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Abstract: Effective inventory management is crucial for businesses to balance minimizing holding
costs while optimizing ordering strategies. Monthly or sporadic orders over time may lead to high
ordering or holding costs, respectively. In this study, we introduce two novel algorithms designed
to optimize ordering replenishment quantities, minimizing total replenishment, and holding costs
over a planning horizon for both partially loaded and fully loaded trucks. The novelty of the first
algorithm is that it extends the classical Wagner–Whitin approach by incorporating various additional
cost elements, stock retention considerations, and warehouse capacity constraints, making it more
suitable for real-world problems. The second algorithm presented in this study is a variation of the
first algorithm, with its contribution being that it incorporates the requirement of several suppliers to
receive order quantities that regard only fully loaded trucks. These two algorithms are implemented
in Python, creating the software tool called “Inventory Cost Minimizing tool” (ICM). This tool takes
relevant data inputs and outputs optimal order timing and quantities, minimizing total costs. This
research offers practical and novel solutions for businesses seeking to streamline their inventory
management processes and reduce overall expenses.

Keywords: inventory cost; Wagner–Whitin algorithm; order’s cost minimization; software implementation;
lot-sizing problem

1. Introduction

Inventory management poses significant challenges due to its inherent complexity,
the presence of conflicting objectives, and the influence of factors such as variability,
randomness, and the rapid turnover of products. Among the critical tasks in inventory
management, lot sizing stands out as one of the most important yet challenging endeavors
in warehousing operations. Business executives, managers, and researchers must grapple
with various factors when determining optimal replenishment strategies for their inventory.

One such factor is the planning horizon, representing the time interval into the future
upon which scheduling decisions are based, which can be either finite or infinite. Addi-
tionally, the Review Interval plays a crucial role, defining the frequency at which inventory
levels are reviewed and replenishment decisions are made [1]. The consideration of factors
like Deterioration of Items, affecting inventory holding times, and demand variability fur-
ther complicates decision-making processes. Moreover, Inventory Shortage, encompassing
policies related to backorders or lost sales, adds another layer of complexity to modeling
and problem-solving approaches [2].

Over the years, numerous models have been proposed and published, ranging from
simplistic to more sophisticated approaches. Some “shortsighted” models advocate for
ordering on a monthly or periodic basis to meet demand without considering cost reduc-
tion. Conversely, the Wagner–Whitin algorithm, optimal in terms of cost, considers only
certain problem parameters. Various extensions of this algorithm have been published,
each addressing specific needs of real businesses, yet none incorporates as many order
characteristics as the one presented in this study.
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In this study, we focus on addressing the challenges associated with variable and non-
stochastic demand in inventory management. We build upon the classical Wagner–Whitin
algorithm, renowned for its effectiveness in solving lot-sizing problems. The Wagner–
Whitin method, introduced in 1958, is a dynamic approach that solves the economic
lot-sizing problem, aiming to minimize total inventory costs over a planning horizon while
considering variable production and inventory holding costs. This method computes the
optimal order quantities and timings by dynamically adjusting production and inventory
levels in response to changing demand patterns. By incorporating the costs associated with
ordering, holding, and setup, the Wagner–Whitin algorithm enables decision-makers to
strike a balance between ordering costs and holding costs, thereby optimizing inventory
management processes [3].

In this study, we propose a variant of the Wagner–Whitin algorithm. The novelty
of this paper resides in its integration of supplementary cost factors into the established
Wagner–Whitin algorithm, rendering it applicable for implementation across diverse real-
world corporate environments. This enhancement extends the algorithm’s utility beyond
its conventional scope, facilitating its adoption by a broader array of companies seeking
optimized, cost-effective solutions in operational decision-making processes. This contribu-
tion is vital for enhancing efficiency and cost-effectiveness in various industries, thereby
fostering improved competitiveness and sustainability.

In addition, our research underscores the critical requirement within practical business
logistics for the ordering of full truckloads. By elucidating the importance of this practice,
our study contributes to a deeper understanding of the intricacies involved in real-world
logistics operations. Moreover, our findings offer insights that can inform decision-making
processes within businesses, enabling them to streamline their operations and enhance
overall efficiency. This need is addressed through a second algorithm. In this manner,
the demands of stakeholders for a more cost-effective ordering and inventory stocking
method optimized in terms of both cost and space are met, offering them flexibility in
budget and the chance to invest in other sections of the business, such as personnel or
research and innovation.

Furthermore, we present the “Inventory Cost Minimizing” (ICM) software tool, de-
veloped using the Python programming language to implement the proposed algorithm.
Through various scenarios, we demonstrate the utility and versatility of the ICM tool in
optimizing inventory management decisions.

The structure of this paper is as follows: Section 2 provides a comprehensive literature
review, outlining the evolution of models and algorithms in inventory management over the
decades. In Section 3, we delineate the problem domain, contrasting the classical Wagner–
Whitin problem with our extended formulation and describing the associated inputs and
outputs. Section 4 details the proposed algorithms to solve the extended problem, presented
using pseudo-code. Section 5 elaborates on the software implementation of the algorithm,
showcases practical use case scenarios, and conducts a sensitivity analysis of Scenario 1.
Finally, Section 6 offers a summary of our findings and conclusions, along with suggestions
for future research directions.

2. Literature Review

The Economic Order Quantity (EOQ) models have long served as fundamental
decision-making tools for managers in determining inventory replenishment size (lot size)
and timing. These models encompass various adaptations to address specific operational
scenarios, ranging from instantaneous replenishment to situations involving backorders.
Additionally, variants of the EOQ model have emerged to accommodate factors such as
quantity discounts, multi-supplier options, and stochastic demand dynamics [4].

Over recent decades, the literature has witnessed a proliferation of EOQ model vari-
ations and extensions, notably including stochastic EOQ and reorder point EOQ formu-
lations. These variations classify inventory models as either deterministic or stochastic,
reflecting the diverse operational contexts encountered in practice [5].
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The complexity of inventory management necessitates consideration of multiple fac-
tors, including inventory system structure, market dynamics, lead times, and associated
costs. Furthermore, demand variability poses a significant challenge, prompting the devel-
opment of decision support methods tailored to evolving demand patterns [6].

Various strategies have been proposed to address demand fluctuations within a fixed
planning horizon. These include the “Lot-for-lot” method, which orders precisely the
amount needed to meet demand in each period, and the “Fixed Order Quantity” approach,
wherein orders are placed at predetermined intervals to cover projected demand. Notably,
the Wagner–Whitin method stands out for its ability to minimize total stock renewal and
holding costs [4], outperforming alternative lot-sizing heuristics [7].

Extending beyond traditional lot-sizing problems, the “Capacitated Lot-Sizing” prob-
lem incorporates capacity constraints on production machines, reflecting real-world manu-
facturing limitations. Similarly, methods like “Continuous-Time Lot Sizing and Scheduling”
and “Multi-Level Lot Sizing and Scheduling” address more complex scheduling challenges
encountered in practice [8].

Several studies have contributed to the enhancement and optimization of the Wagner–
Whitin algorithm for dynamic lot sizing, a critical problem in operations management
and production planning. An efficient implementation of the Wagner–Whitin algorithm
has been introduced, streamlining dynamic lot-sizing processes [9]. Subsequently, an
algorithm that runs in linear time with a complexity of O (n log n) has been proposed,
significantly reducing computational burdens, particularly in the Wagner–Whitin case [10].
An algorithm by Heady and Zhu [11] offers improvements for practical application in
production and operations management scenarios. Additionally, an enhanced version of
the Wagner–Whitin algorithm has been presented by Sajadi et al. [12], contributing to its
efficacy and performance.

In recent years, efforts to refine the Wagner–Whitin algorithm have continued, address-
ing contemporary challenges and advancing computational efficiency, leading to a novel
algorithm that has been introduced specifically tailored for the dynamic economic lot-sizing
problem within the Wagner–Whitin model [13]. This algorithm represents a significant
advancement in addressing time-sensitive production planning requirements, further ex-
tending the utility and applicability of the Wagner–Whitin framework in modern industrial
contexts. Collectively, these studies underscore the ongoing evolution and refinement of
the Wagner–Whitin algorithm, underscoring its enduring relevance and significance in
optimizing production planning processes.

Other researchers have managed to introduce stochasticity [14] or cope with the
reverse version of the algorithm by also considering the returns of the products [15,16]. In
recent research, the challenge of perishable inventory management in the context of non-
stationary demand has been addressed. By acknowledging the dynamic nature of demand
patterns, an approach has been published that offers a practical solution for optimizing
inventory decisions in perishable goods environments. This contribution is particularly
valuable in industries where demand fluctuates unpredictably, providing insights into
effective inventory management strategies to mitigate the risks associated with perishable
products [17].

Recent research in operations and logistics management has addressed various chal-
lenges in optimizing lot-sizing decisions across different contexts. In recent years, the
concept of backorders and “goodwill loss costs” [18] has been introduced to the models by
focusing on scenarios involving partial backorders and re-workable products, offering an
outer approximation method for determining optimal lot sizes. Additionally, models for
“yield uncertainty” [19], stochastic [20,21], uncertain [22], and non-stationary demand with
heuristic solving methods [17] have been presented. The problem exists and has been tried
to be solved even for the production phase [23]. These findings offer valuable guidance for
practitioners seeking to optimize production planning processes in the face of uncertain
yields and demands.
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Contemporary research endeavors are focused on refining the algorithm under con-
sideration to enhance its computational efficiency, particularly with respect to real-world
applicability [24,25]. Additionally, it has been studied how investing in the production of a
product to reduce defects affects the demand for that product, as well as how investing in
service throughout the product’s lifecycle impacts its demand (service-dependent demand).
This approach enables the selection of the appropriate service investment to either increase
or decrease the demand for the product accordingly, thus achieving maximum potential
profit based on this choice [26].

Within the scope of this paper, we endeavor to address a practical challenge outlined
in Sections 3 and 4, integrating multiple additional parameters reflective of the complexities
inherent in real-world business scenarios.

In this paper, we address a real-world inventory management problem, incorporating
a multitude of additional parameters reflective of practical business environments. Through
detailed analysis and algorithmic refinement, we aim to provide actionable insights for
optimizing inventory decision-making in complex operational contexts. The contributions
of various researchers to the Wagner–Whitin method are presented in Table 1, together
with the contributions of this paper.

Table 1. Contribution of previous research.

Authors Complexity
Reduction

Stochastic
Demand

Additional
Concepts

Additional
Variables

Software Im-
plementation

Fully Loaded
Trucks Solution

Evans (1985) [9] ✓ ✓

Wagelmans et al.
(1992) [10] ✓

Heady and Zhu
(1994) [11] ✓

Richter and Weber
(2002) [16] ✓

Vargas (2009) [14] ✓

Sajadi et al. (2009) [12] ✓

Chowdhury et al.
(2018) [13] ✓

Gharaei et al.
(2023) [18]

✓
(Backorders)

Forel and Grunow
(2023) [20] ✓

Benmamoun et al.
(2023) [21] ✓

Dey and Seok
(2024) [26]

✓
(Maintenance)

This paper ✓ ✓ ✓

3. Description of Our Extended Lot-Sizing Problem

The lot-sizing problem attempts to find an ordering policy that leads to a minimum
total cost of combined acquisition (e.g., ordering, receiving, inspection) and inventory,
considering a P-period planning horizon with known demands [27].

Wagner and Whitin developed an algorithm that precisely determines the “optimal
scheduling” of ordering replenishment quantities in the sense that the total replenishment
and holding costs are minimized over the planning time horizon. The computational
process of the Wagner–Whitin algorithm involves several key steps. Firstly, the algorithm
constructs a cost matrix representing the total inventory-related costs for various production
and inventory decisions across the planning horizon. This matrix accounts for setup costs
incurred when initiating production runs and inventory holding costs associated with
carrying excess inventory. Subsequently, the algorithm iteratively evaluates the cost matrix,
updating the optimal production quantities and inventory levels for each period based on
dynamic programming principles.
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The requirements in order for the Wagner and Whitin algorithm to be applicable are
the following:

• The inventory control is carried out for an N number of time periods, which constitutes
the “planning time horizon”;

• The demand is known in each period but is not necessarily constant;
• The lead time is known in advance;
• Product deficiencies are not allowed;
• The products’ prices are constant during the planning time horizon.

In many real-world cases, solving the lot-sizing problem requires more inputs than
those of the Wagner–Whitin algorithm. The additional inputs that are needed to solve this
extended lot-sizing problem are the various cost elements for the execution of the order and
the holding cost of stock, as well as inputs like the maximum capacity of the warehouse.
Specifically, the additional inputs are as follows:

• The transportation costs per truck and per period;
• The purchase cost for each unit, which may vary per period depending on price ad-

justments;
• The labor cost of ordering;
• The insurance costs during the transportation and storage of the products;
• Customs clearance costs;
• The operational costs of storing the inventory;
• The maximum amount of inventory that can be stored at the facility in order for

the algorithm to “block” an order that exceeds it, even if it is more economical than
the alternative;

• The maximum number of pieces of a certain product that a truck can carry;
• The current stock;
• The maximum and average demand for the product in the previous year, which are

necessary to calculate the safety stock that the company should keep.

Considering all the above, we created an algorithm that suggests the period in which
the company should order the respective product from its supplier and for how many
periods this order will cover the demand. All the above are carried out in an optimal way
to minimize the total cost and meet the needs of the business. The novelty of the method is
that it considers much more parameters than the various modifications of the mentioned
algorithm, a factor that makes it applicable to a real-world problem, and additionally
proposes a solution for the case of full-truck orders, something that is not applicable in
Wagner–Whitin’s algorithm. The algorithm will be described in Section 4 for both cases.

4. Algorithm’s Description with Pseudo-Language

In this section, we are going to present our proposed algorithm in the form of a
pseudo-language that minimizes the following objective function:

minz = ∑n
t=1 ( f ct·yt + qct·qt + hc·ohit)

where
f ct : f ixed cost per order

yt =

{
1, i f the business places an order in period t
0, i f the business does not place an order in period t

qct : cost per unit in period t

qt : quantity o f the product ordered in period t

hc : holding cost

ohit : on − hand inventory at the end o f period t
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The fixed cost per order ( f ct) refers to the cost of the ordering (ord_c) and the customs
clearance fee cost (cust_c).

The cost per unit in period t (qct) refers to the transportation costs per truck (trans_ci),
the cost of a piece of the product (unit_ci), and the cost of insurance during transportation
(ins_tr_c).

The holding cost refers to the cost of insurance in storage (ins_stor_c), the inventory
operating costs (oper_c), and the cost of capital (capital_c).

Indexes
i = 1, 2, . . . , 12

j = 1, 2, . . . , 12

Parameters
sa f ety_stock: safety stock;
dem_wo_stocki : demand remaining after substracting the stock already at warehouse for
period i;
dem_wo_stock_totali,j : total demand remaining after subtracting the stock already at ware-
house for period i up to period j;
table_valuei,j: the cost for ordering in period i up to period j;
sumi−1: the sum of dem_wo_stocki for i = 2, 3, . . . , 12;
min_tablei: the minimum value of table_valuei,j for ∀j;
stock_in_warehousei: the stock at warehouse in period i.
Decision Variables
f or_di: forecasted demand for period i;
trans_ci: transportation cost per truck for period i;
trans_total_ci,j: transportation cost per truck for the period i in order to cover the demand
up to period j;
unit_ci: cost per item of product for period i;
cap_wi: capacity of the warehouse for period i;
max_tr: maximum quantity of products that a truck can transfer;
ord_c: cost of ordering;
ins_tr_c: cost of insurance during transportation as a percentage;
ins_stor_c: cost of insurance of an item in storage as a percentage;
cust_c: customs clearance fee per order;
oper_c: inventory operating costs per item and per period as a percentage;
stock_beg: stock of the product that exists at the beginning of the periods we are studying;
lead_time: lead time in periods we examine;
peak_d: previous year’s peak demand;
avr_d: average demand of the previous year for the periods we examine;
capital_c: cost of capital as a percentage (the cost of capital that will be allocated for the
purchase of the products, such as the savings rate or the loan rate, etc., depending on the
capital with which the product is purchased).

The Algorithm 1 operates similarly to the Wagner–Whitin algorithm, with the differ-
ence being that it considers additional costs. Consequently, each variable is appropriately
modified, and then the optimal selection of orders is determined. For the first period, the
algorithm calculates the cost of meeting the demand while ignoring the inventory holding
costs. For each subsequent period, the algorithm calculates the minimum total cost of
meeting demand up to that period by considering all possible production and inventory
holding decisions. This process continues until the last period is reached. Once the total
costs for all periods have been calculated, the algorithm backtracks through the dynamic
programming table to determine the optimal production and inventory holding decisions
for each period, which collectively minimize the total cost over the planning horizon.

The Algorithm 1 regards partially filled trucks. For the “full-truck” case, we modified
the demand per period that the algorithm needs in order to work in such a way that each
demand is equal to zero or is multiples of the maximum value of the load a truck can carry
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at a time. In this case, we generate fictitious demands that are multiples of the capacity of
the truck in question and subsequently execute the Algorithm 1 for these new demands.
The Algorithm 2 for the “full-truck” case is as follows:

New Parameters
f ull_truck_demi: the demand for full truckload for period i.

Algorithm 1 Main Algorithm

1 safety_stock = (peak_d − avr_d) · lead_time
2 if stock_beg < safety_stock:
3 for_d1 = for_d1 + (safety_stock − stock_beg)
4 for all i:
5 if (stock_beg − for_di > safety_stock):
6 dem_wo_stocki = 0
7 else:
8 dem_wo_stocki = for_di
9 for all i:
10 for all j:
11 if (dem_wo_stock_totali,j + stock_in_warehousei > cap_wi):
12 table_valuei,j = “No space”
13 else:
14 if i = 1 and j = 1:
15 table_valuei,j = trans_total_ci,j + dem_wo_stocki · unit_ci +

+cust_c + ins_tr_c · dem_wo_stocki · unit_ci + ord_c
16 else if i = j :
17 if sumi−1 ̸= 0:
18 table_valuei,j = min_tablei + trans_total_ci,j +

+dem_wo_stocki · unit_ci + cust_c + ins_tr_c ·
· dem_wo_stocki · unit_ci + ord_c

19 else:
20 table_valuei,j = trans_total_ci,j + dem_wo_stocki ·

· unit_ci + cust_c + ins_tr_c · dem_wo_stocki · unit_ci +
+ ord_c

21 else:
22 table_valuei,j = table_valuei,j−1 + capital_c · ( j − i) ·

· dem_wo_stocki + trans_total_ci,j + dem_wo_stocki ·
· unit_ci + ins_stor_c · dem_wo_stocki · unit_ci · (j − i) +
+ins_tr_c · dem_wo_stocki · unit_ci + oper_c ·
· dem_wo_stocki · (j − i)

23 After the above calculations, the optimal solution should be selected in the same way as the
Wagner–Whitin algorithm [3].

Algorithm 2 “Full-Truck” Algorithm

1 sum_full_truck_dem = 0
2 for all i:
3 dem_wo_stock_fulli = dem_wo_stocki
4 for all i:
5 if dem_wo_stocki = 0:
6 full_truck_demi = dem_wo_stock_fulli
7 if dem_wo_stocki ̸= 0:
8 k = 1
9 while sum_full_truck_dem < max_tr:
10 sum_full_truck_dem = sum_full_truck_dem + dem_wo_stock_fullk
11 k = k + 1
12 if sum_full_truck_dem > max_tr:
13 full_truck_demi = max_tr
14 dem_wo_stock_fullk = sum_full_truck_dem − max_tr
15 if sum_ f ull_truck_dem ≤ max_tr:
16 full_truck_demk = sum_full_truck_dem
17 sum_full_truck_dem = 0

18 After the above algorithm, the tool calculates the results by using the Algorithm 1 with the new values of
demands of the product (stored in the variable “full_truck_demi”).

5. Software Implementation of the Algorithms and Use Case Scenarios

The primary design choices made in the development of the ICM tool are the following:

1. It provides a graphical environment for easy and simplified use.
2. It automates its operations in the background, reducing the manual actions of the end

user to a minimum.
3. It has the ability to save the input data and, therefore, reuse the same data in the future.
4. It presents the results in a user-friendly way.
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5. It automatically saves the results in a file so that they remain available to the user
even after exiting the tool.

Operationally, the tool suggests the optimal time and order quantity for each of the
products. The input data can be saved and loaded, while the results are automatically
saved in a text file. The Python programming language has been used to implement the
ICM tool. The main reason for choosing Python is the quality of the libraries and tools it
offers. During the development of this tool, various libraries were extensively used, e.g.,
Tkinter was used to create the graphical environment.

The proposed “ICM” tool appears in Figure 1. To illustrate the functionality and
capabilities of the implemented tool, five different scenarios are presented below. Their
description is shown in Table 2.
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Figure 1. Graphical user interface of “Inventory Cost Minimizer—ICM” tool.

Table 2. Description of the scenarios.

No. Scenarios

1 A 6-period time horizon with no constraint on the maximum capacity of the warehouse.
2 Similar to Scenario 1 + constraint on the maximum capacity of the warehouse.
3 Similar to Scenario 1 + no holding costs.
4 Similar to Scenario 1 + 12-period time horizon and no holding costs.
5 Similar to Scenario 1 + 12-period time horizon.

Scenario 1

In Scenario 1 (Figure 2), the tool calculates the optimized order quantity and order
time for a product and an order planning time horizon of six periods. According to the
scenario, the forecasted demand for these six periods is 22,979 pcs, 22,534 pcs, 26,000 pcs,
19,775 pcs, 21,345 pcs, and 19,000 pcs, respectively. The capacity of the warehouse has
no constraint, and the transportation cost is equal to 500 per truck for the first period
and 430 per truck for the next five periods. The values of all variables for Scenario 1 are
presented in Appendix A. The values of the decision variables regard a real-world case as
they were collected (a) from an expert in inventory management working in the building
and insulation materials industry; or (b) regarding the predicted demands from the demand
forecasting system developed for the same building and insulation materials industry, as
presented in the paper by Theodoridis and Tsadiras (2024) [27].
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For Scenario 1, the proposed orders from the tool are exhibited in Table 3. According
to these, the following is observed:

(a) For the case of partially loaded trucks, four orders are proposed at periods 0 (today), 1,
2, and 5. Each of these orders covers the demand of 1, 1, 3, and 1 period(s), respectively,
with order quantity and costs shown in Table 2.

(b) For the full-truck case, the tool advises the user to make one order each period. Each
order covers the demand for 1 period, the order quantity is one full truck, and the
cost is 5179.24 for each order, except for the first order, which costs 5249.24 due to the
higher transportation cost of the first period that exists according to the scenario.

Table 3. Results of Scenario 1.

Partially Loaded Truck Orders

Order ID Order Time
Period

Demand covering
period(s)

Quantity
(truck max capacity: 22,800 pcs) Cost

1 0 1 1 truck with 8908 pcs 2355.54
2 1 1 1 truck with 22,543 pcs 5125.71
3 2 3 2 full trucks and 1 truck with 21,520 pcs 15,271.10
4 5 1 1 truck with 19,000 pcs 4387.70

Full-Truck Orders

Order ID Order Time
Period

Demand covering
period(s)

Quantity in Trucks
(truck capacity: 22,800 pcs) Cost

1 0 1 1 full truck 5249.24
2 1 1 1 full truck 5179.24
3 2 1 1 full truck 5179.24
4 3 1 1 full truck 5179.24
5 4 1 1 full truck 5179.24
6 5 1 1 full truck 5179.24

Sensitivity Analysis of Scenario 1

The tool can serve as a sensitivity analysis tool through “what-if” scenarios, enabling
users to examine the policy they could adopt as well as the cost implications associated
with changing certain variables.

In this part of our study, we apply sensitivity analysis to the parameters of Scenario 1.
Specifically, we vary one decision variable at a time, such that the number of orders
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proposed by the tool for the case of partially loaded trucks is altered. The altered parameters
and the resulting outcomes are presented in the following Table 4.

Table 4. Results of sensitivity analysis of Scenario 1.

Decision Variable Range → No. of Orders

Maximum capacity of the warehouse per
period for the product

[37,129, 68,580) → 6
[68,580, +∞) → 4

Customs clearance fee per order
[0, 145) → 4

[145, 667) → 3
[667, +∞) → 2

Inventory operating costs per piece and per
period as a percentage

[0, 0.66) → 4
[0.66, +∞) → 6

Cost of capital as a percentage [0, 0.21) → 4
[0.21, +∞) → 6

Cost of insurance in storage as a percentage [0, 1.9) → 4
[1.9, +∞) → 6

As shown above, regarding the warehouse, the capacity of 68,580 serves as the thresh-
old beyond which orders increase from 4 to 6 due to the lack of available space for product
storage. In Table 4, it can be noticed that when “Maximum capacity of the warehouse per
period for the product” or “Customs clearance fee per order” increases, the number of
orders decreases to avoid additional costs. Conversely, for the remaining decision variables,
as they increase, the number of orders also increases to prevent the business from invento-
rying, which entails additional holding costs. Such “what-if” scenarios can be very useful
to users of the ICM tool since they can examine scenarios that they have in mind and apply
only those that have positive consequences according to the ICM tool.

Scenario 2

Scenario 2 is similar to Scenario 1, with the only difference being that the maximum
capacity of the warehouse is now constrained to 45,600 pcs. The tool applies the proposed
algorithms and, as shown in Table 5, advises the user, every different time period, to make
one order with a specific quantity of the product, either for the case of partially loaded
trucks or for the full-truck case. Comparing these orders to those of Scenario 1, it can
be noticed that for the case of partially loaded truck orders, order no. 3 is not as high in
quantity as that of Scenario 1 (two full trucks and one truck with 21,520 pcs in Scenario 1 vs.
one full truck and one truck with 3200 pcs in Scenario 2) due to the warehouse maximum
capacity constraint.

Scenario 3

Scenario 3 is similar to Scenario 1, with the only difference being that there are no
holding costs now (“Cost of insurance in storage as a percentage” and “Inventory operating
costs per piece and per period as a percentage” are equal to 0). In this scenario, the tool
proposes (see Table 6) one order regarding the demand of the first period and a second
order that regards the demands of all other periods. This can be justified by the fact that
the transportation cost for the first period (EUR 500) is higher than that of the other periods
(EUR 430). So, the first order covers the necessary quantity to cover the demand of the
first order with a relatively expensive transportation cost, while the second order covers
the remaining demand of the five periods with less expensive transportation (there are no
holding costs or constraints on the maximum capacity of the warehouse).
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Table 5. Results of Scenario 2.

Partially Loaded Truck Orders

Order ID Order Time Period Demand covering
period(s)

Quantity
(truck max capacity: 22,800 pcs) Cost

1 0 1 1 truck with 8908 pcs 2355.54
2 1 1 1 truck with 22,543 pcs 5125.71
3 2 1 1 full truck and 1 truck with 3200 pcs 6275.80
4 3 1 1 truck with 19,775 pcs 4579.13
5 4 1 1 truck with 21,345 pcs 4876.16
6 5 1 1 truck with 19,000 pcs 4387.70

Full-Truck Orders

Order ID Order Time Period Demand covering
period(s)

Quantity in Trucks
(truck capacity: 22,800 pcs) Cost

1 0 1 1 full truck 5249.24
2 1 1 1 full truck 5179.24
3 2 1 1 full truck 5179.24
4 3 1 1 full truck 5179.24
5 4 1 1 full truck 5179.24
6 5 1 1 full truck 5179.24

Table 6. Results of Scenario 3.

Partially Loaded Truck Orders

Order ID Order Time
Period

Demand covering
period(s)

Quantity
(truck max capacity: 22,800 pcs) Cost

1 0 1 1 truck with 8908 pcs 2355.54
2 1 5 4 full trucks and 1 truck with 17,463 pcs 24,787.50

Full-Truck Orders

Order ID Order Time
Period

Demand covering
period(s)

Quantity in Trucks
(truck capacity: 22,800 pcs) Cost

1 0 1 1 full truck 5249.24
2 1 5 5 full trucks 25,896.20

Scenario 4

Scenario 4 is similar to Scenario 1, having the following two differences: (a) it regards
a planning time horizon of 12 periods, having the same levels of demands for the first six
periods, zero demand for periods 7–9 and 11–12, and a demand of 100,000 pcs for period
10; and (b) there are no holding costs (“Cost of insurance in storage as a percentage” and
“Inventory operating costs per piece and per period as a percentage” are equal to 0). Having
no constraint in warehouse capacity and no holding costs, the tool proposes (see Table 7),
similarly to Scenario 3, for both cases of partially loaded trucks and full trucks, one order at
the beginning of the planning time horizon to cover the demand of the 1st period and one
more order for the demand of the remaining 11 periods.



Information 2024, 15, 167 12 of 15

Table 7. Results of Scenario 4.

Partially Loaded Truck Orders

Order ID Order Time Period Demand covering
period(s)

Quantity
(truck max capacity: 22,800 pcs) Cost

1 0 1 1 truck with 8908 pcs 2355.54
2 1 11 9 full trucks and 1 truck with 3463 pcs 47,764.50

Full-Truck Orders

Order ID Order Time Period Demand covering
period(s)

Quantity in Trucks
(truck capacity: 22,800 pcs) Cost

1 0 1 1 full truck 5249.24
2 1 11 9 full trucks 46,613.16

Scenario 5

Scenario 5 is similar to Scenario 4, with the only difference being that there are holding
costs now. As exhibited in Table 6, for the partially loaded truck case, the tool proposes
five orders (at periods 0, 1, 2, 5, and 9), each covering the demand of 1 up to 4 periods
(demands for 1, 1, 3, 4, and 3 periods, respectively). For the full-truck case, the tool
proposes seven orders, also shown in Table 8, each corresponding to a period with a
non-zero forecasted demand.

Table 8. Results of Scenario 5.

Partially Loaded Truck Orders

Order ID Order Time Period Demand covering
period(s)

Quantity
(truck max capacity: 22,800 pcs) Cost

1 0 1 1 truck with 8908 pcs 2355.54
2 1 1 1 truck with 22,543 pcs 5125.71
3 2 3 2 full trucks and 1 truck with 21,520 pcs 15,271.10
4 5 4 1 truck with 19,000 pcs 4387.70
5 9 3 4 full trucks and 1 truck with 8800 pcs 22,980

Full-Truck Orders

Order ID Order Time Period Demand covering
period(s)

Quantity in Trucks
(truck capacity: 22,800 pcs) Cost

1 0 1 1 full truck 5249.24
2 1 1 1 full truck 5179.24
3 2 1 1 full truck 5179.24
4 3 1 1 full truck 5179.24
5 4 1 1 full truck 5179.24
6 5 4 1 full truck 5179.24
7 9 3 4 full trucks 20,716.96

6. Summary, Conclusions, and Future work

In this paper, after a literature review on Economic Order Quantity (EOQ) models
and the Wagner–Whitin algorithm and all its variants, we present an extended real-world
lot-sizing problem and an algorithmic solution. This algorithm extends the Wagner–Whitin
method and takes into consideration all the relevant necessary data, i.e., costs, capacity of
the warehouse, safety stock, and price of the ordering product per period.

The output of the algorithm is the ordering time and ordering quantity for orders
covering up to 12 periods of time (e.g., months). We also present a variation of the algorithm
to cover the case of full-truck orders only. These algorithms are implemented using the
Python programming language and the Tkinter library. The tool that is created provides a
user-friendly graphical environment where the user can experiment with different scenarios.
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Several such scenarios are exhibited in Section 5, where the functionality of the tool, the
different parameters, and the results are presented, as well as the sensitivity analysis of
Scenario 1.

Our plan is to extend the algorithms presented in this study to cover the case of
multiple suppliers per ordering product. Another plan is to extend the proposed algorithms
in such a way that they will offer optimal orders for cases in which each truck can carry not
one but various different products from the same supplier.
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Appendix A

Table A1. Values of the variables for Scenario 1.

Forecasted demand for periods i = 1 to 6
( f or_di)

222,979, 22,543, 26,000, 19,775, 21,345, 19,000

Transportation costs per truck for periods i = 1
to 6 ( trans_ci)

500, 430, 430, 430, 430, 430

Cost of the product per piece for periods i = 1
to 6 ( unit_ci)

0.2083

Maximum capacity of the warehouse per
period for the product

for periods i = 1 to 6 ( cap_wi)
no limit (99,999,999)

Maximum quantity of products that the truck
can transfer (max_tr) 22,800

Cost of ordering ( ord_c) 2.2

Cost of insurance during transportation as a
percentage ( ins_tr_c) 0

Cost of insurance in storage as a percentage
( ins_stor_c) 0.2
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Table A1. Cont.

Customs clearance fee per order ( cust_c) 0

Inventory operating costs per piece and per
period as a percentage ( oper_c) 0.3

Stock of the product that exists at the beginning
of the periods we are studying ( stock_beg) 25,200

Lead time in periods ( lead_time) 0.25

Previous year’s peak demand ( peak_d) 24,950

Average demand of the previous year ( avr_d) 13,821

Cost of capital ( capital_c) 0
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