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Abstract: Having as a main objective the exploration of power efficiency of microcontrollers running
machine learning models, this manuscript contrasts the performance of two types of state-of-the-art
microcontrollers, namely ESP32 with an LX6 core and ESP32-S3 with an LX7 core, focusing on the
impact of process acceleration technologies like cache memory and vectoring. The research employs
experimental methods, where identical machine learning models are run on both microcontrollers
under varying conditions, with particular attention to cache optimization and vector instruction
utilization. Results indicate a notable difference in power efficiency between the two microcontrollers,
directly linked to their respective process acceleration capabilities. The study concludes that while
both microcontrollers show efficacy in running machine learning models, ESP32-S3 with an LX7
core demonstrates superior power efficiency, attributable to its advanced vector instruction set and
optimized cache memory usage. These findings provide valuable insights for the design of power-
efficient embedded systems supporting machine learning for a variety of applications, including
IoT and wearable devices, ambient intelligence, and edge computing and pave the way for future
research in optimizing machine learning models for low-power, embedded environments.

Keywords: Artificial Intelligence; microcontrollers; embedded systems; machine learning; microcontroller
power efficiency

1. Introduction

During the past two years, computing has reached a significant milestone. This is the
achievement of a functional AI model that can communicate with humans using natural
language in a way that is almost indistinguishable from that if the result was originated by
a machine or another human. This event occurred as an explosive development of various
AI-based services, e.g., financial investment advice services or marketing advice services or
bringing AI closer to the public and proving that the public is ready to accept any useful
AI services. The key element of this event is “communication with humans in a natural
manner”, a fact that indicates that efficient interaction with the real world is a key element
for “smart systems”. A natural language may be the basic form of human communication;
however, a human communicates and receives stimuli from the surrounding environment
in a variety of other multimodal [1] methods. This is where ubiquitous computing rules
come into play and embedded systems are required to carry the burden of running AI
inference models that may offer humans a more natural and easier way of receiving services.
This means that an embedded system may need to be autonomous and efficient in order to
achieve its purpose. AI models’ inference runtimes are notorious for their latency, which is
the real time required to produce a result, and their power requirements, especially when
models are complex enough to produce high-level services such as face recognition. This
fact drew the attention of various semiconductor manufacturers, which rushed to include
function-specific acceleration hardware to small microcontrollers, thus making them more
efficient in AI inference latency-wise.
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In this manuscript, we are examining if this acceleration hardware also makes these
systems more efficient power-wise, thus suitable as autonomous AI systems. To achieve this,
we employ a series of experiments where identical machine learning models are executed
on both microcontrollers under various conditions. The study meticulously examines
power consumption patterns in relation to the utilization of cache memory and vectoring
instructions. The ESP32’s LX6 core, known for its dual-core architecture, is evaluated
against the ESP32-S3’s LX7 core, which boasts enhanced computational capabilities and an
improved vector instruction set.

Our findings reveal significant insights into how cache memory optimization and
vectoring instructions can drastically affect the power efficiency of microcontrollers. The
results demonstrate a clear correlation between these process acceleration technologies
and reduced energy consumption during machine learning tasks. Additionally, the study
provides a comparative analysis of the two microcontrollers’ acceleration technologies,
offering valuable data for engineers and researchers in selecting the most power-efficient
microcontroller for machine learning applications.

2. Related Work

The trend to deploy cognitive services boosting the performance of intelligent edge
devices has emerged since the introduction of the so-called pervasive and ubiquitous
computing paradigm [2]. This paradigm, in turn, can be attributed to rapid advances
in microelectronics, on the one hand, and communication technologies, on the other,
which have led to packing more and more miniaturized processing, storage, and sensing
components in handheld, portable, and always-connected “smart” devices that can support
a wide range of environmentally adaptive and context-aware human-centric services.
The latest advances in the domain of machine learning (ML) and artificial intelligence
(AI) [3] build on the infrastructure of ubiquitous computing and the Internet of Things
(IoT) to extend intelligence to the edge of networked systems, leading to a paradigm shift
of so-called edge AI [4]. Therefore, in this quest, it is critical to understand and assess
performance trade-offs in terms of processing, networking, and storage capabilities as
well as autonomous operation of edge devices that support the edge AI model and can
lead to enhanced system design and application performance. In this section, we review
several works that have addressed the above optimization and performance benchmarking
problem by proposing either improved algorithms or improved system designs to accelerate
AI processing on edge devices, while maintaining the properties of mobile and autonomous
operation (i.e., in terms of system size, weight, power consumption requirements, etc.).

In [5], the authors focus on the feasibility of implementing deep learning (DL) on
microcontrollers for human activity recognition using accelerometer data. It compares
random forests, a classical machine learning technique, with convolutional neural net-
works (CNNs) in terms of classification accuracy and inference speed. The study finds that
random forest classifiers are faster and nearly as accurate as a custom small CNN model.
The paper discusses the potential of DL for modern microcontrollers and questions its
suitability compared to traditional methods, especially considering inference speed and
energy consumption. Specifically, this paper mentions the use of the CMSIS-NN hardware
acceleration library, which significantly impacts the performance of CNNs on microcon-
trollers. Enabling this library can improve CNN performance by one to two orders of
magnitude. This enhancement is particularly crucial for achieving fast inferences on ARM-
based microcontrollers. The impact of CMSIS-NN hardware acceleration is highlighted as
more significant than mere updates to the instruction sets of newer microcontroller models,
and it is considered essential when the CNN architecture is fixed.

The CMSIS-NN library is designed to accelerate ML models, particularly neural
networks (NNs), on ARM Cortex-M processors, which are common in microcontrollers.
This acceleration is achieved through a combination of strategies, with the usage of SIMD
(single instruction, multiple data) instructions being among them.
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Overall, the findings underscore the importance of balancing model complexity and
power efficiency, especially for applications on resource-constrained devices like microcon-
trollers. The use of techniques like quantization can help in optimizing models for better
power efficiency without substantially compromising performance; however, according to
the authors, the CMSIS-NN library’s impact is compared to the floating-point unit (FPU).
For models that are fully quantized and do not require floating-point operations, the FPU
has no effect on speed, whereas the CMSIS-NN library significantly improves performance.
This suggests that in scenarios where models are optimized for microcontrollers (includ-
ing quantization and CMSIS-NN optimization), the overall efficiency, including power
efficiency, is likely to be enhanced but only if the model is quantized in a floating-point
arithmetic system. This is not taking into account any SIMD or other vectoring instructions
available that are likely to improve acceleration through parallelism.

The review performed in [6] provides a comprehensive examination of tools and
techniques for efficient edge inference, a key element in AI on edge devices. It discusses the
challenges of deploying computationally expensive and power-hungry DL algorithms in
end-user applications, especially on resource-constrained devices like mobile phones and
wearables. The paper covers four main research directions: novel DL architecture and algo-
rithm design, optimization of existing DL methods, development of algorithm–hardware
codesign, and efficient accelerator design for DL deployment. It reviews state-of-the-art
tools and techniques for efficient edge inference, emphasizing the balance between com-
putational efficiency and the resource limitations of edge devices. However, the paper
also highlights some limitations of MCUs (microcontroller units), such as less memory,
slower processing compared to CPUs (central processing units) or GPUs (graphics process-
ing units), lack of parallelization, low clock frequency, and reliance on general-purpose
processors that do not support vectorization or thread-level parallelism, indicating that
vectorization and parallelism—when implemented—may have a large impact on inference
latency and power efficiency.

The work in [7] explores the challenges and methodologies involved in deploying
deep neural networks (DNNs) on low-power, 32-bit microcontrollers. It emphasizes the
need for optimization in terms of power consumption, memory, and real-time constraints to
facilitate edge computing. The paper introduces a framework called “MicroAI” for training,
quantization, and deployment of these networks, highlighting the balance between model
accuracy, energy efficiency, and memory footprint. The work also includes a comparative
analysis of MicroAI with existing embedded AI frameworks and evaluates performance
using various datasets and microcontroller platforms. The paper also highlights ongoing
work on 8-bit quantization, which improves inference time and memory footprint but at the
cost of a slight decrease in accuracy and more complex implementation. The authors focus
on several optimization techniques for fixed-point on 8-bit integer inference, including
per-filter quantization, asymmetric range, and non-power of two scale factors. Additionally,
the use of SIMD (single instruction, multiple data) instructions in the inference engine is
anticipated to further decrease inference time.

The work in [8] focuses on deploying ML models on IoT devices efficiently in terms of
power consumption. It addresses the challenge of running ML algorithms on embedded
devices with limited computational and power resources. The study presents experimental
results on the power efficiency of well-known ML models, using optimization methods.
It compares the results with the idle power consumption of the systems used. Two differ-
ent systems with distinct architectures were tested, leading to insights about the power
efficiency of each architecture. The paper covers topics like system setup, methodology,
selected ML models, and frameworks used, and it discusses the measurements and power
efficiency results obtained for both microcontroller architectures and various optimization
methods that were applied on the selected ML models. The results show that current
optimization methods used for reducing inference latency also reduce power consumption.
While the referred work [8] is targeting mostly ML model optimization on a software level
and comparing the effect on different generic architectures, we in this paper are focusing
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on hardware-level optimization methods that are in fact architecture-agnostic acceleration
blocks and may be present in various microcontrollers. In a way, our work is an extension
of [8] in the hardware domain.

The PhD thesis of Angelo Garofalo [9] is the latest work to our knowledge that pro-
vides detailed insights into vectoring acceleration and SIMD (single instruction, multiple
data) instructions, particularly in the context of RISC-V IoT processors and QNN (quan-
tized neural network) acceleration. This work emphasized the fact that modern MCUs
lack support at the ISA (instruction set architecture) level for low-bit-width integer SIMD
arithmetic instructions. Most commercial ISAs support only 16-bit or 8-bit data. This
limitation affects performance and energy efficiency during computation, especially in
the context of DNN models. As a first architecture-aware design of AI-based applica-
tions, the thesis evaluates kernel computation optimizations by fully exploiting the target
RV32IMCXpulp ISA. These kernels are specialized functions or programs/methods used
in microcontrollers for processing data in neural networks, specifically in machine learning
applications (e.g., matrix multiplication (MatMul) kernels that are used for performing
mathematical operations where two arrays (matrices) are multiplied together). It proposed
using hardware loops to accelerate ‘for’ statements and employing 8-bit SIMD instructions
to work over multiple SIMD vector elements in parallel, thus increasing the throughput
of the computation. Beyond kernel optimizations, the work in [9] discusses the support
for various SIMD instructions. In addition to the dot product, the thesis mentions support
for other SIMD instructions, such as maximum, minimum, and average for nibble (4 bits)
and crumb (2 bits) packed operands. These are particularly useful for speeding up pooling
layers and activation layers based on the rectified linear unit (ReLU) function. A range
of arithmetic and logic operations (addition, subtraction, and shift) complete the set of
XpulpNN SIMD instructions. Furthermore, the author in [9] introduces a multi-precision
dot-product unit that computes the dot-product operation between two SIMD registers and
accumulates partial results over a 32-bit scalar register in one clock cycle. This unit supports
a variety of element sizes in SIMD vectors, ranging from two 16-bit to sixteen 2-bit elements,
with the ability to interpret operands as signed or unsigned. To address the saturation
problem of the RISC-V encoding space and avoid explicitly encoding all combinations of
mixed-precision operands, the thesis proposes a power-aware design with virtual SIMD
instructions. These instructions are decoded at the ID (instruction decoding) stage, and
their precision is specified by a control and status register written by the processor. Finally,
the thesis presents the design of an energy-efficient multi-precision arithmetic unit targeting
the computing requirements of low-bit-width QNNs. This includes support for sub-byte
SIMD operations (8-, 4-, and 2-bits) and is integrated into a cluster of MCU-class RISC-V
cores with a new set of ISA domain-specific instructions, named XpulpNN. This aims
to bridge the gap between ISA and hardware to improve computing efficiency for QNN
workloads at the extreme edge of IoT.

These findings indicate a significant focus on enhancing computational efficiency and
flexibility in processing neural network tasks, particularly in resource-constrained environ-
ments like IoT devices with various methods including hardware acceleration such as SIMD
instructions. Specifically, we can conclude that a lot of effort is put towards fully exploiting
available hardware capabilities of modern microcontrollers and/or making new proposals
for the reuse of currently available technologies that may benefit ML model processing
acceleration. Most of this work is focused on accelerating ML model inference times, thus
making the overall systems more efficient; however, while it is stated in many cases, power
efficiency improvement is seldomly—if ever—analyzed in a meaningful manner.

Power efficiency, nowadays, is a necessity for every computational system [10], but
additionally in this case, since a microcontroller-based system, which is by definition a
resource-constrained system, especially for ML runtime models [11], may need to be au-
tonomous, its power efficiency is a concern that the designer has to take into account.
Furthermore, the work in [12] does investigate various studies on hardware-based DNN
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inference optimization techniques that include execution parallelization and caching tech-
niques focusing on inference acceleration rather than power efficiency.

In this manuscript, we will investigate the power efficiency aspect of selected hardware
acceleration methods, similar to those presented in the related works but that are currently
available for modern microcontrollers and thus ready to be used. Our hypothesis is that
there are hardware blocks available for current hardware that may prove useful in making
ML runtimes in microcontrollers more power efficient.

3. Theoretical Basis

Modern microcontrollers carry a vast number of technologies and methods that are
used to improve their performance in various functions. In this chapter, we will describe
two technologies that are currently used on most available modern microcontrollers. These
technologies are cache memory and vectoring instructions. Our work is based on measuring
power efficiency of ML model runtimes on two microcontrollers under two main scenarios.
One is the use of cache memory under various configurations and the second is the use of
vectoring/SIMD instructions. Both of these technologies are described below.

3.1. Hierarchical Memory System/Cache Memory

A hierarchical memory system [13] in a microcontroller is designed to manage data
storage and access in an efficient manner [14,15]. This system consists of multiple layers
of memory, each with different characteristics like size, speed, and cost. Such systems
may, among other layers of memory, include caches that are relatively small but fast
memory locations designed to speed up data access to frequently used data. They act as
an intermediary between the slow main memory and the fast CPU and usually split into
two different operation-based sub-caches. First, the instruction cache (I-Cache) specifically
stores pre-fetched instructions, with the purpose of speeding up the execution of programs
by minimizing the time taken to fetch instructions from the main memory. Secondly, the
data cache (D-Cache) is designed to store and provide quick access to data used by the CPU,
helping in reducing the delay in data retrieval from the main memory, which is crucial for
efficient processing.

The data flow in this system is managed to ensure that the most frequently accessed
data are stored in the fastest memory (like caches), thus reducing the average time to access
data. When a microcontroller processes data, it first checks the fastest memory (registers),
then the caches, and finally the main memory if the data are not found in the caches.

I-Cache is dedicated to storing pre-fetched instructions. Its primary function is to
accelerate the execution of programs by reducing the time taken to fetch instructions from
the slower main memory. When the CPU executes a program, it frequently accesses certain
instructions. I-Cache keeps a copy of these instructions. By doing this, it minimizes the need
for the CPU to repeatedly access the slower main memory for these instructions, leading to
faster program execution. I-Cache exploits the principle of “temporal locality”, meaning
that instructions accessed recently are likely to be accessed again soon. Generally, I-Cache
is implemented using high-speed memory technology, like SRAM (static random-access
memory). It is closely integrated with the CPU to minimize latency. I-Cache tends to be
relatively small but extremely fast. Its effectiveness lies not in its size but in how well it
predicts and stores the instructions that the CPU will need next.

D-Cache is dedicated to storing data that the CPU uses. It aims to minimize the delay
in data retrieval from the main memory. When the CPU processes data, it often needs to
access certain data elements repeatedly. D-Cache stores copies of these data to reduce the
need for time-consuming access to the main memory. D-Cache utilizes both “temporal
locality” (recently accessed data are likely to be accessed again) and “spatial locality” (data
near recently accessed data are likely to be accessed). D-Cache writes policies like write-
through and write-back and governs how modifications to data in the cache are handled
in relation to the main memory. With the write-through policy, every change in D-Cache
is immediately written to the main memory, while with the write-back policy, changes in
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D-Cache are written back to the main memory only when the cache line is replaced. Like
I-Cache, D-Cache is also small and fast, designed for quick access to data.

The importance for microcontrollers’ functionality lies in the effects that, by reducing
the frequency of access to slower main memory, caches significantly speed up data process-
ing, and faster data access means reduced CPU idle time and lower energy consumption,
which are crucial in embedded systems and IoT devices.

Adding to the above reasoning that most if not all ML models are in fact just tensors
densely packed to memory, thus they have increased data locality, especially when we take
into account their layer-by-layer formatting and processing flow, we expect that the usage
of caches will greatly improve power efficiency.

3.2. Vectoring and SIMD Technologies

A microcontroller vectoring system refers to the ability to handle multiple data
operands simultaneously through a single instruction. This is part of a broader concept
known as SIMD (single instruction, multiple data) [16]. This system is particularly useful in
microcontrollers for tasks that require processing large arrays of data efficiently, like digital
signal processing; matrix operations, like ML tensor operations; and handling complex
sensor data.

SIMD is a parallel processing method [17] that allows a single instruction to perform
the same operation on multiple data points simultaneously. This method increases compu-
tational speed for certain tasks by parallelizing the computation on multiple data elements,
reducing the total number of instructions required. SIMD is widely used in applications re-
quiring heavy numerical computations, such as graphics processing, scientific simulations,
and machine learning tasks.

Vectoring in microcontrollers is similar to SIMD, but specifically tailored for microcon-
troller environments. It aims to enhance the data processing capabilities of microcontrollers
by allowing them to handle multiple data points with a single instruction, similar to SIMD.
It is particularly useful in microcontroller-based applications like signal processing, sensor
data handling, and IoT devices where efficient data processing is needed.

Both SIMD and vectoring technologies are designed to process multiple data points
simultaneously under a single instruction, and they are used to increase computational effi-
ciency, especially in tasks involving large arrays of data. SIMD is a general concept applied
in various computing systems, including high-end processors and GPUs, while vectoring
in microcontrollers is a more specific application within the constraints of microcontroller
architecture. SIMD can be found in a broader range of hardware, from general-purpose
CPUs to specialized processing units, whereas vectoring is specifically integrated into
the design of certain microcontrollers. SIMD optimizations are often geared towards
high-performance and complex computing tasks, while vectoring in microcontrollers is
optimized for the efficiency and power constraints typical in embedded system applications.
However, ARM does describe the equivalent system for their microcontrollers as SIMD
and not as vectoring.

4. Experimental Setup

Our experimental setup and methods are focused on measuring power efficiency in
ML models running on microcontrollers under various states of hardware capabilities
(e.g., disabled cache, limited cache size, etc.). Therefore, our setup must include the
necessary laboratory instruments, a group of microcontroller boards as the devices under
investigation, and well-defined methods of producing meaningful measurement results.

In our case, we need to measure the power consumption of two microcontrollers while
they are running ML models. This means that we have to connect a power measuring
instrument to each of the microcontrollers and restrict its measurement sampling to the
time window in which the ML model runs. To achieve precise measurements, we utilized
a collection of tools comprising a laboratory-grade digital multimeter (DMM), featuring
external triggering capabilities, and a bench power supply unit (PSU) capable of delivering
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a stable 3.3 Volt output. Furthermore, we employed an extra-precise multimeter to confirm
an accurate voltage reading when the MCU was operating under load. We also employed
the serial port for each board that we used as a console output in order to obtain internal
runtime information for each inference.

4.1. Digital Multimeter

For our DMM, we opted for the Keysight 34465A [18]. This digital multimeter’s
accuracy can reach up to 0.0035% (+3 counts), depending on the function and range
used. The multimeter is equipped with self-calibration and self-diagnostic features to
preserve its accuracy over time. An external triggering function allows measurements to be
synchronized with external events or signals. This is particularly beneficial in scenarios
like data acquisition systems or when precise timing of measurements is crucial since, as
we will describe further down, in order to take precise measurements, we need to limit the
measurement period to that of the ML runtime and precisely time it by external triggering.

This DMM also provides a range of mathematical functions for data analysis. Users
can perform basic arithmetic (addition, subtraction, multiplication, and division) and
more complex calculations like square root, square, absolute value, and logarithm. We
used this function in order to calculate the power consumption from current readings.
The device also features data acquisition and storage capabilities, allowing for sequential
measurement recording over time, crucial for later analysis. Users can customize data
acquisition by setting parameters like sampling rate and reading count, controllable via the
front panel or remotely. The multimeter automatically captures and saves data per these
settings. Additionally, the DMM can create, display, and export trend charts, providing a
comprehensive view of measurement patterns over time.

To ensure precise measurements using the methodology detailed later, we configured
the DMM with the following settings:

• The input was set to the 3A current port.
• The trigger mode was adjusted to respond to external triggering on the negative edge.
• The DMM was placed in continuous acquire mode.
• A measurement delay of 50 microseconds (µS) was established post-triggering.
• The sampling rate was tailored for each model, ensuring that a minimum of three

samples could be taken during the inference duration.
• The display mode was switched to show a trend chart.
• A linear mathematical function was implemented to convert the current input (mea-

sured in mA) to power input (expressed in mW).

4.2. Bench Power Supply Device

The EL302T bench power supply unit (PSU) [19] is an electronic device used for
providing a stable, adjustable source of direct current (DC). This power supply typically
features the capability to set specific voltage and current levels within a certain range. Key
characteristics of the EL302T include its precision in controlling output voltage and current
and its reliability in maintaining stable power output. Additionally, the unit has safety
features like overvoltage protection and thermal shutdown to ensure safe operation during
extended use.

5. ESP32—Selected Development Boards

The ESP32 and ESP32-S3 microcontrollers that we are using are made by Espressif
and are available in various forms. Their respective development boards are available
from various sources including Espressif. For our experimental setup, we chose two such
boards that are low cost and with an abundance of peripherals to support running ML
models, such as large amounts of PS RAM (pseudo-static RAM). In order to simplify our
setup, we used development boards that offer out-of-the-box connectivity options such as
USB/UART and GPIO pins and not barebone modules. Barebone ESP32 comes as an SiP
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(system-in-package) module with PCB finger soldering edges and it is rather hard to use it
without a suitable carrier board.

5.1. ESP32 DevKit TTGO

The ESP32 Devkit TTGO [20] is a development board built around the ESP32 chip
designed for a wide range of IoT (Internet of Things) applications. The DevKit typically
comes equipped with numerous GPIO (general-purpose input/output) pins, which are
essential for interfacing with various sensors, actuators, and other peripheral devices.
The board includes a USB-to-UART bridge, simplifying the process of programming the
ESP32 and enabling serial communication with a computer or other devices for collecting
our measurements. At its core, the ESP32 is a high-performance microcontroller, boasting
significant processing power and memory capacity. Despite its power, the ESP32 is designed
to be energy-efficient, a critical feature for battery-operated or power-sensitive applications.
In terms of software support, the ESP32 DevKit is compatible with several development
environments, including Espressif’s IDF, offering flexibility in programming languages and
frameworks. We opted for this board because it implemented the maximum size of PSRAM
for the ESP32 architecture (4 MB). A large size of memory is required for ML applications.
The basic specifications are given in the table below (Table 1).

Table 1. ESP32 (LX6) specifications.

Component Description

MCU core Tensilica Xtensa® LX6
Available cores 2

Maximum core frequency 240 MHz
Integration scale 40 nm

SRAM memory (internal) 520 KB
Total cache size 32 KB + 32 KB

External memory 4 MB QSPI PSRAM 1

Flash storage 4 MB QSPI Flash
Working voltage range 2.3 V to 3.6 V

Power consumption Varies based on activity and sleep modes
1 Limited to 4 MB by architecture.

5.2. ESP32-S3-DevKitC-1

ESP32-S3-DevKitC-1 is an advanced development board based on the ESP32-S3 chip,
designed specifically for high-performance IoT applications. This board is an evolution of
previous ESP32 models, offering enhanced features suitable for a wide range of applications
and ML applications. Similar to ESP32 TTGO, this board features the following:

• GPIO pins: It comes with an array of GPIO pins, enabling easy connections to various
sensors, actuators, and other peripherals making external triggering signal generation
easy in our case.

• USB interface: The board includes a USB interface for programming and power supply,
simplifying the development process that may also be used to produce any runtime
data and send it to a console for review.

• Powerful microcontroller: At its core lies the ESP32-S3 chip, which offers signifi-
cant improvements in processing power and memory compared to earlier model
computational resources that are useful for running ML models efficiently.

• AI and machine learning capabilities: ESP32-S3 is equipped to handle AI and machine
learning applications, making it suitable for advanced IoT projects.

• Flexible development options: The board supports various development environ-
ments, including the Arduino IDE and Espressif’s own software development frame-
work (ESP-IDF).

The specifications for this board are as follows (Table 2):
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Table 2. ESP32-S3 (LX7) specifications.

Component Description

MCU core Tensilica Xtensa® LX7
Available cores 2

Integration scale 40 nm
Maximum core frequency 240 MHz
SRAM memory (internal) 512 KB

Total cache size 32 KB + 64 KB
External memory 8 MB OSPI PSRAM

Flash storage 8 MB QSPI Flash
Wireless connectivity Bluetooth 5 BR/EDR, BLE/LR, WiFi

Working voltage range 2.3 V to 3.6 V
Power consumption Varies based on activity and sleep modes

ESP32-S3-DevKitC-1 [21] stands out for its enhanced processing capabilities, AI and
machine learning support, and versatile connectivity options, making it a powerful tool for
developers looking to create sophisticated and interconnected IoT solutions. Our selected
model comes with 8 MB OSPI PSRAM and 8 MB QSPI flash storage.

5.3. Evaluation of ESP32 and ESP32-S3 for Edge AI-Enabled Devices

ESP32 comes with a Tensilica Xtensa LX6 Dual-core, 32-bit processor, which typically
runs up to 240 MHz and includes integrated SPI SRAM (up to 4 MB) and SRAM (up to 520
KB). It is designed with power efficiency in mind, but is not specifically optimized for ML
applications. However, as indicated in [8], it is capable of running them although with a
lower power efficiency compared to other available microcontrollers.

ESP32-S3 comes with a Tensilica Xtensa LX7 Dual-core, 32-bit processor with vector
extensions that has improved performance over LX6, especially in computation-heavy
applications. It has the same clock as LX6, up to 240 MHz, a similar memory configuration
with potential enhancements in its cache system, and its power efficiency is comparable to
LX6, with possible additional efficiency gains in ML tasks due to vector extensions.

LX7 cores are more powerful, particularly in ML tasks, due to their architectural
enhancements (vectoring). LX6 lacks these vector extensions, making it less efficient for
parallel data processing. Both cores are designed for energy efficiency, but LX7′s optimized
ML processing can lead to better energy utilization in ML tasks.

5.4. Available Development Tools and ML Model Selection

In order to develop the required firmware that needs to contain both the selected ML
models as well as any other signaling generation routines used during measurements, we
opted to use ESP-IDF (Espressif IoT Development Framework). ESP-IDF is the official
development framework for Espressif’s ESP32 and ESP32-S series SoCs (system on chips).
It is a comprehensive set of tools and libraries designed to facilitate the creation of appli-
cations on the ESP32 platform. At its core, ESP-IDF is built upon FreeRTOS, a real-time
operating system that enables multitasking and real-time functionality. This integration
of FreeRTOS allows developers to leverage its features such as task scheduling, queues,
and inter-task communication mechanisms, enhancing the capability to handle complex
operations and multiple processes simultaneously. ESP-IDF supports a wide range of
development activities.

Programming in ESP-IDF is primarily conducted in C or C++. SDK provides a com-
prehensive collection of APIs and libraries, including out-of-the-box TensorFlow Micro
(TinyML) [11] support, significantly reducing the complexity of developing low-level code.

ESP-IDF also includes a full ML library suite, ESP-DL, which is a specialized library
designed to facilitate the deployment of deep learning (DL) algorithms on Espressif’s ESP32
series of microcontrollers. ESP-DL addresses the increased processing requirements of
edge AI-capable devices by enabling the integration of machine learning and deep learning
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models directly into IoT devices powered by ESP32 chips. One of the key features of ESP-
DL is its optimization for the ESP32 hardware architecture. Although ESP32 is a popular
microcontroller, its computational resources are limited compared to typical desktop or
server environments where deep learning models are usually trained and run. ESP-DL
addresses this by providing a set of tools and APIs specifically optimized for ESP32’s CPU
and memory constraints. This allows for efficient execution of deep learning models on
these devices.

ESP-DL supports a range of common neural network layers and architectures [22],
making it versatile for various applications. It includes functionalities for basic layers such
as convolutional, pooling, and fully connected layers, which are the building blocks of
many deep learning models. This allows developers to deploy a variety of neural network
models, including those used for image recognition, voice processing, and other sensory
data analysis tasks common in IoT applications. Furthermore, ESP-DL aims to simplify
the process of bringing pre-trained models onto the ESP32 platform. Typically, models
are developed and trained on powerful computing environments using frameworks like
TensorFlow or PyTorch. ESP-DL facilitates the conversion and optimization of these models
for execution on the ESP32’s resource-constrained environment. This library plays a crucial
role in edge computing by enabling smarter IoT devices. With ESP-DL, devices can process
data locally, reducing the need to constantly send data to the cloud for processing. This not
only speeds up response times but also enhances privacy and reduces bandwidth usage
and possibly increases energy efficiency.

The ESP32-DL library currently offers four ready-to-run example ML models that
vary in computational requirements from medium to extremely high. These models are
pre-trained and optimized to run in ESP32 so no other optimization methods are needed in
order to run to this SoC. This gives us the opportunity of directly correlating measurement
differences to the core technology used (cache/vectoring) since ML model-wise (software),
there is no difference in what is running on EPS32(LX6) and ESP32-S3(LX7) SoCs. The
four examples are human face detection, human face recognition, color detection, and cat
face detection. However, all these models that are included in ESP-DL as examples are
offered as precompiled binaries without any option to either modify them or examine
their architecture, exposing only a high-level layer access that permits the users to execute
various fundamental functions like loading the model’s input and initiating an inference.
While these models are true “black-boxes”, we opted to use them instead of building
our own models on TinyML or TFlite because they are compiled under the same library
(TensorFlow) version with the same OpCode versions; thus, there is minimal change in
compiler optimization variance between them. On the other hand, providing our own
models for measurement would most likely require different OpCode versions for some of
the modes with a large possibility of affecting the final runtime efficiency of each model.

The human face detection example is centered around identifying human faces within
an image using a convolutional neural network (CNN). This example is particularly rel-
evant for real-time applications such as security systems, where detecting the presence
of a human face is crucial. The process involves capturing images via a camera module
connected to the ESP32, or in our case feeding an image through the device’s storage unit,
preprocessing these data to fit the mode’s requirements, and then using a CNN to detect
faces. The challenge lies in optimizing the model for ESP32’s limited processing power
while maintaining real-time detection capability.

Building on the concept of face detection, the human face recognition example takes
it a step further by not only detecting faces but also recognizing and verifying them
against a known set of faces. This involves more complex processes, including feature
extraction and matching, and requires a more sophisticated approach to model training
and implementation. This example has significant implications for personalized user
experiences and security applications, such as access control systems, where individual
identification is necessary.
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The color detection example serves as a demonstration of a color detection service.
The code receives a static image composed of various colored blocks as its input. It then
produces outputs that include the results of functions such as color enrollment, color
detection, color segmentation, and color deletion. These outcomes are displayed in the
terminal console.

The cat face detection example diversifies the application of these AI techniques to
the animal kingdom, focusing on detecting cat faces. The principles remain similar to
human face detection, but the model is specifically trained to recognize feline features. This
example illustrates the versatility of the ESP-DL library and ESP32’s capabilities, extending
its use to scenarios like pet monitoring or automated animal interaction systems. The im-
plementation involves similar steps of image capture, preprocessing, and optimized model
inference to detect cat faces effectively. All four examples are not just demonstrations of
technical capability but, like in this case, serve as tools for developers looking to implement
AI and ML on edge devices while studying any effects during real-world runtime. They
highlight the importance of optimizing deep learning models for constrained environments
like ESP32 and demonstrate practical approaches to real-time data processing and output
handling. Each model’s expected runtime characteristics according to Espressif’s prelimi-
nary analysis available with a description and file size of each example (latency and model
size) [17] are presented in the table below (Table 3). The power consumption expectation is
based on both model size (memory usage) and latency (computational load).

Table 3. Selected ML model characteristics of ESP32 and ESP32-S3 devices.

Human Face
Detection

Human Face
Recognition Color Detection Cat Face

Detection

Computational
Load Moderate High Moderate Low

Memory Usage Moderate High Low Low
Power

Consumption High Extremely High Low Low

5.5. Comparative Analysis of the Two Boards

While ESP32 has a fixed size of cache available with 32 Kbytes of D-cache and a fixed
two-way associative method, ESP32-S3 has a higher degree of configurability allowing us
to define the size of both D-cache and I-Cache by offering a selection of values for D-cache
of 16, 32, or 64 Kbytes and 16 or 32 Kbytes for I-cache. The n-way cache associative methods
are also selectable as four- or eight-way association.

ESP32 has no vectoring support or any other operational hardware acceleration units
(according to its datasheet) other than a 32-bit FPU, which only supports hardware addition
and multiplication and should have no effect on 16-bit and 8-bit floating-point operations
or integer operations. On the other hand, ESP32-S3 has the support of SIMD/vectoring
instructions and, according to its datasheet [23], a similar 32-bit FPU unit. Vectoring support
is a core functionality and consists of an expanded set of instructions aimed at enhancing
the efficiency of certain tasks. These instructions include general-purpose registers with a
wide bit range, alongside a variety of special registers and processor interfaces. By using
the SIMD (single instruction, multiple data) approach, the instruction set facilitates vector
operations across 8-bit, 16-bit, and 32-bit formats, significantly boosting the speed of data
handling. Additionally, arithmetic operations like multiplication, shift, and addition are
optimized to conduct data manipulations and transfers concurrently, thereby increasing
the performance. The presence of SIMD may affect the usage of the FPU as a 32-bit-only
FPU may be capable now of simultaneously running lower data-length FPU instructions
by leveraging SIMD functionality, thus expanding FPU hardware acceleration to a 16-bit or
even an 8-bit data payload. While under normal function this would have minimal effect, in
the case of 8-bit or 16-bit quantized ML models, we expect to see significant improvements
in inference time and maybe in power efficiency. Since ESP32-S3 presented such flexibility,
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we opted to take multiple measurements based on both D-cache and I-cache size with the
hope of concluding how cache type and size affect power efficiency of microcontrollers
running ML models. To compare the SIMD/vectoring effects in power efficiency, we ran
ESP32-S3 with a similar cache setup as the fixed setup of ESP32.

5.6. Measurement Methods and Connectivity

To be able to observe the functionality of the code without skewing the power
measurement results, we opted to use each board’s UART output as a debugger con-
sole. We achieved this by accessing this port only when the MCU was not running ML
model inference.

In order to achieve the most accurate and meaningful results from our experiments,
we specifically designed our measurement methodology (in terms of software implemen-
tation and hardware setup) by applying the techniques that are detailed in this section.
Throughout our code, we have not implemented any sleep or reduced power modes. This
decision is based on the fact that this kind of power saving gains are straightforward for
end developers to calculate if needed. Additionally, implementing a low power state is not
feasible while the core processes the ML model data. Therefore, in our scenario, the use of
sleep modes is not particularly important since our focus is on presenting per-inference
power measurements, which exclusively include the power used during the inference
process itself.

The PSU was adjusted to deliver an output of 3.3 Volts. Following this, the current port
of the digital multimeter (DMM) was connected in series with both the PSU and the board
undergoing measurement. To capture sample readings exclusively during the inference
phase, an output pin on the board was designated as a trigger output. We selected GPIO5
for both boards since this pin was available and not used for any secondary function during
the booting of both ESP32 and ESP32-S3. GPIO5 was set as output floating with an active
low setting. This minimized any extra power consumption from GPIO peripherals since
driving an output high requires, practically, more power than driving it low since the
output is connected to the measurement instrument, and although the instrument input
theoretically has infinite impedance, in reality a small current flow exists. The output was
set to a low level just prior to each inference in code execution in the MCU. This pin was
then linked to the external trigger port of the DMM, thereby creating a negative edge trigger
event for the DMM. The setup of these connections is illustrated in the diagrams below
(Figure 1).

To gain a better understanding of the power efficiency of each MCU, we measured
its power consumption during a no-operations loop with all necessary peripherals active.
The default clock speeds were left unchanged, meaning that ESP32 operated at 240 MHz
across both cores. ESP32’s power usage was recorded at 133.75 mW, which is typical for this
microcontroller when its WiFi and Bluetooth capabilities are turned off (Figure 2), while
for ESP32-S3, the idle power consumption was 153.1 mW (Figure 2). For the inference
tests, we enabled the triggering mode. Each measurement’s trigger was integrated into
the code, marking the start of a new inference (Figure 3). We recorded the total inference
time for each device and model, along with the power used for a single inference and the
total power consumption for an inference. We then calculated the power consumption
only during the time interval of an inference by subtracting idle power from total power
consumption. We used the term/method “pure power consumption” as described in [8] to
reflect the efficiency of an MCU core in processing the ML model for inference. Real-world
power usage is closer to the total inference power since pure power does not account for
necessary components like clocks, phase-locked loop subsystems (PLLs), or internal bus
power management and consumption, which are all vital for the core’s proper functioning.
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6. Measurement Results

To draw conclusions about how memory caching influences power efficiency while
running ML models, we ran all four available models with various I-Cache and D-Cache
combinations in ESP32-S3. The older ESP32 did not have user-definable cache size so it was
run in its default state of 32 Kbyte of D-Cache. On ESP32-S3, we ran each model with 16, 32,
and 64 Kbytes of D-Cache and 16 and 32 Kbytes of I-Cache. We noticed that increasing the
I-Cache from 16 Kbytes to 32 Kbytes had minimal, if any, impact on power efficiency and
the acceleration of the ML model calculated by the inference time (or inference latency);
thus, we only included the combination of 32 Kbyte I-Cache with 16 Kbyte D-Cache. Cache
association also had zero impact on efficiency; thus, we left it at a default of four-way for
ESP32-S3. ESP32 was fixed at two-way.

Vectoring influence results were drawn from a comparison of ESP32-S3 running on
32 Kbyte of D-Cache against the ESP32’s default state, which has 32 Kbyte of D-Cache.
Both inference instances were limited to one core runtime only.

Finally, for human face detection example, which gave us the option to define runtime
as one-stage or two-stage inference, with one-stage being a less accurate single inference
function and two-stage being a computationally more demanding and accurate model, we
ran both types. For the face recognition model, which had the option to run the same model
as 16-bit quantized or 8-bit quantized, we took extra measurements for both ESP32-S3
and ESP32.

Some of the examples ran more than one inference per code loop. For each such
example, we either present one inference in our results, when all the inferences were of the
same load (same power consumption result for each one of them), or we present the sum
of our measurements for each cycle when different inferences—at least two of them—were
of significantly different computational load. This means that during an example execution
loop, there may be multiple trigger events, as depicted in Figure 3. The color detection
model in fact runs, in a single run, three different inferences, generating three trigger events
that are indicated on the figure as three falling edges. The low-level period after each falling
edge is the inference latency time of each inference.

The measurement results include stand-by power, cache usage, inference average
power, inference time, and energy used per inference. The latter is the “pure power” [8]
result of the total energy consumed during the inference time minus the stand-by power.
Below, we summarize our results in four different tables, one for every selected ML model.

The human face detection model (to which the results shown in Table 4 are related)
is considered a “medium size/load”. From these results, it is apparent that the I-Cache
size has minimal effect on both inference time and inference power consumption, while
the D-Cache size has a large impact on both. In fact, going from 16 Kbyte to 32 Kbyte
increases efficiency by nearly 18%, while increasing cache size to 64 Kbytes halves the
power consumption, indicating 53% better power efficiency. Keeping the best cache result
of 64 Kbytes of D-Cache and switching to single-stage inference quadruples the power
efficiency by dropping the power consumption to 0.461 µWh per inference from 3.843 µWh
with 16 Kbyte of D-cache and dual-stage inference.

ESP32 against ESP32-S3 with a similar cache setup but with vectoring support enabled
displayed a better power efficiency result for ESP32-S3 by 63%. The power efficiency
improvement on ESP32-S3 is apparent for both two-stage and one-stage runtime models,
and this is attributed to vectoring support with the SIMD arithmetic instructions [23]
enabling the MCU’s core to take better advantage of the available resources by running
arithmetic instructions concurrently.

The face recognition model is the largest and most computational-resource-demanding
model of our experiment; it runs five inferences of similar computational load per loop of
code (cycle), and the results (Table 5) are presented for one inference per cycle.
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Table 4. Human face detection model results *.

Stand-By
Power (mW) I-Cache (KB) D-Cache

(KB) Stages
Inference
Average

Power (mW)

Inference
Time (µS)

Total Energy
Used per

Inference (µWh)

ESP32-S3 153.1 16 16 2-Stage 239.5 160,112 3.843
ESP32-S3 153.1 32 16 2-Stage 240 159,534 3.851
ESP32-S3 153.1 16 32 2-Stage 240 131,160 3.166
ESP32-S3 153.1 16 64 2-Stage 258 61,726 1.799
ESP32-S3 153.1 32 64 2-Stage 259 61,275 1.803
ESP32-S3 153.1 16 64 1-Stage 246 17,887 0.461

ESP32 133.75 16 32 2-Stage 207.183 419,556 8.558
ESP32 133.75 16 32 1-Stage 208.334 153,914 3.189

* This model may run in one-stage or two-stage inference.

Table 5. Face recognition model results *.

Stand-By
Power (mW) I-Cache (KB) D-Cache

(KB)

Inference
Average

Power (mW)

Inference
Time (µS)

Total Energy
Used per

Inference (µWh)
Quantization

ESP32-S3 153.1 16 16 234.959 9,361,445 212.866 S16
ESP32-S3 153.1 32 16 231.919 11,019,321 241.259 S16
ESP32-S3 153.1 16 32 246.452 2,510,397 65.097 S16
ESP32-S3 153.1 16 64 266.216 945,365 29.704 S16
ESP32-S3 153.1 16 16 224.562 4,726,509 93.824 S8
ESP32-S3 153.1 16 32 234.618 1,063,099 24.073 S8
ESP32-S3 153.1 16 64 259.347 320,698 9.465 S8

ESP32 133.75 16 32 220.439 5,412,302 130.330 S16
ESP32 133.75 16 32 219.7 13,055,390 311.697 S8

* This model may run as 16-bit signed quantized or 8-bit signed quantized.

Increasing the D-Cache from 16 Kbytes to 32 Kbyte improves power efficiency by
69%, while going to 64 Kbytes of D-Cache drops the power consumption per inference to
29.7 µWh from the initial 212.8 µWh for a total gain of 86%.

Using 8-bit quantization further improves power efficiency by up to 95%; however,
comparing the initial power consumption of the 8-bit quantized model with the lowest
16 Kbytes of D-cache to 32 and 64 Kbytes, we notice that power efficiency improvements
are statistically the same as the 16-bit quantization as cache size increases.

ESP32 with disabled vectoring is consuming almost 13 times more energy (vectoring
increases power efficiency by 92%) in the 8-bit quantized model, indicating that SIMD
instructions of ESP32-S3 vastly increase performance when lower width (8-bit) instruction
payloads are used; however, in the 16-bit quantized model, the difference is much smaller,
with ESP32-S3 being just 50% more power efficient than ESP32. We did the same measure-
ment multiple times, with the same result each time. We had the counter-intuitive result
that the 16-bit quantized model was not only more power efficient but also ran faster in
comparison with the 8-bit model for ESP32.

The color detection model is a small and non-demanding in computational resources
model, as it is indicated in the results (Table 6) that increasing the cache size had minimal
effect on this model, leading us to conclude that 16 Kbytes is more than enough to achieve
the maximum performance for its size.Going from the non-vectoring ESP32 to vectoring-
enabled ESP32-S3 in similar cache setup increased power efficiency by almost 21%.

The cat face detection model is the most lightweight model of our experiment. Again,
because of its small size, increasing the cache size has no real effect on the power efficiency
of the model; however, vectoring has a large impact on power consumption, improving it
by almost 85%. This power efficiency improvement is a result of increased data processing
efficiency because of ESP32′s vectoring instructions. In fact, this capability enables ESP32-
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S3 to complete the inference function nearly seven times faster that its ESP32 counterpart
(Table 7).

Table 6. Color detection model results.

Stand-By
Power
(mW)

I-Cache
(KB)

D-Cache
(KB)

Inference
Average
Power
(mW)

Inference
Time (µS)

Total Energy
Used per
Inference

(µWh)

ESP32-S3 153.1 16 16 220 326,758 6.072
ESP32-S3 153.1 32 16 222 317,053 6.068
ESP32-S3 153.1 16 32 222 313,181 5.994
ESP32-S3 153.1 16 64 222 326,201 6.243
ESP32-S3 153.1 32 64 224 315,635 6.216

ESP32 133.75 16 32 188.49 497,524 7.565

Table 7. Cat face detection model results.

Stand-By
Power
(mW)

I-Cache
(KB)

D-Cache
(KB)

Inference
Average
Power
(mW)

Inference
Time (µS)

Total Energy
Used per
Inference

(µWh)

ESP32-S3 153.1 16 16 252.838 22,583 0.626
ESP32-S3 153.1 32 16 256.159 22,096 0.633
ESP32-S3 153.1 16 32 251.088 22,388 0.609
ESP32-S3 153.1 16 64 259.5 20,077 0.593

ESP32 133.75 16 32 214.226 146,592 3.277

Power consumption per inference diagrams for ESP32-S3 for each ML model are
presented below (Figure 4), while the effects of vectoring usage are easily identifiable in
Figure 5.
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7. Conclusions and Future Work

In this work, we measured and compared the effects of two hardware acceleration
methods on MCUs running ML models. We looked at the usage of cache memory and the
usage of SIMD/vectoring technologies.

Both methods are extremely useful in increasing the power efficiency of MCUs in
AI runtimes and especially in complex models. On-chip caches show extremely good
results and are available on virtually all modern microcontrollers; however, only D-Cache
affects ML model efficiency. This is logical, since the ML model runtimes run mostly
tensor operations like array multiplications and additions; subsequently, the need for an
instruction cache is minimal since the same small set of instructions are always used. On
the other hand, trained ML models usually come as packaged data containing large sets
of arrays, and thus as tightly packed highly localized large datasets. This formatting is an
almost ideal state for a D-Cache to function with a high hit ratio; thus, we expect to observe
a large impact on latency and power consumption.

Also, in our measurements, correlation between model complexity/size and cache
size is evident, as in smaller models, increasing the cache size did not affect functionality
in any way, but in more complex models, the results were impressive with at least one
experiment showing one order of magnitude better power efficiency.

On the other hand, gains from vectoring/SIMD enabling were smaller but not insignif-
icant. The size and complexity of each model did not seem to affect the vectoring efficiency,
making this method even more useful as a model-agnostic efficiency improvement tech-
nique. Of course, the combination of both returns an optimal result for power efficiency, at
least for the ESP32 and ESP32-S3 MCUs, which have a peculiar architecture and use the
rather slow SPI bus for connectivity between core and external RAM (PSRAM) and flash. It
would be extremely interesting to compare these results against a more classic architecture
(such as ARM Cortex) that uses much faster AHB and APB busses for connectivity among
the core, flash memory, and SRAM.

Since most of the models we used are visual recognition models, it would also be
interesting to include necessary peripherals, like a camera, and enable wireless connectivity
to draw more conclusions on how a full system may work as a true stand-alone system,
at least power-wise. After all optimizations, would the major problem continue to be
inference power consumption?
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