branch CNN with fused color
components was proposed in [33]. There, raw RGB components and their noisy versions
were given as input to the network, while the attention-based model optimized the output
features from the two branches in combination to perform detection. A method for distin-
guishing between CGIs and NIs based on DNN and transfer learning was presented in [23].
A qualitative examination of ResNet-50 bottleneck characteristics for CGI detection was
performed. Comprehensive reviews of various methods for discriminating between CGIs
and NIs can be found in [34,35].
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3. Proposed Framework
3.1. Framework Overview

The proposed framework for detecting and discriminating CGIs from NIs comprises
two modules, as shown in Figure 1. Input CGIs are passed through the first module,
namely the style transfer module, which generates additional CGIs added to the training
set, thus enriching the training procedure. When there are not enough training samples
given a CGI as a basis for style semantics, style transfer can create as many CGIs as
NIs, whose content semantics remain unaltered. The style transfer module leverages a
pre-trained VGG network [36] to encode the content image and imbue it with stylistic
patterns derived from a separate style image, yielding distinct features for each one of them.
Adhering to the framework introduced in [37], these features undergo a transformative
process facilitated by the attentional manifold alignment (AMA) block to achieve stylization.
This block encompasses a channel alignment module, an attention module, and a spatial
interpolation module. Once processed through three iterations of the AMA blocks, the
aligned content feature is fed into the decoder, resulting in the generation of the stylized
image. In terms of practical implementation, the role of the style transfer module within
CoStNet is pivotal. This module operates by transferring the visual characteristics of one
image (e.g., texture, color, and style) onto another while preserving its content. Particularly
in scenarios where the availability of CGIs is limited, the style transfer module enhances
the diversity of CGIs by synthesizing new images based on the content of NIs. In such
cases, the augmentation enriches the training data, thereby improving the robustness of the
framework against variations in CGI appearance. More details on style transfer learning
are given in Section 3.2. An example of a generated CGI based on an NI through the style
transfer module is depicted in Figure 2. Details for the style transfer module can be found
in Figure 3.
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Figure 1. Architecture of the proposed CoStNet.
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Figure 2. On the (left), a natural image is depicted. On the (right), a computer-generated image is
shown that was generated by the style transfer module.

Global average pooling

Global average pooling

MLP

MLP

mean variance normalized features

Conv

Conv

Attention  map

Interpolation weights G

Channel Alignment Module Attention Module Spatial Interpolation Module

concat

Figure 3. Components of style transfer module.

Having increased the number of CGIs by employing the style transfer module, the
total amount of input images is passed to the second module, which implements the
learning procedure. It consists of two distinct stages. The first stage comprises an encoder
with a CNN architecture, namely the ResNet-18 architecture, employing the supervised
contrastive loss. Details can be found in Section 3.3. Upon receiving an input batch of the
enriched data, random data augmentation is applied twice to yield two batch duplicates
representing a different data view. Both duplicates are then forwarded through the encoder
network, generating a normalized embedding. During training, this representation is
further passed through a projection network, which is disregarded during inference. The
outputs of the projection network are used to compute the supervised contrastive loss, as
proposed in [26]. For classification purposes, the output of the first stage is fed into an
encoder network identical to that of the first stage and then to a linear classifier, which is
trained on top of the fixed representations using cross-entropy loss, allowing the trained
model to be employed for classification tasks. After each training stage, SWA is applied to
improve the model’s generalization and stability [38].

3.2. Style Transfer Learning

CoStNet integrates a style transfer module to render a content image with style
patterns from a reference image. By doing so, training samples are augmented, and
the algorithm performance improves even when few training samples are available. A
state-of-the-art arbitrary style transfer framework, called Progressive Attentional Manifold
Alignment [37], is employed, which gradually aligns the content and style manifolds using
an attention mechanism for consistent stylization across semantic regions. The loss function
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in the progressive manifold alignment approach is comprised of several stages. Let Lss
denote the content loss, while Lr, Lm, and Lh denote the style losses. At each stage, the loss
is calculated as a weighted sum [37]:

L =
3

∑
i=1

(λi
ssLi

ss + λi
rLi

r + λi
mLi

m + λi
hLi

h) + Lae (1)

where λi
ξ refers to a weight parameter for Lξ , ξ ∈ {ss, r, m, h} in the ith stage of the

procedure as described in [37], and Lae stands for the autoencoder loss.
The content loss Lss employs the ℓ1 norm between the self-similarity matrices of the

content feature Fc and the VGG feature of the stylized image Fcs [36]. Let also Hx and Wx
denote the height and the width of the feature Fx with x ∈ {c, s}, respectively. The Lss is
given by

Lss =
1

HcWc
∑
ij
|

Dc
ij

∑i Dc
ij
−

Dcs
ij

∑j Dcs
ij
| (2)

where DDDc = [Dc
ij] and DDDcs = [Dcs

ij ] are the pairwise cosine distance matrices of content
features FFFc and VGG features of the stylized image FFFcs. The cosine distance matrix is
defined as 1 minus the cosine similarity between FFFc and FFFcs [39].

Let Lr denote the relaxed earth mover distance [40,41] to align the content manifold to
the style manifold:

Lr = max

(
1

HsWs
∑

i
min

j
Cij,

1
HcWc

∑
j

min
i

Cij

)
(3)

where Cij denotes the pairwise cosine distance matrix between Fcs and Fs. The statistic of
the style feature is represented by the subscript s, while the statistic of the VGG feature of
the stylization result is represented by the subscript cs.

In order to regularize the magnitude of features, the moment matching loss was
employed [37]:

Lm = ||µµµcs −µµµs||1 + ||ΣΣΣcs −ΣΣΣs||1 (4)

where µµµ and ΣΣΣ denote the mean vector and the covariance matrix of the feature vectors.
Let Lh be the differentiable color histogram loss introduced in [42]:

Lh =
1√
2
||H

1
2
s − H

1
2
cs||2 (5)

where H refers to the color histogram feature and H
1
2 denotes the element-wise square root.

The color histogram feature proposed in [42] is employed to control the distribution of
colors in the generated images. The color histogram loss function encourages the generated
images to match a specified color histogram, which is a representation of the distribution
of colors in an image.

Moreover, an autoencoder loss Lae is proposed to preserve the shared space during
manifold alignment. Let Irc and Irs denote the reconstructed content and style images from
the encoded features. The loss is given by [37]:

Lae = λae(||IIIrc − IIIc||2 + ||(IIIrs − IIIs)||2) +∑
i
(||ϕi(IIIrc)− ϕi(IIIc)||2 + ||ϕi(IIIrs)− ϕi(IIIs)||2) (6)

where λae denotes a weight parameter which is kept fixed. ϕi(III) refers to a Rectified Linear
Unit ReLU_i_1 layer VGG feature of image III, where ReLU_i_j denotes the result of conv_i_j
with ReLU activation. The loss Equation (6) forces the decoder to reconstruct features in
the VGG space, which in turn restricts all features between the encoder and decoder to lie
within this space. The loss Equation (6) retains a common space for aligning the content
and style manifolds from the standpoint of manifold alignment.
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The proposed module is a completely autonomous part of the CoStNet. It comprises a
channel alignment module designed to accentuate related content and style semantics, an
attention module facilitating the establishment of feature correspondences, and a spatial
interpolation module aimed at dynamically aligning the manifold structures.

The channel alignment module utilizes a combination of global average pooling and
a multilayer perceptron (MLP) to embed F ∈ RH×W×C into RC and derive the corre-
sponding channel weights. H, W, and C denote the height, width, and the channels of
F. These weights, denoted as Ac ∈ RC and As ∈ RC, are computed based on both the
content feature Fc and the style feature Fs. Subsequently, the features Fc and Fs undergo
cross-weighting with As and Ac, respectively, resulting in aligned features F̂c and F̂s. The
attention module utilizes 1 × 1 convolutional blocks for feature embedding, along with
mean variance normalization, to compute the attention map Acs. The attention map cap-
tures pairwise similarities between features. Subsequently, the style feature vectors are
redistributed based on the content feature F⋆

s according to the computed attention map
Acs. The spatial interpolation module synthesizes spatial information for adaptive inter-
polation between the content feature Fc and the redistributed style feature F̂⋆

s . Specifically,
the dense operation employs multiscale convolution kernels on the concatenated feature
to compute interpolation weights G. By concatenating the features, local discrepancies
between corresponding content and style features are identified, enabling the determina-
tion of appropriate interpolation strengths. Consequently, the spatial interpolation module
effectively merges the most similar content and style feature vectors, facilitating manifold
alignment through linear redistribution of the style feature and interpolation of its linear
components with the content feature. A visual workflow of style transfer module compo-
nents is depicted in Figure 3. A detailed analysis of each component can be found in [37].
The style transfer module is executed before feeding the training samples into the first stage
employing the CNN. It can be implemented in real-time, depending on whether additional
samples are needed due to a lack of training CG samples.

3.3. Supervised Contrastive Learning

Self-supervised contrastive learning tries to maximize the similarity of two normalized
vector representations (i.e., embeddings), pulling together the normalized embeddings that
belong to the same class while pushing away the normalized embeddings that belong to
different classes. In [26], label information was leveraged, and self-supervised contrastive
learning was extended to fully supervised contrastive learning, enabling the consideration
of many positives and negatives per anchor. On the contrary, in self-supervised learning, a
single positive is only considered. Here, the extension in [26] is exploited by including the
SupCon loss Equation (9) to the challenging application of distinguishing between CGIs
and NIs.

From a practical point of view, contrastive learning embeds data points into a latent
space, where similar instances are brought closer together while dissimilar instances are
pushed apart. Specifically, CoStNet takes advantage of the supervised contrastive learning,
where the framework is trained to minimize the contrastive loss between positive pairs
(i.e., samples from the same class, e.g., NIs) and maximize the margin between negative
pairs (i.e., samples from different classes, such as CGIs and NIs). This process facilitates the
learning of discriminative features necessary to accurately distinguish between NIs and
CGIs. This capability is particularly important in real-world practical forensic applications,
where the accurate discrimination is essential for reliable analysis and interpretation.

Following the notation in [26], let us consider a set of N image/label pairs, {xxxk,yyyk}k=1, ..., N
with their corresponding training batch {x̃̃x̃xl, ỹ̃ỹyl}l=1, ..., 2N, where x̃̃x̃x2k and x̃̃x̃x2k−1 are 2 augmenta-
tions of xxxk and ỹ̃ỹy2k−1 = ỹ̃ỹy2k = yyyk.
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Let I ≡ {1, 2, . . . , 2N}. For i ∈ I, let A(i) ≡ I \{i}. If τ ∈ R+ denotes a scalar
temperature parameter, define

Pi x ≡
exp

( zzz⊤i zzzx
τ

)
∑α∈A(i) exp

( zzz⊤i zzzα

τ

) . (7)

In Equation (7), zzzl = Proj(Enc(x̃̃x̃xl)) ∈ RDp , where Dp is the size of a single linear layer,
Enc(x̃̃x̃xl) maps x̃̃x̃x to a representation vector rrrl , and Proj(rrrl) maps rrrl to vector zzzl .

Let i be the anchor and j(i) denote the index of another augmented sample in the same
set known as the positive. In the self-supervised approach, the loss function is formulated
as [26]:

Lsel f = ∑
i∈I

Lsel f
i = −∑

i∈I
log Pi j(i) (8)

The remaining 2(N − 1) indices in A(i)\{j(i)} are called the negatives.
The SupCon loss is a generalization of Equation (8), which leverages the label

information [26]. The SupCon loss is formulated as follows:

Lsup
out = ∑

i∈I
Lsup

out, i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log Pi p (9)

where P(i) ≡ {p ∈ A(i) : ỹ̃ỹyp = ỹ̃ỹyi} denotes the set of indices of all positives in the set of
augmented samples that are distinct from i and |P(i)| stands for the cardinality of set P(i).

Here, the gradient of SupCon loss Equation (9) is given by:

∂Lsup
out

∂zi
=

−1
|P(i)| ∑

p∈P(i)

∂

∂zzzi

{
zzz⊤i zzzp

τ
− log ∑

α∈A(i)
exp(zzz⊤i zzzα/τ)

}

=
−1

τ|P(i)| ∑
p∈P(i)

{
zzzp −

∑α∈A(i) zzzα exp(zzz⊤i zzzα/τ)

∑α∈A(i) exp(zzz⊤i zzzα/τ)

}

=
−1

τ|P(i)|

{
∑

p∈P(i)
zzzp − ∑

p∈P(i)
∑

p′∈P(i)
zzzp′ Pip′ − ∑

p∈P(i)
∑

n∈N(i)
zzzn Pin

}

=
−1

τ|P(i)|

{
∑

p∈P(i)
zzzp − ∑

p′∈P(i)
|P(i)| zzzp′ Pip′ − ∑

n∈N(i)
|P(i)| zzzn Pin

}

=
1
τ

{
∑

p∈P(i)
zzzp

(
Pip −

1
|P(i)|

)
+ ∑

n∈N(i)
zzzn Pin

}

(10)

where N(i) ≡ {n ∈ A(i) : ỹ̃ỹyn ̸= ỹ̃ỹyi} is the set of indices of all negatives in the set of the
augmented samples. A detailed visual representation of the second module of the proposed
framework is illustrated in Figure 4.

Figure 4. Learning procedure of the proposed framework.
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4. Datasets

In applications such as the discrimination of CGIs from NIs, which degenerate into a
binary classification problem, dataset selection acts crucially in the overall system accuracy.
This is due to the fact that the network should be trained on incoming data that resemble
real-life scenarios to achieve generalization. The need for proper and accurate dataset
selection is becoming more apparent as more efficient and sophisticated methods and
algorithms are released. The ability to handle more complex and challenging datasets,
including CGIs and NIs, which are difficult to distinguish with the naked eye, is required
in the most recent deep learning network-based methods. Here, we employ the DSTok [27],
the Rahmouni [24], and the LSCGB [28] datasets, three datasets that are commonly used
in the literature, to assess the performance of the proposed CoStNet. A set of challenging
images of the DSTok dataset is depicted in Figure 5. Starting with the aforementioned
datasets, we introduce additional ones appearing in the literature. The benchmark datasets
are summarized in Table 1.

• DSTok dataset [27]: The DSTok dataset comprises a total of 4850 CGIs and 4850 NIs
sourced from the Internet. NIs encompass diverse indoor and outdoor landscapes
captured by various devices, while CGs exhibit photorealistic qualities. This collection
boasts high-resolution images, ranging from 609 × 603 to 3507 × 2737, showcasing
significant inter-class diversity. Such characteristics position the DSTok dataset as a
pivotal resource for research in CG image detection, emphasizing its prominence in
the literature.

• Rahmouni’s dataset [24]: Rahmouni’s dataset consists of 1800 high-resolution CGIs
of size 1920× 1080 pixels downloaded from the Level-Design Reference Database [43].
These CGIs were taken from photorealistic video games (i.e., Uncharted 4, Battlefield
Bad Company 2, The Witcher 3, Battlefield 4, and Grand Theft Auto 5). Only these
five distinct video games were deemed to exhibit a sufficient level of photorealism and
thus they were employed. On the other hand, 1800 high-resolution NIs with a size of
4928× 3264 pixels were obtained from the RAISE dataset [44] comprising a diverse array
of settings, including outdoor and indoor scenes such as monuments, houses, landscapes,
people bodies and faces, and forests.

• LSCGB dataset [28]: It is one of the most recent datasets. Its size is orders of magnitude
larger than that of the preceding datasets. It consists of 71,168 CGIs and 71,168 NIs. It
is characterized by high diversity and small bias regarding the distribution of color,
tone, brightness, and saturation.

• He’s dataset [22]: He’s dataset consists of 6800 CGIs downloaded from the Internet.
The images were created using a variety of rendering software packages, such as
Maya, AutoCAD, etc. Another 6800 NIs were included in the dataset, which were
captured under various indoor and outdoor circumstances. All images were stored in
jpeg format, and their size ranges from 266 × 199 to 2048 × 3200.

• Columbia dataset [45]: The Columbia dataset consists of four sets of 800 images, re-
sulting in a total of 3200 images. It consists of 800 NIs captured using the professional
single-lens reflex Canon 10D and Nikon D70. These images demonstrate content
diversity regarding indoor and outdoor scenes, various lighting conditions, etc. An-
other 800 NIs were retrieved from the Internet using Google Image Search based on
keywords matching the CGI set’s categories. A total of 800 CGIs were downloaded
from the Internet. The images were classified based on their content, such as nature,
objects, architecture, etc. Various rendering software packages were employed to
create them. Another 800 CGIs were recaptured from the monitor while displaying
the set of 800 previous CGIs.
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Figure 5. Sample images of DSTok dataset. On the (left), a natural image is depicted. On the (right),
a computer-generated image is shown. It is difficult to determine that the image on the right is
computer-generated with the naked eye.

Table 1. Benchmark datasets.

Dataset # of CGIs # of NIs CGI Sources NI Sources Year

DSTok [27] 4850 4850 3D models Photo-sharing
websites 2013

Rahmouni [24] 1800 1800 3D models games Existing
benchmarks 2017

LSCGB [28] 71,168 71,168 Models, games,
movies, GANs

Existing
benchmarks,

movies,
photo-sharing

websites

2020

He [22] 6800 6800 3D models Personal collection 2018

Columbia [45] 1600 1600 3D models
Personal collection,

Google Image
Search

2005

5. Experimental Evaluation
5.1. Experimental Setup and Augmentations

CoStNet works effectively in real-life applications (code is available at https://github.
com/geokarant/CoStNet, accessed on 28 January 2024).During the first stage, the network
was trained for 100 epochs, employing a batch size = 200, while the second stage of the
linear classifier was trained for 100 epochs employing a batch size = 20. The Stochastic
Gradient Descent [46] was employed with a learning rate of 0.1 and 0.01 for the first and
second stages, respectively. The cosine annealing scheduler was employed to adjust the
learning rate during training. The maximum numbers of iterations were set to 100 and 20
and the minimum learning rates were set to 0.01 and 0.001 for the first and second stage,
respectively. In evaluating the performance of the proposed framework, classification
accuracy was utilized as a primary metric in accordance with the literature and measured
using the formula:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

https://github.com/geokarant/CoStNet
https://github.com/geokarant/CoStNet
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where TP stands for true positives, TN for true negatives, FP for false positives, and FN for
false negatives.

The proposed approach was implemented using the PyTorch 1.7.1 framework (https:
//pytorch.org/, accessed on 28 January 2024), and the hardware settings are indicated in
Table 2.

Table 2. Hardware settings.

Details Configuration

CPU i9-7900X @ 3.3 GHz
GPU RTX 2080 Ti
RAM 126 GB

Data augmentation positively affects the training procedure and contributes to the
accurate classification of CGIs and NIs. Three CGIs were employed to operate as reference
images for content and style semantics during the style transfer module preceding the
CNN module. All NIs in the training set were passed through the style transfer module.
Consequently, NIs’ content manifold was aligned to the style manifold of CGIs, and a
new set of CGIs was created to enhance the training procedure. Afterwards, a standard
series of data augmentation procedures was applied to the dataset images. The input
images were (i) randomly cropped and resized to 224 × 224 pixels; (ii) randomly rotated;
(iii) randomly changed in brightness, contrast, and saturation; (iv) converted to grayscale
with a probability of 0.2; and (v) normalized so that pixel values ∈ [0,1]. CoStNet was
tested on various benchmark datasets, as described in Section 5.2, and several series of
experiments were conducted, including parameters assessment and generalization ability
(Section 5.3), robustness capability (Section 5.4), style transfer module impact contribution
(Section 5.5), and statistical significance evaluation (Section 5.6).

5.2. Evaluation Results on the Benchmark Datasets

To evaluate CoStNet for differentiating between CGIs and NIs, we initially employed
the public benchmark DSTok [27] dataset. CoStNet was compared against state-of-the-art
methods with respect to classification accuracy. The classification of 14 state-of-the-art
methods is that reported in [19,28]. CoStNet achieved a classification accuracy of 97.11%
exceeding by 1.05% the CGNet proposed in [19], which was based on transfer learning and
attained an accuracy of 96.1%. The method proposed in [20] was lagging behind, reaching
an accuracy of 95.30%. The four best-performing methods were concluded by the inclusion
of the method in [23], which resulted in an accuracy of 95.02%. The accuracy reported herein
was achieved after 100 epochs of training with a batch size equal to 200. The accuracies of all
methods employed are listed in Table 3. It is worth mentioning that the first training stage
provided a well-trained CNN yielding a high validation performance before representations
were fed into the linear classifier in the second training stage. During the first training
stage, the training loss decayed rapidly after approximately 10 epochs, resulting in high
accuracy, as demonstrated by the experiments conducted in Section 5.3. The training loss
of the CNN, as well as its validation accuracy, are plotted in Figures 6 and 7, respectively.

In the context of the Rahmouni dataset, CoStNet demonstrated remarkable efficacy,
achieving a remarkable accuracy of 100.00%. The derived accuracy positions CoStNet
as the leading method among the compared approaches, showcasing its prowess in
distinguishing CGIs from NIs. Notably, CoStNet surpassed all other methods, includ-
ing the closest contender Bai [28], which attained an accuracy of 99.94%. This substantial
margin underscores the robustness of CoStNet in CGI detection, outperforming well-
established methodologies, such as Meena [47], Zhang [21], Nguyen [48], and Huang [49],
among others.

The proposed CoStNet achieves an accuracy of 89.91% on the benchmark LSCGB
dataset, showcasing its robust performance in detecting CGIs. While CoStNet slightly
lags behind the method proposed in [28], which holds the highest accuracy at 91.45%, the

https://pytorch.org/
https://pytorch.org/
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1.54% difference is relatively modest in the broader context of CGIs detection. CoStNet’s
competitive standing underscores its effectiveness and reliability in addressing the chal-
lenges posed by the large-scale LSCGB dataset. Notably, CoStNet outperforms several
other state-of-the-art methods listed in Table 3, positioning it as a strong contender for
practical applications in image forensics. The subtle variations in accuracy underscore the
competitiveness of both methods in tackling the intricacies of the LSCGB dataset. Moreover,
the proposed CoStNet contributes to the diversity of high-performing algorithms, offering
a viable alternative for practitioners in need of reliable image forensics tools.

The accuracies achieved by CoStNet on the benchmark DSTok and Rahmouni datasets
positions it as a cutting-edge solution in image manipulation detection. While facing
a slightly more competitive landscape on the LSCGB dataset, CoStNet remains at the
forefront of advancements in this domain, contributing significantly to the state-of-the-art
methodologies in the field of CGIs detection.

Table 3. Detection accuracy (%) of state-of-the-art methods on benchmark datasets. Accuracies with †

were obtained from [19], while the rest were obtained from [28].

Algorithms DSTok [27] Rahmouni [24] LSCGB [28]

Rahmouni [24] 75.49 † 85.39 77.45
Quan [31] 93.74 † 90.49 82.80
Yao [30] 93.35 † 92.93 82.91

Gando [50] 85.50 † - -
De Rezende [23] 95.02 † - -

He [22] 91.58 † - -
Quan [20] 95.30 † - -
Zhang [21] 91.97 † 99.72 90.42

Chawla [51] 85.11 94.46 77.12
Nguyen [48] 94.42 99.71 90.02
Huang [49] 94.24 99.56 90.18
Meena [47] 93.65 99.70 90.09

Yao [19] 96.10 † - -
Bai [28] 96.35 99.94 91.45

CoStNet (Proposed) 97.11 100.00 89.91
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Figure 6. Training loss versus epochs during the first training stage of CoStNet on the DSTok dataset.
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Figure 7. Validation accuracy versus epochs during the first training stage of CoStNet on the
DSTok dataset.

5.3. Parameters’ Assessment and Generalization Ability

The performance of CoStNet depends on various parameters. An extensive study
was performed to apprehend which parameters affect it. A series of experiments was
carried out to investigate how the number of epochs affects the detection results in the two
stages. During the experiments, the batch size was fixed to 200. A top accuracy of 97.11%
was measured when 100 epochs were employed in both stages. It is worth noting that an
accuracy of 96.63% was achieved after 20 training epochs in both stages, outperforming the
method proposed in [19]. It is also interesting to note that after only 10 training epochs, the
proposed approach derived an accuracy of 95.81%, which, although slightly inferior to that
reported in [19], is still rated as the second-best method. The accuracy results for various
epochs are listed in Table 4.

Table 4. Detection accuracy (%) for various numbers of training epochs on the DSTok dataset.

Epochs 10 20 30 50 60 70 100

Accuracy 95.81 96.63 96.91 96.83 96.89 96.92 97.11

A second set of experiments was conducted to assess the contribution of the batch size
in the classification accuracy. Various values for batch size were tested, while the number
of epochs was kept fixed at 100. The result in accuracy for a batch size of 250 still remained
above the 97% bound. For batch sizes smaller than 250, the accuracy was above 96%,
demonstrating that CoStNet is not severely affected by the batch size. It is noteworthy that
when a small batch size of 20 samples was employed, an accuracy of 96.75% was measured,
still outperforming the state-of-the-art method [19] and demonstrating the classification
ability of CoStNet. The accuracy results for various batch sizes are listed in Table 5.

Table 5. Detection accuracy (%) for various batch sizes on the DSTok dataset.

Batch
size 20 30 50 60 70 100 250

Accuracy 96.75 96.59 96.83 96.56 96.47 96.81 97.03
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A very important aspect of the model is related to its generalization ability, i.e., the
proficiency to accurately classify unfamiliar data derived from a diverse array of setups.
In pursuit of this, we harnessed the prowess of our trained model on the DSTok dataset
and subjected it to rigorous evaluation on the well-known Rahmouni dataset, transcending
boundaries with cross-dataset testing. In Table 6, the accuracies of CoStNet trained on
the DSTok dataset and tested on Rahmouni’s test set are summarized. We present the
garnered accuracies of the CoStNet model trained on the DSTok dataset, rigorously tested
on Rahmouni’s distinguished test set. While the accuracy of CoStNet registers at 73.67%, it
takes its place as the third top-performing contender, maintaining its stature even amid
more formidable challenges.

The discrepancy between the top ranking within the DSTok dataset and the subsequent
third-place position in the cross-dataset testing illuminates a significant challenge in deep
learning methodologies: their susceptibility to dataset variations. The substantial disparity
between the performance metrics achieved within the DSTok dataset, where the proposed
method and the majority of the models surpassed the 90% accuracy threshold, and the
diminished performance observed on Rahmouni’s dataset underscores the considerable im-
pact of dataset dissimilarities. Rahmouni’s dataset presents limitations due to its divergent
stylistic attributes, diverse content structures, and potentially distinct contextual elements
compared to the DSTok dataset. These disparities extend beyond quantitative differences
and significantly affect model adaptability when confronting unfamiliar data distributions.

The principal issue lies in the models’ challenge in generalizing effectively across
dissimilar datasets. Despite exhibiting commendable performance within the familiar
confines of the DSTok training data, the noticeable deterioration in detection accuracy across
all models in the cross-dataset assessment highlights the substantial divergence between
the datasets, emphasizing the critical need to fortify models against such variations.

Table 6. Detection accuracy (%) in cross-dataset testing. State-of-the-art methods and the proposed
CoStNet are trained on the DSTok dataset and tested on Rahmouni’s dataset.

Algorithms Rahmouni’s Dataset

Rahmouni [24] 60.85
Quan [31] 56.43
Yao [30] 78.37

Gando [50] 67.48
De Rezende [23] 73.00

He [22] 56.78
Zhang [21] 61.78
Quan [20] 59.36
Yao [19] 82.41

CoStNet (Proposed) 73.67

In the pursuit of enhancing CoStNet’s generalization capabilities, the model was sys-
tematically trained on the complex LSCGB dataset and subsequently evaluated through
cross-dataset testing on the DSTok dataset. The results demonstrate a significant per-
formance milestone, with CoStNet surpassing established state-of-the-art methods by
achieving a detection accuracy of 93.03%, as shown in Table 7. This denotes a substantial
advancement compared to prior assessments on Rahmouni’s dataset, affirming CoStNet’s
adaptability and resilience to diverse and challenging data distributions.

Notably, CoStNet achieves a detection accuracy of 93.03%, outperforming state-of-the-
art algorithms. Compared to the highest-performing state-of-the-art algorithm, Bai [28],
which attains an accuracy of 83.95%, CoStNet demonstrates a substantial improvement of
11.21%. Furthermore, when contrasted with the mean accuracy of the baseline methods
(approximately 78.63%), CoStNet exhibits an impressive percentage increase of approxi-
mately 18.31%. These results underscore the notable efficacy of CoStNet in surpassing
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established algorithms, showcasing its proficiency in handling the cross-dataset challenges
posed by the DSTok dataset.

CoStNet’s robust generalization is evident when trained on challenging datasets,
such as the LSCGB dataset. Exposure to increased complexity and diverse data modali-
ties enhances the model’s adaptability. This observed phenomenon highlights CoStNet’s
capacity to discern intricate patterns, facilitating adept generalization across diverse con-
texts. Systematic training on challenging datasets plays a crucial role in fortifying the
model against overfitting and enabling it to capture underlying structures that transcend
dataset-specific nuances. This scientific observation emphasizes the pragmatic utility of
subjecting deep learning models to progressively complex training scenarios for enhanced
real-world applicability.

Table 7. Detection accuracy (%) in cross-dataset testing. State-of-the-art methods and the proposed
CoStNet are trained on the LSCGB dataset and tested on the DSTok one.

Algorithms DSTok Dataset

Nguyen [48] 78.71
Huang [49] 80.78
Zhang [21] 72.57

VGG-19 [36] 77.16
Bai [28] 83.95

CoStNet (Proposed) 93.03

5.4. Robustness Capability

In the context of real-world digital forensics, an essential criterion for a comprehensive
system is its ability to exhibit robustness against a spectrum of noise types and levels.
To ascertain the effectiveness of our CoStNet model, we conducted a set of meticulously
designed experiments, aligning with established literature, to facilitate a direct comparison
with existing methods. This approach allowed us to evaluate the model’s performance
under diverse conditions.

Within the initial experimental set, we introduced salt-and-pepper noise to the test
samples from the DSTok dataset, mirroring the methodology outlined in [19], while main-
taining consistent signal-to-noise ratios (SNRs) at 0.99, 0.95, and 0.9. The summary in
Table 8 provides a quantitative overview of the outcomes. An example of injected noise
is depicted in Figure 8. When the test samples were infected with salt-and-pepper noise
with SNR = 0.99, the proposed approach yielded an accuracy of 95.20% demonstrating
its potential, while the method proposed in [19] was lagging behind with an accuracy of
93.08%. When the SNR of the injected noise was decreased to 0.95, CoStNet achieved an
accuracy of 92.97%, outperforming its competitors. Even in the most challenging condition
of SNR 0.9, CoStNet maintained an accuracy of 90.23%, notably exceeding the second-best
method’s accuracy of 82.38% [19]. It is worth mentioning that 6 out of 10 approaches
achieved an accuracy of about 50%, while their accuracy exceeded 90% in the original
experiments. For example, the detection accuracy of the Quan [20] algorithm exhibited a
decrement from 95.30% to 55.58% subsequent to exposure to salt-and-pepper noise, indicat-
ing a susceptibility to perturbations mirroring real-world scenarios, thus reflecting a limited
robustness under such conditions. Similar behavior was noticed also in Rahmouni [24],
Yao [30], He [22], Zhang [21], and Quan [31]. Amid the complexities of noise interference,
CoStNet emerges as an exemplar of adaptability, underscoring its potential to thrive under
demanding real-world conditions.
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Table 8. Detection accuracy (%) after salt-and-pepper noise attack on the test images.

Algorithms SNR = 0.99 SNR = 0.95 SNR = 0.9

Rahmouni [24] 52.59 51.36 50.73
Quan [31] 50.27 50.02 49.99
Yao [30] 47.96 45.44 50.00

Gando [50] 79.01 70.52 64.53
De Rezende [23] 92.19 86.63 80.55

He [22] 50.18 50.01 50.05
Zhang [21] 57.50 52.67 51.93
Quan [20] 55.58 48.79 49.35
Yao [19] 93.08 88.91 82.38

CoStNet (Proposed) 95.20 92.97 90.23

Original CGI. CGI with SNR = 0.99.

CGI with SNR = 0.95. CGI with SNR = 0.9.
Figure 8. Original CGI and the CGIs altered by injecting salt-and-pepper noise at various SNRs.

A subsequent series of experiments was undertaken, involving the introduction of
Gaussian noise. Drawing inspiration from the methodology outlined in [19], we set the
Gaussian noise’s mean value to 0 while maintaining a signal-to-noise ratio (SNR) of 0.7. This
experimental protocol also entailed the exploration of three distinct standard deviations
(SD) for the noise, specifically 10, 30, and 50. The results of detection accuracy are presented
in Table 9 and elucidate the model’s performance across varying degrees of Gaussian
perturbations. When SD = 10, the proposed approach yielded an accuracy of 66.13%, being
placed in the fifth place with respect to accuracy. The top-performing approach was the
method proposed in [23]. When the SD was increased to 30, CoStNet was rated as the
fourth top-performing out of the ten methods with an accuracy of 62.03%. Notably, when
the SD was increased to 50, CoStNet resulted in an accuracy of 60.97% ranked as the third
best performing method. This fact demonstrates that the greater SD of noise, the better
the ranking of the proposed method. When the SD increases, De Rezende’s [23] approach
maintains a high detection accuracy of 96.63%, demonstrating its robustness in such kind of
attack. We argue that this occurrence stems from the preprocessing methodology utilized
by this method. Such preprocessing involves the deduction of the mean RGB value of the
ImageNet dataset from each pixel during the preprocessing phase. The detection accuracy
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when SD increases notably deteriorates, demonstrating that this form of attack profoundly
impacts the overall performance of the models.

Relative deteriorations in accuracies across varying levels of Gaussian noise attacks
reveal notable trends among the evaluated methods. De Rezende’s approach showcased
considerable vulnerability, experiencing a 19.27% deterioration from SD = 10 to SD = 30 and
a total 30.21% decrease from SD = 10 to SD = 50. Similarly, the Yao [19] method exhibited
significant susceptibility, with deteriorations of 9.61% from SD = 10 to SD = 30 and 18.50%
from SD = 10 to SD = 50. In contrast, the proposed CoStNet method demonstrated relatively
better robustness, showcasing deteriorations of 6.20% from SD = 10 to SD = 30 and 7.80%
from SD = 10 to SD = 50. These observations underline the varying degrees of resilience
among the evaluated algorithms against escalating levels of Gaussian noise, with De
Rezende displaying the most pronounced sensitivity and CoStNet illustrating relatively
improved stability in the face of increasing noise levels.

Table 9. Detection accuracy (%) after Gaussian noise attack on test images.

Algorithms SD = 10 SD = 30 SD = 50

Rahmouni [24] 52.19 50.00 50.25
Quan [31] 52.95 49.66 48.91
Yao [30] 44.31 41.23 50.00

Gando [50] 75.00 65.08 57.50
De Rezende [23] 96.63 78.00 67.44

He [22] 72.38 57.47 54.41
Zhang [21] 54.64 50.30 49.12
Quan [20] 51.39 50.24 49.12
Yao [19] 88.54 80.03 72.16

CoStNet (Proposed) 66.13 62.03 60.97

5.5. Impact of Style Transfer (Ablation Study)

The proposed CoStNet benefits from the style transfer module, which acts in a com-
plementary manner, enriching the training procedure with additional training CG samples.
The research question that arises refers to the contribution of the style transfer module in
cases of reduced training samples. Four different experiments were conducted in which
the style transfer module had different quantitative contributions to training samples, as
depicted in Figure 9. Specifically, 75%, 50%, 25%, and 10% of the initial CG training samples
were randomly removed and replaced with the same percentages using the style transfer
module in the DSTok dataset such that the original number of training samples remains
unchanged. The best accuracy was observed when the style transfer module replaced 10%
of the training samples with CGIs, reaching an accuracy of 97.09%, outperforming the
CGNet [19], which derived an accuracy of 96.10%. When 25% of the original CG training
samples were removed and replaced by the style module, CoStNet achieved an accuracy
of 96.56%. When half of the training samples were randomly removed and replaced by
the style transfer module, CoStNet reached an accuracy of 95.75%, performing accurately
and being placed second. Finally, when only 25% of the original training samples were
retained and the style transfer module completed the rest of the samples, CoStNet reached
an accuracy of 94.72%. The results of the ablation study demonstrate the significant contri-
bution of the style transfer module in achieving improved accuracy with reduced training
samples. This finding supports the claim that incorporating the style transfer module into
the proposed architecture can lead to more effective and accurate predictions. Such insights
provide valuable guidance for future research in this area and suggest that the proposed
approach has the potential to enhance the performance of a wide range of machine learning
applications in the context of discriminating CGIs from NIs.
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Figure 9. Accuracy of the proposed CoStNet on the DSTok dataset when several portions of the
original dataset are retained.

5.6. Statistical Significance

It is of paramount importance to underscore a nuanced but impactful observation in
the realm of accuracy disparities between our proposed method and the state-of-the-art
methodology expounded in [19] on the DSTok dataset. Specifically, a marginal deviation of
1.01% is discernible when circumstances entail the integration of the style transfer module to
augment the reservoir of training samples, as meticulously delineated in Section 5.2. More-
over, a commensurate distinction of 0.99% surfaces when the style transfer module assumes
a pivotal role in replenishing 10% of the training set encompassing CGIs. This strategic
recalibration is aimed at aligning with the numerical representation stipulated in [19].

This nuanced differential serves to accentuate the meticulous precision and unwa-
vering stability inherent in our methodology. Furthermore, it serves as a testament to the
method’s remarkable consistency across diverse settings and methodologies for assimi-
lating supplementary data. These insightful differentials aptly underscore the method’s
inherent robustness and reliability.

To check whether the accuracy difference of 0.99% is statistically significant, the
approximate analysis in [52] is applied. The accuracies ϖ1 and ϖ2 are binomially distributed
random variables. If ϖ̂1, ϖ̂2 denote the empirical accuracies, and ϖ = ϖ̂1+ϖ̂2

2 , the hypothesis
H0 : ϖ1 = ϖ2 = ϖ is tested at 95% level of significance. The accuracy difference has
a variance of β = 2 ϖ(1−ϖ)

N , where N is the number of images. For ζ = 1.65
√

β, if
|ϖ̂1 − ϖ̂2| ≥ ζ, H0 is rejected with a risk 5% of being wrong. Similarly, there is sufficient
evidence to warrant the rejection of the claim that both the CGNet [19] and CoStNet
methods attain the same accuracy. Accordingly, in 95% of repetitions of the experiment,
CoStNet is expected to outperform CGNet [19]. The aforementioned analysis certifies
that, in our case, the obtained ζ = 0.24% indicates that the observed 0.99% accuracy
difference between the proposed framework and the state-of-the-art CGNet reported in [19]
is statistically significant.

The same procedure was employed to check whether the accuracy difference of 0.76%
between the proposed CoStNet and the method presented in [28] when both were trained



Information 2024, 15, 158 20 of 23

and tested on the DSTok dataset is statistically significant. In that case, the obtained
ζ = 0.23% indicates that the observed 0.76% accuracy difference between the proposed
framework and the method reported in [28] is statistically significant. This analysis provides
strong evidence that the performance enhancements achieved by our method over the state-
of-the-art CGNet [19] and the method presented in [28] is not merely incidental, but rather
statistically validated. This statistical rigor not only complements the empirical observa-
tions but also reinforces the credibility of claims regarding the method’s effectiveness, lend-
ing support to the notion of the robustness and reliability of the proposed methodology.

5.7. Real-World Forensic Applications

The proposed CoStNet offers substantial practical utility in the age of deepfakes, with
extensive applicability in real-world scenarios, notably within the domain of multimedia
forensics. By accurately distinguishing between CGIs and NIs, the proposed framework
offers enhanced capabilities to detect deepfakes. The ability to differentiate between CGIs
and NIs is crucial for identifying manipulated or forged images, thus preserving the in-
tegrity of digital evidence and ensuring the reliability of forensic conclusions, indeed.
Moreover, CoStNet’s potential extends beyond forensic analysis to combating misinfor-
mation in digital media platforms. With the proliferation of manipulated images in social
networks, the method provides a valuable tool for researchers and media professionals to
detect and flag potentially deceptive content, thus safeguarding the integrity of information
dissemination. Additionally, it holds promise for multimedia authentication applications.
By accurately verifying the authenticity of digital images, the method enhances trust in
photographic evidence, particularly in fields such as journalism where the credibility of
visual content is paramount for reporting factual information. Furthermore, CoStNet’s
applications transcend traditional forensics to include fraud detection in various domains.
In banking and document authentication, for instance, the method can be employed to
verify the authenticity of scanned signed documents, thereby mitigating identity theft and
financial fraud. By leveraging supervised contrastive learning and incorporating the style
transfer module, the method pushes the boundaries of deep learning techniques, fostering
innovation in multimedia analysis and paving the way for future research endeavors.

6. Conclusions, Limitations, and Future Directions

An end-to-end deep learning framework, denoted as CoStNet, has been introduced
as a novel solution for the application of distinguishing NIs from CGIs. The innovation
combines the principles of supervised contrastive learning, arbitrary style transfer, and the
ResNet-18 architecture within a unique two-module framework. Through the integration of
contrastive learning, CoStNet circumvents the necessity for hand-engineered features and
adeptly captures intricate feature representations inherent in the training data, thereby en-
abling precise classification. Notably, the incorporation of the style transfer module extends
the efficacy of training by enriching the dataset with an amplified array of negative samples
beyond the confines of the original dataset. The robustness and efficacy of CoStNet are
substantiated through a comprehensive series of experiments, leveraging the benchmark
DSTok, Rahmouni, and LSCGB datasets. Furthermore, its prowess is evaluated in terms
of both its generalization capacity and resilience through cross-dataset testing. By bench-
marking CoStNet’s detection accuracy against state-of-the-art methods, its competence is
reaffirmed across various parameter configurations, encompassing batch sizes and epochs.
Notably, even with modest training epochs and compact batch sizes, CoStNet emerges as
an adept classifier, surpassing state-of-the-art methodologies. An in-depth ablation study
elucidates the pivotal role played by the style transfer module, particularly in scenarios
with constrained training data availability. Empirical results corroborate CoStNet’s per-
formance equivalence to state-of-the-art methods, while its superiority in distinguishing
NIs from CGIs is underscored by a remarkable accuracy, outperforming the state-of-the-art
approaches. Significantly, statistical tests substantiate the statistical significance of these
performance enhancements.
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While CoStNet demonstrates promising performance in distinguishing natural images
NIs from CGIs in many different setups, there are some noteworthy limitations that warrant
consideration. The disparities identified in Rahmouni’s dataset, which is characterized by
divergent stylistic attributes, diverse content structures, and potentially distinct contextual
elements compared to the DSTok dataset, extend beyond quantitative differences and
significantly impact the adaptability of the CoStNet model when faced with unfamiliar data
distributions. Consequently, cross-dataset testing, especially when CoStNet was trained on
the DSTok dataset and tested on Rahmouni’s dataset, poses significant challenges for model
generalization. Additionally, the framework is not robust in the presence of Gaussian
noise during testing, leading to performance deterioration compared to scenarios involving
salt-and-pepper noise. These limitations underscore the need for future research aimed at
enhancing the framework’s efficacy and resilience in practical applications.

The effectiveness and efficiency demonstrated by the proposed framework chart a
compelling trajectory for future research endeavors. A pursuit to enhance the robustness
of the framework is evident, aiming to address inherent limitations. This could involve
the development of more robust CNN architectures tailored to handle even more diverse
datasets and noise conditions. Advanced noise reduction techniques or regularization
methods could be explored to improve the model’s resilience to Gaussian noise. Addition-
ally, investigating transfer learning strategies may enhance model generalization across
different datasets, ultimately advancing the framework’s applicability in real-world scenar-
ios. Moreover, there is an imperative drive towards the development and integration of
lightweight models, a strategic approach poised to tackle real-world temporal constraints
and to cater to applications necessitating near real-time operation.
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