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Abstract: The scheduling of disassembly lines is of great importance to achieve optimized productivity.
In this paper, we address the Hybrid Disassembly Line Balancing Problem that combines linear
disassembly lines and U-shaped disassembly lines, considering multi-skilled workers, and targeting
profit and carbon emissions. In contrast to common approaches in reinforcement learning that
typically employ weighting strategies to solve multi-objective problems, our approach innovatively
incorporates non-dominated ranking directly into the reward function. The exploration of Pareto
frontier solutions or better solutions is moderated by comparing performance between solutions and
dynamically adjusting rewards based on the occurrence of repeated solutions. The experimental
results show that the multi-objective Advantage Actor-Critic algorithm based on Pareto optimization
exhibits superior performance in terms of metrics superiority in the comparison of six experimental
cases of different scales, with an excellent metrics comparison rate of 70%. In some of the experimental
cases in this paper, the solutions produced by the multi-objective Advantage Actor-Critic algorithm
show some advantages over other popular algorithms such as the Deep Deterministic Policy Gradient
Algorithm, the Soft Actor-Critic Algorithm, and the Non-Dominated Sorting Genetic Algorithm II.
This further corroborates the effectiveness of our proposed solution.

Keywords: hybrid disassembly line balancing problem; multi-objective advantage actor-critic
algorithm; multi-skilled workers

1. Introduction

With the increasing scarcity of resources and environmental problems, the promotion
of sustainable development has been widely emphasized on a global scale. Disassembly
lines promote the reuse and recycling of discarded products, thus effectively extending
the utilization cycle of resources and reducing resource waste. Through the disassembly
process, valuable materials and parts can be reused, while hazardous substances from the
separated materials can be eliminated, ultimately achieving the goal of green remanufac-
turing. During the disassembly of recycled products, tasks need to be allocated between
workstations based on specific rules and constraints to achieve a balanced work line that
improves productivity and reduces costs. Reinforcement learning algorithms can be em-
bedded in the automation unit of the task assignment center to achieve an automated
disassembly solution with intelligent decision making.

The Disassembly Line Balancing Problem (DLBP) [1] is a well-researched NP problem.
The typical arrangements of disassembly lines include linear, U-shaped [2], two-sided [3],
and parallel [1,4] layouts. Linear disassembly line (LDL) is primarily employed for disas-
sembling small-scale products. LDL is usually suitable for long and narrow working areas,
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while U-shaped disassembly line (UDL) is suitable for a wider working area. By combining
the two to form a hybrid disassembly line, the space utilization can be optimized to the
greatest extent and the working areas of different shapes and sizes can be adapted. The
hybrid disassembly line can better adapt to different disassembly products. Moreover,
a LDL is suitable for sequential tasks, such as the handling of continuous items, while
a UDL is suitable for cyclic tasks, such as work steps that require rework or multiple
processing. Combining the two types of disassembly lines, the disassembly process can
be optimized and the production efficiency can be improved. An illustrative example of a
hybrid disassembly line layout is depicted in Figure 1.

Figure 1. An example of a hybrid disassembly line layout.

In this paper, we propose a new multi-objective A2C (MO-A2C) algorithm for solving
the hybird disassembly balancing problem (HDLBP) considering multi-skilled workers,
with the objective of maximizing profits and minimizing carbon emissions. Different
from other multi-objective reinforcement learning algorithms, the non-dominated sorting
method is combined with A2C to change the exploration of agents through dynamic
rewards. Major accomplishments include:

(1) This study presents a novel approach to a hybrid disassembly system, integrating
LDL and UDL. The research introduces a mathematical model for the HDLBP that aims
to maximize disassembly profit while simultaneously minimizing carbon emissions. Fur-
thermore, the model takes into account personnel that possess multiple skills and their
allocation of disassembly duties.

(2) A new MO-A2C algorithm for solving multi-objective problems is established. The
algorithm combines the following three innovative parts with multi-objective problems [5].
The first is the encoding of multi-objective problems, using different numbers to represent
different allocation schemes as shown in Algorithm 1. The second is to correct the wrong
actions of the agent and re-encode the actions as shown in Algorithm 2. The third is to use
non-dominated sorting to define reinforcement learning rewards. By using the scale factor,
the dynamic adjusted reward reduces the occurrence of repeated solutions, and guides the
agent to explore other solutions or better solutions along the same Pareto frontier, as shown
in Algorithm 3.

(3) Furthermore, simulation studies are conducted to address real-world disassembly
problems. The results show that the MO-A2C algorithm outperforms the Deep Deter-
ministic Policy Gradient (DDPG) [6], the Soft Actor-Critic (SAC) [7] algorithm, and the
Non-Dominated Sorting Genetic Algorithm II (NSGAII) [8] in solving the HDLBP.

This paper builds on our previous work presented in paper [9] and introduces sub-
stantial improvements. Initially, we developed a mathematical model called HDLBP, which
aims to maximize dismantling profits and minimize carbon emissions based on the charac-
teristics of the dismantling line architecture. In previous papers, we used a reinforcement
learning algorithm to solve the single-objective problem, and the SAC algorithm performed
better. In this paper, we use a reinforcement learning algorithm with a typical multi-
objective approach to the model. Experiments demonstrate that the MO-A2C algorithm
has some advantages in solving HDLBP, thus further validating the effectiveness of the
reinforcement concept.



Information 2024, 15, 168 3 of 24

Algorithm 1: Action for disassembly task
Input: input disassembly parameters, action_space, observation_space
Output: ojb1, obj2

1 Environment step:
2 for each i in product do
3 Choose the disassembly line for the product from the action_space:
4 line← action[i]
5 Determine the disassembly line assigned to the product:
6 if line == 0 then
7 for each j in task do
8 linaer_workstation← action[i + j]
9 Algorithm 2

10 end
11 Calculating obj1, obj2
12 end
13 else
14 for each j in task do
15 Ushaped_workstation← action[i + j]
16 Algorithm 2
17 end
18 Calculating obj1, obj2
19 end
20 end
21 return ojb1, obj2;

Algorithm 2: Action correction and decoding

Input: input linerar_workstation: LW [], Ushaped_workstation: UW [], line
Output: output LW , UW

1 Values are sorted from small to large LW , UW
2 if line = 0 then
3 for i in range(len(Workstation)) do
4 if Workstation[i] == 0 or Workstation[i] == 3 then
5 Workstation[i]← 1;
6 else
7 if Workstation[i] == 1 or Workstation[i] == 4 then
8 Workstation[i]← 2;
9 else

10 Workstation[i]← 3;
11 end
12 end
13 end
14 else
15 for i in range(len(Workstation)) do
16 if Workstation[i] == 0 or Workstation[i] == 5 then
17 Workstation[i]← 1;
18 else
19 if Workstation[i] == 1 or Workstation[i] == 4 then
20 Workstation[i]← 2;
21 else
22 Workstation[i]← 3;
23 end
24 end
25 end
26 end
27 return Workstation
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The subsequent sections of this paper are structured in the following manner. Section 2
discusses the HDLBP. Section 3 introduces the MO-A2C algorithm. Section 4 shows the
empirical findings and the efficacy of the MO-A2C algorithm. Section 5 concludes this
work and addresses the future studies direction.

Algorithm 3: Framework of Non-dominated sort in A2C
Input: input obj1, obj2
Output: output reward

1 Initial parameters: Memory pool D, α1 = 1, α2 = 1
2 for each iteration do
3 for each environment step do
4 if D! = NULL then
5 x1 = min(target1), x2 = max(target1)
6 y1 = min(target2), y2 = max(target2)
7 if obj1> x2, obj2 < y1 then
8 if the solution is repeated then
9 α1 = 0.5, α2 = 2

10 reward = 100 ∗ α1

11 else
12 reward = 100 ∗ α1
13 update D
14 end
15 end
16 else if obj1< x1 or obj2> y2 then
17 if the solution is repeated then
18 α1 = 2, α2 = 0.5
19 reward = 100 ∗ α2

20 else
21 reward = 100 ∗ α2
22 update D
23 end
24 end
25 else
26 reward = −100
27 end
28 else
29 x1 = 0, x2 = 0
30 y1 = 0, y2 = 0
31 reward = 100
32 update D
33 end
34 end
35 end
36 reward

2. Literature Review

Wang et al. [10] conducts an investigation into the partial DLBP within the context
of a LDL. Li et al. [11] compares LDL and UDL, revealing that U-shaped configurations
exhibit greater versatility and efficiency and require fewer operators.

At present, although part of the disassembly work is performed by robots, manual
disassembly cannot be completely replaced in the recycling of precision instruments. There-
fore, the factor of workers cannot be ignored in the disassembly process. Zhu et al. [12] take
into account hazardous components within the disassembly line, highlighting the potential
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threats posed by dangerous products to workers’ physical and mental well-being. Given
the pressing issue of global warming, it is imperative to acknowledge the significant impact
of carbon emissions arising from dismantling processes. Zhang et al. [13] systematically
analyze and compute the carbon emissions associated with specific actions performed dur-
ing the disassembly process. Yang [14] measures the carbon emissions from dismantling
specific parts of the product and calculates the carbon emissions of different dismantling
scenarios. Considering the characteristics of multi-skilled workers and the impact of carbon
emissions on the environment, this paper proposes the Hybrid Disassembly Line Problem
(HDLBP) for the first time with the goal of maximizing disassembly profits and minimizing
carbon emissions.

HDLBP is an NP problem class that exhibits exponential growth in its solution space
as the problem size increases. Different heuristic search approaches have been used to find
optimal solutions. These include genetic, neighborhood search, and swarm intelligence
algorithms [15,16]. Furthermore, HDLBP represents a combinatorial optimization problem.
Conventional algorithms adopt sequential heuristic-based solution construction, which
may prove suboptimal with rising problem complexity. Conversely, reinforcement learning
offers an alternative paradigm by training agents to autonomously explore such heuristics
through supervised or self-supervised approaches. Nina Mazyavkina [17] provides an
up-to-date exposition of the current state and emerging trends in utilizing reinforcement
learning for combinatorial optimization within the research field. The fusion of reinforce-
ment learning and combinatorial optimization holds extensive potential for application
in practical problem domains, including but not limited to route planning, scheduling
optimization, and resource allocation. For instance, in the work of Zhao et al. [18], an opti-
mal disassembly sequence is investigated, considering uncertainty in the end-of-life (EOL)
product structure and the study employs a reinforcement learning approach to address
DLBP, enabling operation in stochastic environments characterized by determinism. In [19],
Guo et al. reviewed deep reinforcement learning methods in solving the optimization
problem. Presently, the majority of reinforcement learning algorithms, such as Deep Q
Network and Actor-Critic, are primarily utilized for addressing discrete problems. How-
ever, in this paper, we have enhanced the mapping of the action space, thereby expanding
the applicability of reinforcement learning algorithms originally designed for continuous
problems to also encompass discrete problem domains.

A typical multi-objective reinforcement learning method is a scalarization method,
which constructs scalar rewards according to the combination of competitive rewards, and
then applies the single-objective RL algorithm. Salman et al. [20] propose a multi-objective
Advantage Actor-Critic (A2C) algorithm that sets the balance between two goals by only
determining the priority percentage of minimizing capacity expansion cost and minimizing
the number of denial of service, making it suitable for decision makers with different abili-
ties, preferences, and needs to solve medical expansion planning solutions. Mohsen [21]
proposes a multi-objective reinforcement learning algorithm for solving continuous-valued
state-action space without considering different target preferences. The majority of the afore-
mentioned approaches for addressing multi-objective problems involve transforming them
into single-objective ones, necessitating a meticulous examination of the weighting mecha-
nism. In this study, we endeavor to expand the scope of multi-objective solutions by guiding
the intelligent agent to explore various alternatives through the comparison of dominance
relationships among solutions and the subsequent assignment of corresponding rewards.

Table 1 shows a comparison between our work and these mostly related works.
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Table 1. Related literature on the mutiobjective disassembly line balancing problem.

Literatures Disassembly Level Number of
Products Line Layout Optimization

Objectives Solving Method

Zhu, L. [12] Complete Single Straight Multiple (Pareto) Pareto firefly
algorithm

Zhang, L. [13] Complete Single Straight Multiple (Pareto) Improved genetic
algorithm

Yang, Y. [14] Complete Single - Multiple (Pareto)
Improved fruit fly

optimization
algorithm

Zhao, X. [18] Partial Single - Multiple (Pareto) Improved Deep q
Network algorithm

Our study Complete Mixed product Straight and
U-shaped (Hybrid) Multiple (Pareto) MO-A2C

3. Multiobjective Hybrid Disassembly Line Balancing Problem
3.1. Problem Description

The hybrid disassembly line examined in this study is a fusion of a LDL and a UDL.
Both disassembly lines allow for simultaneous disassembly of several products. Each
configuration of the disassembly line possesses distinct advantages, and when grouped
together, they can accommodate the disassembly of various items.

Various components exhibit varying levels of complexity during the disassembly
procedure, necessitating workers to possess distinct disassembly proficiencies. For instance,
the act of dismantling intricate components and disassembling hazardous parts necessitates
individuals to possess distinct yet specific expertise. If a worker lacks the necessary abilities
for a disassembly task, they must undergo further skill training before being able to carry
out the task. Alternatively, assignments can be allocated to individuals possessing pertinent
disassembling expertise.

The fundamental components of HDLBP are the assignment of tasks and disassembly
lines. Tasks assignment refers to the allocation of the disassembly of various products
to workers possessing diverse skill sets, while disassembly line assignment pertains to
the allocation of several products to distinct disassembly lines. Through reinforcement
learning, the agent acquires knowledge of the hybrid disassembly line environment and
applies a decision-making strategy to control the conveyor belt and product delivery station.
Products are distributed to disassembly lines through the product distribution station, and
the conveyor belt transports components to the right workstation. The primary aim of this
study is to optimize the HDLBP by maximizing profit and minimizing carbon emissions.

The initiation of the disassembly product information model serves as the initial
phase in investigating the HDLBP. The AND/OR graph provides a hierarchical method to
precisely and comprehensively represent the connections among the different disassembly
sequences, components, and tasks. Nevertheless, as the intricacy of a product escalates, the
issue of combo explosion becomes increasingly probable. The utilization of a precedence
graph provides a lucid representation of the hierarchical relationship among disassembly
tasks, offering an easily comprehensible depiction of task precedence. Consequently, this
paper adopts the precedence graph as a means to articulate the precedence relationships
inherent in disassembly tasks.

Table 2 presents the task of dismantling a computer [22], whose parts are listed in the
Figure 2a, and the computer wiring and screws are not given. Figure 2b is the precedence
graph of these tasks. According to the graph, task 1 is executed before task 25, task 2 before
task 3, and task 26 can be executed only if tasks 24 and 25 are completed.
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(a) (b)

Figure 2. Computer components and precedence graph of disassembly tasks. (a) Components of a
computer; (b) Precedence graph of the computer disassembly tasks.

Table 2. Disassembly tasks of a computer.

Index Disassembly Task Name Index Disassembly Task Name Index Disassembly Task Name

1 Front bezel 11 Backshell screws 21 Drive plate screws
2 Base screws 1 12 Backshell 22 Driver board
3 Foundation 13 Backshell retaining tab screws 23 Protective case for power plate
4 Chassis border 14 Backshell fixing piece 24 Left rear shell mounting plate
5 Base plate 15 Keypad screws 25 Right rear shell mounting plate
6 Base support plate 16 Keypad 26 Screensaver
7 Base screws 2 17 Power board wiring 27 Logic board protection board
8 Chassis fixing piece 18 Power board screws 28 Circuit board 1
9 Left adjuster 19 Power supply board 29 Circuit board 2
10 Right adjuster 20 Driver board 30 Screen

Two matrices are created: one to depict the correlation between tasks, and another to
indicate the correlation between tasks and skills.

(1) Task precedence relationship matrix
The task precedence relationship matrix D = [dp

jk] defines the correlation between two
tasks, denoted by task indexes j and k and product ID p.

dp
jk =


1, if task j executed prior to task k

in regard to product p

0, otherwise.

For instance, considering the production ID of the computer as 1, according to Figure 2,
we have

d1
88 = 0;

d1
8k = 1, for k = 9, 10.

(2) Task and skill relationships matrix
The task and skill relationships matrix B = [bp

jn] is used to delineate the correlation
between tasks and skills.
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bp
jn =


1, if disassembly task j necessitates skill n

for product p

0, if disassembly task j does not necessitates skill n

for product p

It is expected that certain jobs involved in the disassembly process necessitate specific
disassembly skills. Skill 1 entails disassembling precision parts, whereas skill 2 involves
disassembling hazardous parts. When carrying out task 17, it is necessary to have indi-
viduals who are experienced in handling hazardous materials due to the combustible and
explosive nature of the power supply. Their role will involve dismantling the battery. For
task 28, due to the presence of numerous minuscule electronic components on the circuit
board, it is imperative that personnel possess the expertise to extract precision components.

(3) Worker and skill relationship matrix
The worker and skill relationship matrix A = [al

wn] is utilized to delineate the correla-
tion between workers and their respective skills.

al
wn =

{
1, if Worker w possesses skill n on line l

0, if Worker w does not possesses skill n on line l

For instance, the correlation between workers and skills is depicted in Table 3.

Table 3. Relationship between workers and skills.

Disassembly Line Type Worker
Skill

1 2

Linear
1 0 1
2 0 0
3 1 0

U-shaped
1 1 1
2 0 0
3 1 1

(4) Grid carbon emission factor
EFelc is the grid carbon emission factor.
In order to establish a hybrid disassembly line, we make the assumption that
1⃝ The matrices D, A, and B are already identified [23].
2⃝ Complete disassembly of all components of the product is required [24].
3⃝ Each disassembly task is limited to a single execution [25].
4⃝ Specialized personnel are allocated to certain workstations and are not permitted

to switch workstations [26].

3.2. Mathematical Model

The following section describes the mathematical model for the HDLBP. We introduce
the notations used in the model first.

(1) Notations:
P—Set of EOL products, P = {1, 2, . . . , p}.
Jp—Total count of tasks within product p.
L—Collection of all disassembly lines.
W1—The array of workstations within the LDL, W1 =

{
1, 2, . . . , W1}.

W2—The array of workstations within the UDL, W2 =
{

1, 2, . . . , W2}.
S—Set of opposing sides of a disassembly line workstation in a U-shaped configura-

tion, S = {1, 2}.
N—Collection of all abilities, N = {1, 2, . . . , N}.
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vpj—The benefit of the disassembly task indexed by j for the product designated as p.
tpj—The time needed to execute the disassembly task indexed by j for the product

designated as p.
cpj—The cost per unit of time required for execution of the disassembly task indexed

by j for the product designated as p.
cl—The cost per unit of time required for execution of the l-th disassembly line.
cw—The cost per unit of time required for execution of the w-th workstation.
C—Cost of training for individual skills.
αlwn—The worker stationed at workstation w on the disassembly line l possesses the

skill indexed as n.
βpjn—The j-th task of the p-th product requires the use of n-th skill.
Tl—Cycle time of disassembly line l.
PW l

i —Load power of the i-th workstation on the l-th disassembly line.
PDl—Transmission power of disassembly line l.
(2) Decision variables

zpl =

{
1, product p is allocated to disassembly line l

0, otherwise

x1
pjw =


1, workstation w of the LDL is allocated to perform

task j for pruduct p
(
w ∈W1)

0, otherwise

x2
pjws =


1, task j of product p is assigned to the s side of

UDL workstation w
(
w ∈W2)

0, otherwise

yl =

{
1, disassembly line l is activated

0, otherwise

ulw =

{
1, workstation w of disassembly line l is activated

0, otherwise

ξlwn =


1, if a worker on workstation w of the disassembly

line l uses skill n(n ∈ N)
0, otherwise

(3) The mathematical formulation aimed to maximize disassembly profit while mini-
mizing carbon emissions:

max ∑
p∈P

∑
j∈Ip

(
∑

w∈W1

(
vpj − cpjtpj

)
x1

pjw

+ ∑
w∈W2

∑
s∈S

(
vpj − cpjtpj

)
x2

pjws

)

− ∑
l∈L

(
clTl + ∑

w∈Wl

clwulw

)
− C ∑

l∈L
∑

w∈Wl
∑

n∈N
(ξlwn − αlwn)

(1)

The optimization objective (1) endeavors to optimize the revenue generated by the hy-
brid disassembly line, characterized by three primary constituents. In the first segment, the
revenue derived from product disassembly is computed. Each task j within each product
p involves a calculation comprising two components. Initially, for the LDL workstation
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W1, the expression (vpj − cpjtpj) is multiplied by the decision variable x1
pjw, signifying

the revenue portion ascribed to the LDL. Subsequently, for each side s within the UDL
workstation W2, the expression (vpj − cpjtpj) is multiplied by the decision variable x2

pjws,
delineating the revenue portion from the UDL. In the second segment, the costs associated
with all disassembly lines l are accounted for. This encompasses the product of the cost
per unit of time for the disassembly line cl and the cycle time of the disassembly line Tl ,
along with the product of the cost per unit of time for the disassembly line workstation
clw and the decision variable ulw representing the operational status of the workstation. In
the third segment, the expenses incurred for skills training are factored in. This entails the
calculation of (ξlwn − αlwn) multiplied by the constant C for each disassembly line l ∈ L.

min EFelc ∑
l∈L

((
∑

i∈Wl

PW l
i ∗ Tl ∗ ulw

)
+ PDl ∗ Tl

)
(2)

The objective (2) is to minimize carbon emissions. For each disassembly line l, the load
power consumption of all its workstations multiplied by the cycle time is calculated, and
the sum of the transmission power of the disassembly line is added. The total value is then
multiplied by the carbon emission coefficient.

The two objectives are subject to quite a few constraints. Below, we introduce them
one by one:

∑
l∈L

zpl = 1, ∀p ∈ P (3)

Formula (3) guarantees that each individual p-th product is required to be exclusively
allocated to a single disassembly line l, and cannot be assigned to multiple lines.

zpl ≤ yl , ∀p ∈ P, ∀l ∈ L (4)

Formula (4) imposes the requirement that in the event of p-th product being allocated
to disassembly line l (i.e., zpl = 1), operational functionality of the disassembly line is
obligatory (i.e., yl = 1).

ulw ≤ yl , ∀w ∈Wl , ∀l ∈ L (5)

Formula (5) specifies that in the event of a workstation w being operational on disas-
sembly line l (i.e., ulw = 1), the corresponding disassembly line must also be operational
(i.e., yl = 1).

ξlwn ≥ αlwn, ∀l ∈ L, ∀w ∈Wl , ∀n ∈ N (6)

Formula (6) stipulates that if a worker is assigned to perform a task on a specific
workstation, the worker must possess at least the level of skill required for that task.

x1
pjw ≤ zpl , ∀p ∈ P, ∀j ∈ Jp, l = 1, ∀w ∈W1 (7)

Formula (7) guarantees that when p-th product is designated to the LDL workstation w
(i.e., x1

pjw = 1), it necessitates allocation to the LDL l as well (i.e., zpl = 1). Failure to allocate
the product to that line precludes distribution of the task to the respective workstation.

x1
pjw ≤ ulw, ∀p ∈ P, ∀j ∈ Jp, l = 1, ∀w ∈W1 (8)

Formula (8) guarantees that when p-th product for j-th task is allocated to the LDL
workstation w (i.e., x1

pjw = 1), the operational status of the workstation must be maintained
(i.e., ulw = 1).

x1
pjw ≤ ∑

n∈N
βpjnξlwn, ∀p ∈ P, ∀j ∈ Jp, l = 1, ∀w ∈W1 (9)
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Formula (9) guarantees that the people working at a LDL workstation w must have
the right skills to do the job when the product p for task j is given to it.

x2
pjws ≤ zpl , ∀p ∈ P, ∀j ∈ Jp, l = 2, ∀w ∈W2, ∀s ∈ S (10)

Formula (10) guarantees that when j-th task of p-th product is allocated to s-th side of
UDL w-th workstation (i.e., x2

pjws = 1), it necessitates prior allocation to the corresponding
disassembly line (i.e., zpl = 1).

x2
pjws ≤ ulw, ∀p ∈ P, ∀j ∈ Jp, l = 2, ∀w ∈W2, ∀s ∈ S (11)

Formula (11) guarantees that when j-th task of p-th product is allocated to s-th side of
UDL w-th workstation w (i.e., x2

pjws = 1), the operational status of the workstation must be
maintained (i.e., ulw = 1).

x2
pjws ≤ ∑

n∈N
βpjnξlwn, ∀p ∈ P, ∀j ∈ Jp, l = 2, ∀w ∈W2,

∀s ∈ S
(12)

Formula (12) guarantees that when j-th task of p-th product is assigned to s-th side of
UDL w-th workstation (i.e., x2

pjws = 1), the individuals working at that workstation must
possess the requisite abilities to carry out the activity.

∑
p∈P

∑
j∈Jp

tpjx1
pjw ≤ T1, ∀w ∈W1 (13)

∑
p∈P

∑
j∈Jp

∑
s∈S

tpjx2
pjws ≤ T2, ∀w ∈W2 (14)

Formulas (13) and (14) guarantee that the cumulative time required for all tasks
executed on a disassembly line workstation w will not be longer than the cycle time Tl

designated for that specific disassembly line.

∑
w∈W1

w
(

x1
pjw − x1

pkw

)
+ W1

(
∑

w∈W1

x1
pkw − 1

)
≤ 0,

∀p ∈ P, ∀j, k ∈ Jp and dpjk = 1

(15)

The expression ∑w∈W1 w
(

x1
pjw − x1

pkw

)
represents the summation of the disparity

between the workstation number of j-th task and the k-th task, multiplied by the count
of j-th task and k-th task allocated to those workstations, respectively. The value must
be limited to 0 or below in order to prevent simultaneous execution of numerous jobs
on identical workstations for an identical product. Furthermore, W1

(
∑w∈W1 x1

pkw − 1
)

represents the discrepancy between the total number of k-th task assignments across all
workstations and 1, multiplied by the total count of workstations W1, which must also be
less than or equal to 0. This condition guarantees that the total count of task assignments
across all workstations is exactly 1, hence assuring that every task can only be given to a
single workstation.

∑
w∈W2

(
w
(

x2
pjw1 − x2

pkw1

)
+
(

2W2 − w
)(

x2
pjw2 − x2

pkw2

))
+ 2W2

(
∑

w∈W2
∑
s∈S

x2
pkws − 1

)
≤ 0,

∀p ∈ P, ∀j, k ∈ Jp and dpjk = 1

(16)

Formula (16) serves as a restriction on the UDL and functions in a similar manner as
Equation (15).
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dpjk

(
∑

w∈W1

x1
pkw − ∑

w∈W1

x1
pjw

)
≤ 0 (17)

dpjk

(
∑

w∈W2
∑
s∈S

x2
pkws − ∑

w∈W2
∑
s∈S

x2
pjws

)
≤ 0 (18)

Formulas (17) and (18) delineate the necessity of meeting specific conditions for
task sequencing within the disassembly process of product p. These conditions are con-
tingent upon the existence of a sequential relationship, denoted by dpjk = 1, between
tasks j and k. On a LDL, it is imperative that the difference between the cumulative
assignments of task k and task j for product p remains non-positive, as expressed by
∑w∈W1 x1

pkw −∑w∈W1 x1
pjw ≤ 0. On a UDL, a similar requirement dictates that the disparity

between the combined assignments of task k and task j for product p remains non-positive.

∑
w∈W1

x1
pjw + ∑

w∈W2
∑
s∈S

x2
pjws ≤ 1, ∀p ∈ P, ∀j ∈ Jp (19)

Formula (19) states that the total number of assignments for task j of product p in time
period W1, time period W2, and all other time periods and workstations combined should
not exceed 1. This condition guarantees that every task can only be allocated to a single
time period and workstation throughout the whole time period, with no more than one
assignment per task.

The range of values that decision variables can take:

zpl ∈ {0, 1}, ∀p ∈ P, ∀l ∈ L (20)

x1
pjw ∈ {0, 1}, ∀p ∈ P, ∀j ∈ Jp, w ∈W1 (21)

x2
pjws ∈ {0, 1}, ∀p ∈ P, ∀j ∈ Jp, w ∈W2, s ∈ S (22)

yl ∈ {0, 1}, ∀l ∈ L (23)

ulw ∈ {0, 1}, ∀l ∈ L, ∀w ∈Wl (24)

ξlwn ∈ {0, 1}, ∀l ∈ L, ∀w ∈Wl , ∀n ∈ N (25)

Tl ∈ R+, ∀l ∈ L (26)

4. The Improved Advantage Actor-Critic Algorithm for HDLBP

In the framework of RL, the individual undergoing the learning process is referred
to as an agent, who also serves as the active participant in the learning system. The agent
engages with the environment, its immediate surroundings, by executing actions. Upon
performing an action inside a given environmental condition, the agent is rewarded and
the system undergoes a transition to a different state. The primary objective of RL is to
discover an optimal approach, comprising a series of actions, which can maximize the total
reward, thereby delivering the most efficient solution to a specified problem. Within the
framework of HDLBP, a RL algorithm acquires the most advantageous allocation strategy
by utilizing live interactive data, ultimately achieving the ideal answer. Therefore, it is
quite important to utilize the reinforcement learning approach for the HDLBP.
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4.1. Markov Decision Process (MDP)

Markov Decision Process (MDP) is a mathematical framework used to model decision-
making processes in uncertain environments. It consists of a tuple (S, A, P, R, γ) where
S represents the set of states which encapsulate the possible situations or configurations
of the system. A denotes the set of actions available to the decision-maker or agent. P
represents the transition probability function, defining the probability of transitioning from
one state to another given a particular action. R is the reward function, providing the
immediate reward or reinforcement obtained upon transitioning between states due to
taking an action. γ is the discount factor, which balances the significance of immediate
rewards against future rewards, influencing the agent’s decision-making horizon.

4.2. The Mainstream Reinforcement Learning Algorithm

The A2C [27] algorithm has direct modeling discrete strategy, parallel sampling and
real-time update, and low variance strategy optimization when dealing with discrete
problems. These characteristics make the A2C algorithm show good performance and
effect on discrete problems. The SAC algorithm, introduced by Haarnoja et al. [7], is a
pioneering deep reinforcement learning algorithm that integrates the off-policy algorithm,
actor-critic approaches, and maximum entropy framework. In comparison to A2C and
DDPG, SAC demonstrates superior capabilities in addressing intricate tasks. The efficiency
of the DDPG algorithm has a high correlation with super parameters, and it has a poor
convergence effect. The SAC algorithm may overcome the problem of being stuck in local
optima by utilizing the maximum entropy principle. It also exhibits superior exploration
capabilities and is more adaptable in the presence of external disturbances, enabling it to
reach rapid convergence.

We combine the concept of Nondominated Sorting with the reinforcement learning
algorithm, and propose the MO-A2C, SAC, and DDPG algorithms to handle the challenge
of HDBLP.

4.3. Reinforcement Learning Environment of HDLBP

During the interaction process between an agent and its environment, the actions
executed by the agent lead to state transitions and subsequent reward outcomes. Well-
designed actions play a critical role in enabling the agent to efficiently attain optimal
rewards. Although the SAC algorithm is initially developed for environments with contin-
uous action spaces, certain adaptations of SAC can be extended to accommodate discrete
action environments as well.

This study employs OpenAI Gym to construct the HDLBP environment. Discrete and
MultiDiscrete classes define discrete problems within the Gym framework, whereas the
continuous problem action space is specified using the Box class.

The Discrete action space in OpenAI comprises discrete non-negative integers. The
Discrete(4) distribution can be employed to represent a maze issue that involves four unique
actions.The values 0, 1, 2, and 3 correspond to leftward, rightward, upward, and down-
ward movement, respectively. MultiDiscrete enables simultaneous control over several
discrete activities.

The Box action space is a formal representation utilized in reinforcement learning to
encapsulate continuous action domains. It delineates a multi-dimensional space compris-
ing real numbers, where each dimension corresponds to an action parameter capable of
assuming any real value. Defined by two vectors, namely "low" and "high", this space
establishes the lower and upper bounds for each dimension, respectively, thereby offering
a flexible range of action possibilities. The Box action space finds application in tasks
necessitating fine-grained control and continuous action modulation, such as robotic ma-
nipulation, unmanned aerial vehicle navigation, and financial trading. Leveraging the
Box action space, agents can iteratively select actions within specified bounds, facilitating
ongoing interaction and optimization within the environment.
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In this paper, the MO-A2C solves HDLBP as shown in Figure 3. The agent generates
actions based on the current strategy, and we encode and decode the actions (Figure 4).
Through the interaction with the environment, the corresponding state information, reward
information, and two target values are obtained. According to the memory pool access
rules, the eligible target values are written into the memory pool, the solution is evaluated,
and the corresponding reward is output (Figure 5). Save the status information, reward
information, and action information to the experience pool. The agent modifies the strategy
according to the information in the experience pool and repeats the above training.

Figure 3. The MO-A2C decision framework for solving HDLBP.

(1) State Space
The state space is mostly used to store the disassembly state, which has two states:

undisassembled (S = 0) and fully disassembled (S = 1). The initial undisassembled
state is denoted as S = 0, while the fully disassembled state after completing all tasks is
represented by S = 1. Only alterations in the general condition are taken into consideration
during disassembly, excluding any intermediate phases in the disassembly procedure.

(2) Action Space
We elucidate the procedure for selecting a disassembly line within a continuous

action space. Consider a scenario where two products necessitate allocation to one of two
distinct disassembly lines. Each dimension in the action space pertains to the selection of
a disassembly line for a specific product, with the action space spanning from [0.0, 0.0]
to [2.0, 2.0]. To ascertain the allocation, a vector of real numbers with a dimensionality
of 2 is generated, where each value falls within the interval of 0.0 to 2.0. This vector
denotes the assignment of each product to a particular disassembly line. Subsequently, the
allocation values undergo mapping: if a sampled value falls within the interval [0.0, 1.0),
the product is allocated to the LDL (represented by 0). Conversely, values falling within the
range [1.0, 2.0] dictate allocation to the UDL (represented by 1). Upon completion of the
mapping process, the subsequent encoding and decoding procedures follow a methodology
analogous to that utilized in the MultiDiscrete class.



Information 2024, 15, 168 15 of 24

Figure 4. The action design for an HDLBP instance.

Figure 5. Update of reward.
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Referring to the HDLBP illustration in Figure 4, where the product needs to be disas-
sembled, there are two workstations on each line, and the specific meaning of the action
selection code is shown in Table 4. There are two steps for each disassembly product. The
first step is to select the disassembly line of the product, and the second step is to assign
the disassembly task to the workstation. In order to distinguish the inlet and outlet sides of
the UDL workstation, two workstations have four options. When a product is allocated to
a LDL, the task assignment to workstations is contingent upon the output values of the
task selection, where values 0 or 1 assign to workstation 1, whereas values 2 or 3 assign to
workstation 2. In the UDL, an output value of 0 directs task assignment to the entry side of
workstation 1; a value of 1 corresponds to assignment at the entry side of workstation 2; a
value of 2 leads to assignment at the exit side of workstation 2; and a value of 3 triggers
assignment at the outlet side of workstation 1. Specific values represent unique disassembly
selection operations, with the target value set according to the chosen operation.

Table 4. Action selection code

Disassembly Line Selection Workstation Selection

0 LDL
0 or 1 W1

2 or 3 W2

1 UDL

0 inlet side of W1

1 inlet side of W2

2 outlet side of W1

3 outlet side of W2

As shown in Figure 4, the agent may randomly choose the action code [0, 1, 2, 2] for
product 1; this indicates that product 1 is slated for disassembly on the LDL, with task 1
being assigned to workstation 1, and tasks 2 and 3 being allocated to workstation 2.

Algorithm 1 shows the pseudocode of action for disassembly tasks. It takes as inputs
the disassembly parameters, the action space, and the observation space. The outputs of
the algorithm are obj1 and obj2. The algorithm operates in an iterative manner, looping
over each product. For each product, it selects a disassembly line from the action space
based on the assigned action for that particular product, stored in the variable line. If line is
equal to 0, it means that the disassembly will take place on a linear workstation. In this case,
the algorithm enters a nested loop, iterating over each task associated with the disassembly.
Within this loop, it retrieves the assigned action for the current product and task, stored in
the variable linear_workstation, and applies Algorithm 2.

Lastly, the algorithm calculates obj1 and obj2. On the other hand, if line is not equal to 0,
it implies that the disassembly will occur on a U-shaped workstation. The algorithm follows
a similar pattern as above, but this time the assigned action for the current product and task
is retrieved and stored in the variable Ushaped_workstation before applying Algorithm 2.
Finally, obj1 and obj2 are calculated. After processing all products, the algorithm returns
obj1 and obj2 as the final output. In summary, the algorithm determines the disassembly line
for each product based on the assigned actions, performs the corresponding disassembly
tasks using the specified workstations (either linear or U-shaped), and calculates obj1 and
obj2 as the results of these operations.

Algorithm 2 described in the pseudocode is called “action correction and decoding”.
The inputs to the algorithm are two arrays, a linear workstation denoted by LW and a
U-shaped workstation denoted by UW , as well as a line parameter indicating which type
of workstation is being used. The outputs of the algorithm are the updated version of the
two workstations LW and UW . The algorithm first sorts the values of the workstations in
ascending order and then checks the value of the line parameter. If the line parameter
equals 0, each element in the workstation arrays is updated based on its original value.
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Specifically, if the value is either 0 or 3, it is changed to 1; if the value is either 1 or 4, it is
changed to 2; otherwise, it is changed to 3.

On the other hand, if the line parameter equals 1, each element in the workstation
arrays is also updated based on its original value, but following a different set of rules.
Specifically, if the value is either 0 or 5, it is changed to 1; if the value is either 1 or 4, it is
changed to 2; otherwise, it is changed to 3. In summary, the algorithm provides a method
for correcting and decoding the actions taken at two different types of workstations, based
on their original values and the type of the production line being used. Handling incorrect
actions can be achieved by providing negative feedback rewards to reduce the probability
of the agent selecting incorrect actions. However, at the same time, training efficiency
would significantly decrease, necessitating an increase in the number of training iterations
to obtain satisfactory results. In contrast, correcting incorrect actions can accelerate training
speed and enhance the agent’s exploration capabilities. It can also lead to better quality
solutions within the same number of training iterations compared to negative feedback
reward methods.

(3) Reward Function
In the definition of reward, we evaluate the reward that the agent can obtain in this

state according to the quality of the multi-objective solution. Firstly, a memory pool is
established to store the multi-objective solution of the training process, and the experience
pool is empty in the initial state. The solution obtained by training during the first round
can be successfully stored in the memory pool and a positive feedback reward can be
obtained. Whether the solution of each subsequent training can enter the memory pool is
determined according to the dominance relationship. Assuming that the new solution is
obj1, obj2, the minimum value and maximum value of target 1 in the memory pool is x1, x2,
and the minimum value maximum value of target 2 is y1, y2. We set the reward coefficient
α1 and α2. The specific circumstances of the reward are divided into the following three.

For the repeated solution, we use the reward coefficient α1 and α2 to guide the explo-
ration direction of the agent. In the initial state, both α1 and α2 values are 1. When the
repeated solution belongs to the first kind, reducing the value of α1 increases the value of
α2, and guides the agent to explore on the same Pareto front. When the repeated solution
belongs to the second kind, increasing the value of α1 and decreasing the value of α2 will
lead the agent to explore the better solution.

The pseudocode in Algorithm 3 outlines a framework for the Non-Dominated Sort
in A2C. The algorithm takes two input objectives, namely obj1 and obj2, and produces a
single output reward. The algorithm begins by initializing the parameters, including the
memory pool D and the weighting factors α1 and α2, both set to 1. For each iteration, the
algorithm proceeds to perform environment steps. If the memory pool D is not empty,
the algorithm identifies the minimum and maximum values of “target1” as x1 and x2,
respectively, and the minimum and maximum values of “target2” as y1 and y2, respectively.
Next, the algorithm checks if obj1 is greater than x2 and obj2 is less than y1. If this condition
is satisfied, it further checks whether the solution is repeated. If the solution is repeated, the
weighting factors are updated (α1 = 0.5, α2 = 2), and the reward is calculated as 100 ∗ α1.
Otherwise, the reward is calculated as 100 ∗ α1, and the memory pool D is updated. If
the previous condition is not satisfied, the algorithm checks if obj1 is less than x1 or “obj2”
is greater than y2. Again, if the solution is repeated, the weighting factors are updated
(α1 = 2, α2 = 0.5), and the reward is calculated as 100 ∗ α2. Otherwise, the reward is
calculated as 100 ∗ α2, and the memory pool D is updated.

The pseudocode in Algorithm 4 uses the environment Env and the number of episodes
N as input parameters. The algorithm first initializes the policy network π and the value
network V, as well as the optimizers for the policy network and the value network. Then,
for each episode episode, the algorithm resets the environment and initializes the current
state s, clearing the episode buffer. In each episode, the algorithm selects an action a from the
current state s using the policy network π, executes the action a, uses Algorithms 1 and 3 to
calculate reward r, observes the reward r and the next state s′, and stores the state transition
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(s, a, r, s′) in the episode buffer. Then, the state s is updated to s′. When the episode is
finished, the algorithm calculates the discounted rewards Rt for each time step t in the
episode buffer, as well as the advantages At = Rt −V(st) for each time step t. Next, the
algorithm uses gradient ascent to update the parameters θπ of the policy network π based
on the expected cumulative rewards. Then, the algorithm uses the mean squared error
loss function to update the parameters θV of the value network V based on the difference
between the predicted and actual rewards. Finally, the algorithm repeats this process until
all episodes are completed and returns the learned policy network π as output.

Algorithm 4: MO-A2C.
Input: Environment Env, Number of episodes N
Output: Learned policy network π

1 Initialize policy network π and value network V;
2 Initialize optimizer for π and V;
3 for episode← 1 to N do
4 Reset environment Env and initialize state s;
5 Clear episode buffer;
6 while episode is not finished do
7 Choose action a from the current state s using policy network π;
8 Algorithm 1;
9 Take action a and observe reward r and next state s′;

10 Algorithm 3;
11 Store transition (s, a, r, s′) in episode buffer;
12 Update state s to s′;
13 end
14 Calculate discounted rewards Rt for each time step t in the episode buffer;
15 Calculate advantages At = Rt −V(st) for each time step t in the episode

buffer;
16 Update policy network π using gradient ascent on expected cumulative

rewards;
17 θπ ← θπ + απ∇θ J(π);
18 Update value network V using mean squared error loss on predicted vs actual

rewards;
19 θV ← θV + αV∇θV

1
T ∑T

t=1(Rt −V(st))2;
20 end
21 Return learned policy network π;

5. Experiments

In order to verify the superiority of the MO-A2C algorithm, we compare it with the
SAC, DDPG, and NSGAII algorithms. We utilize the stable-baselines3 framework [28] to
implement and train the reinforcement learning algorithm. The experiment employs the
default parameter configurations provided by the framework. The initial population of the
NSGAII algorithm is set to 50, and the number of iterations is 200. Evaluation indicators are
spread [5], epsilon [29], and inverted generational distance plus (IGD+) [30]. The meaning
of each metric is given as follows.

(1) Spread: It is used to measure the distribution range of the Pareto frontier. The
value range of Spread is 0 to 1. When the value of Spread is closer to 1, the diversity and
distribution uniformity of the solution set are better. When the value of Spread is closer to
0, the diversity and distribution uniformity of the solution set are worse.

(2) Epsilon Metric: It is used to measure the distance between the approximate to the
Pareto frontier and the real Pareto frontier. The smaller Epsilon Metric value indicates that
the approximate Pareto front is closer to the real Pareto front, indicating that the algorithm
is better in the coverage of the solution set. When the value of Epsilon Metric is equal to 0,
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it means that the approximate Pareto front is completely coincident with the real Pareto
front wherein the optimal solution is completely found.

(3) IGD+ Metric: It quantifies the dissimilarity between an approximate Pareto front
and the true Pareto front, thereby providing insights into the quality of the obtained solution
set. A smaller IGD+ value denotes a higher quality approximation. In order to mitigate the
possibility of obtaining experimental results by chance, this study employs the t-test [31].

5.1. Disassembly Instances

The products selected for disassembly are televisions, cellphones [32], and Tesla
batteries [33]. Televisions and cellphones are small-scale disassembly items, while Tesla
batteries are large-scale. We assume that the maximum number of skills required to perform
the task of disassembly of a product is 5, as indicated in Table 5. An interval random
distribution is used to develop workers’ disassembly skills and task profit parameters.
Every disassembly instance comprises a heterogeneous assortment of products. The details
of each instance are presented in Table 6.

Table 5. Products for disassembly test.

Product Number of Tasks Number of Required Skills

TV 12 5
Cellphone 12 5

Tesla battery 37 5

Table 6. Test instances.

Instance ID
Number of Products

Number of Tasks
TV Cellphone Tesla Battery

1 1 1 0 24
2 1 2 0 36
3 0 1 1 49
4 1 1 1 61
5 1 2 2 110
6 2 2 3 159

5.2. Analysis of Experimental Results

The model for each case undergoes training for 1000 timesteps. Figure 6 shows the
Pareto front obtained by the algorithms for solving different cases. Table 7 shows the perfor-
mance indicators of different algorithms. The sign ’+’ indicates that the SAC is significantly
superior to the other two algorithms, ’∼ ’ indicates that the SAC is approximately equal
to the other two algorithms, and ’−’ indicates that the SAC is significantly inferior to the
other two algorithms.

In Case 1, the resultant Pareto front comprises solutions generated by four distinct algo-
rithms. Considering the dispersion level among the objectives within the solution space, it
is evident that the NSGAII algorithm possesses certain advantages in this regard. Moreover,
when evaluating the dissimilarity between the approximated Pareto front and the actual
Pareto front, both the A2C and SAC algorithms have exhibited commendable performance
indicators. Based on the analysis of Figure 6a alongside these performance metrics, it can
be concluded that the A2C algorithm outperforms other methods in effectively addressing
Case 1.

In Case 2, it is observed that the DDPG algorithm exhibits a superior degree of dispersion
among the objectives. However, when considering additional performance indicators such
as the Epsilon and IGD+ metrics, the SAC algorithm emerges as the frontrunner among
the various algorithms evaluated. Consequently, in terms of overall performance, the SAC
algorithm proves to be more effective in tackling and resolving Case 2.
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With regards to Case 3 and Case 4, it is evident that both the A2C and NSGAII
algorithms exhibit several advantages vis-à-vis performance indicators. However, when
considering solution quality, the NSGAII algorithm demonstrates comparable performance
levels to that of other evaluated algorithms.

Table 7. Comparison of four algorithms.

Case ID Algorithm
Spread Epsilon IGD+

Mean t-Test Mean t-Test Mean t-Test

1

MO-A2C 0.68326 / 0.16570 / 0.07493 /
SAC 0.52565 + 0.19268 + 0.05041 −

DDPG 0.29654 + 0.59322 + 0.30046 +
NSGAII 0.74923 − 0.46243 + 0.25388 +

2

MO-A2C 0.72013 / 0.88462 / 0.35328 /
SAC 0.60091 + 0.24038 − 0.10058 −

DDPG 0.81330 − 0.83929 − 0.40801 +
NSGAII 0.61292 + 1.00000 + 0.31346 −

3

MO-A2C 0.84774 / 0.72228 / 0.50514 /
SAC 0.43133 + 0.87591 + 0.52413 +

DDPG 0.81568 + 1.03901 + 1.07308 +
NSGAII 0.51018 + 0.17518 − 0.05839 −

4

MO-A2C 0.97417 / 0.72228 / 0.35058 /
SAC 0.88987 + 0.97620 + 0.34989 ∼

DDPG 0.81841 + 0.97268 + 0.35387 ∼
NSGAII 0.94202 + 0.99873 + 0.32324 −

5

MO-A2C 0.48166 / 0.50035 / 0.16293 /
SAC 0.70775 − 1.70000 + 1.42880 +

DDPG 0.96883 − 2.60000 + 2.18753 +
NSGAII 0.29909 + 0.16000 − 0.06285 −

6

MO-A2C 0.69450 / 0.05172 / 0.01034 /
SAC 0.69643 ∼ 1.31071 + 0.86312 +

DDPG 0.93545 − 2.17241 + 2.38087 +
NSGAII 0.82831 − 0.57321 + 0.25021 +

In Case 5, it is observed that the DDPG algorithm exhibits enhanced performance in
terms of dispersion, whereas the NSGAII algorithm demonstrates superior performance
in capturing the dissimilarity between the approximated Pareto frontier and the actual
Pareto frontier. By analyzing Figure 6e, it can be deduced that both the A2C and NSGAII
algorithms yield comparable solution quality.

In Case 6, it is noted that the DDPG algorithm exhibits superior performance in
terms of dispersion. Conversely, the A2C algorithm demonstrates optimal performance
in capturing the dissimilarity between the approximated Pareto frontier and the actual
Pareto frontier. Furthermore, based on the analysis of Figure 6f, it is concluded that the
A2C algorithm surpasses other algorithms in terms of overall performance in Case 6.

In solving the HDLBP, according to the above experimental results, the MO-A2C has
certain advantages in solving this problem. Although the NSGAII algorithm has some
advantages in some cases, it relies more on the crossover operator and mutation operator.
The design of the crossover operator and mutation operator requires much time to try.
With the complexity of the problem scale, the design of the operator is becoming more
and more difficult. Secondly, in the initial population and iteration settings, we set 20,
30, 40 populations to iterate 200 times, respectively, and there is only one final output
solution. When the population size is increased to 50, two solutions are formed after
200 iterations. The running time of the algorithm is also prolonged. On the whole, the
algorithm running time of reinforcement learning in solving HDLBP is better than that of
the NSGAII algorithm, whether in the solution scheme or in the quality of the solution.
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In the previous work, we use RL to solve the single-objective HDLBP, and the experi-
mental results show that the SAC algorithm performs best. For dealing with HDLBP, A2C
performs better than DDPG and SAC, mainly because A2C usually uses deterministic strat-
egy or greedy strategy with noise to sample actions, while SAC uses Gaussian distribution
to add a standard deviation to the mean of actions to sample actions, so as to increase the
exploratory of strategies. DDPG uses a deterministic strategy network to select actions and
output the mean of continuous actions. Since the optimization goal is two goals, the greedy
strategy can often explore more types of solutions in a short period of training. Secondly,
the problem is a discrete problem. Although we have made some improvements to the
SAC and DDPG algorithms in action selection, it may not be perfectly adapted to deal with
discrete multi-objective problems. In particular, the performance of DDPG can be sensitive
to the choice of hyperparameters and the possible noise process used for exploration.

(a) (b) (c)

(d) (e) (f)

Figure 6. Pareto front of the different instances. (a) Test instance 1; (b) Test instance 2; (c) Test
instance 3; (d) Test instance 4; (e) Test instance 5; (f) Test instance 6.

6. Conclusions

In this paper, the multi-objective balancing problem of a hybrid disassembly line with
multi-skilled disassembly workers is studied for the first time. The objective of the HDLBP
is to maximize revenue from disassembly and minimize carbon emissions. To effectively
address this challenge, both discrete and continuous action spaces are formulated, and
an interaction environment is established between RL agent and the hybrid disassembly
line. The reward function is optimized in RL algorithm, and the degree of excellence of the
solution is used as an evaluation index. The reward coefficient is set to change the agent’s
exploration on the Pareto front to obtain better solutions. Simulation experiments are
carried out to verify the correctness of the model and the RL algorithm’s performance. In
some of the experimental cases in this paper, the solutions produced by the multi-objective
Advantage Actor-Critic algorithm show some advantages over other popular algorithms
such as the Deep Deterministic Policy Gradient Algorithm, the Soft Actor-Critic Algorithm,
and the Non-Dominated Sorting Genetic Algorithm II.
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The current limitations of MO-A2C are mainly in the convergence problem and the
high latitude problem. (1) Convergence problem may be faced when searching for Pareto
frontiers, especially when there are conflicts or complex nonlinear relationships between
the objectives. (2) MO-A2C may face exploration and generalization difficulties in high-
dimensional states and action spaces, which leads to the difficulty of generalization of
the learned strategies to complex environments. In future research, we plan to combine
deep reinforcement learning with evolutionary algorithms to better handle multi-objective
optimization problems [34]. Evolutionary algorithms can provide a more global search
strategy and accelerate the convergence of reinforcement learning algorithms. (3) We will
use the improved MO-A2C to explore the performance of solving more multi-objective
problems, such as three objectives, four objectives, or more. There is also the extension of
MO-A2C to multi-intelligent body systems to deal with more complex collaborative and
competitive scenarios and to enhance the exploration capabilities of intelligent bodies.
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Nomenclature

LDL Linear disassembly line
UDL U-shaped disassembly line
D = [dp

jk] describes the relationship between any two tasks
B = [bp

jn] the relationship between tasks and skills
A = [al

wn] describe the relationship between worker and skills
P Set of EOL products, P = {1, 2, . . . , p}
Jp Number of tasks in product p
L Set of all disassembly lines
W1 Set of workstations in the LDL, W1 =

{
1, 2, . . . , W1}

W2 Set of workstations in the UDL, W2 =
{

1, 2, . . . , W2}.
S Set of the two sides of UDL workstation, S = {1, 2}
N Set of all needed skills, N = {1, 2, . . . , N}
vpj The benefit of the j-th disassembly task of the p-th product
tpj The time needed to execute the j-th task of the p-th product
cpj The time unit cost of executing the j-th task of the p-th product
cl The time unit cost of executing the l-th disassembly line
cw The time unit cost of executing the w-th workstation
αlwn The worker on workstation w-th on the l-th disassembly line has the n-th

skill
βpjn The j-th task of the p-th product requires the use of n-th skill
Tl Cycle time of disassembly line l
PW l

i Load power of the i-th workstation on the l-th disassembly line
PDl Transmission power of disassembly line l
zpl Decision variable, 1, product p assigned to disassembly line l, 0, otherwise
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x1
pjw Decision variable, 1, task j of product p is assigned to LDL workstation

w(w ∈W1), 0, otherwise
x2

pjws Decision variable, 1, task j of product p is assigned to the s side of UDL
workstation w(w ∈W2), 0, otherwise

yl Decision variable, 1, disassembly line l is activated, 0, otherwise
ulw Decision variable, 1, workstation w of disassembly line l is activated, 0,

otherwise
xilwn Decision variable, 1, if a worker on workstation w of the disassembly line l

uses skill n(n ∈ N), 0, otherwise
DLBP Disassembly Line Problem
HDLBP Hybrid Disassembly Line Balancing Problem
A2C Advantage Actor-Critic
MO-A2C Multi-Objective Advantage Actor-Critic
DDPG Deep Deterministic Policy Gradient
SAC Soft Actor-Critic
NSGAII Non-Dominated Sorting Genetic Algorithm II
S set of all possible states in the environment
A set of all actions that the agent can take
P the probability of state transition to s′ after taking action a in state s.
R the reward obtained when the state s takes action a and moves to the state s′

γ discount factor
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