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Abstract: With the vast amount of social media posts available online, topic modeling and sentiment
analysis have become central methods to better understand and analyze online behavior and opinion.
However, semantic and sentiment analysis have rarely been combined for joint topic-sentiment
modeling which yields semantic topics associated with sentiments. Recent breakthroughs in natural
language processing have also not been leveraged for joint topic-sentiment modeling so far. Inspired
by these advancements, this paper presents a novel framework for joint topic-sentiment modeling
of short texts based on pre-trained language models and a clustering approach. The method lever-
ages techniques from dimensionality reduction and clustering for which multiple algorithms were
considered. All configurations were experimentally compared against existing joint topic-sentiment
models and an independent sequential baseline. Our framework produced clusters with semantic
topic quality scores of up to 0.23 while the best score among the previous approaches was 0.12. The
sentiment classification accuracy increased from 0.35 to 0.72 and the uniformity of sentiments within
the clusters reached up to 0.9 in contrast to the baseline of 0.56. The presented approach can benefit
various research areas such as disaster management where sentiments associated with topics can
provide practical useful information.

Keywords: topic modeling; topic-sentiment modeling; natural language processing; social media;
semantic analysis; sentiment analysis

1. Introduction

“What people think” has historically been an important piece of information during
many decision-making processes [1]. With the rise of social media platforms, an increasing
amount of information on exactly such thoughts has become available to the public [2].
To extract meaningful information from the myriad of posts at hand, computational meth-
ods such as topic modeling [3,4] and sentiment analysis [1,2,5] have been researched and
adapted specifically for short-form textual social media data. In practice, this allows for the
analysis and monitoring of a variety of real-world phenomena such as earthquakes [6,7],
floodings [8,9], refugee movements [10] or disease outbreaks [11–13] through social me-
dia data.

Traditionally, semantic analysis in the form of topic modeling and sentiment analysis
has mostly been conducted separately, resulting in sequential workflows that use the two
modalities in different ways. Apart from a few joint topic-sentiment models (e.g., [14–16])
based on the classic topic modeling technique Latent Dirichlet Allocation (LDA) [17],
the joint analysis of these two features has previously not received much attention. How-
ever, sentiments can provide additional information about semantic topics that might be
helpful for critical events such as natural disasters [18]. This situation is especially remark-
able as traditional topic modeling has undergone an evolution introducing pre-trained
Large Language Models (LLMs) into their working principles in recent years. Specifically,
research has shown that a technique based on the clustering of embedding vectors can

Information 2024, 15, 200. https://doi.org/10.3390/info15040200 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040200
https://doi.org/10.3390/info15040200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0004-8017-0786
https://orcid.org/0000-0002-2233-6926
https://doi.org/10.3390/info15040200
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040200?type=check_update&version=3


Information 2024, 15, 200 2 of 20

outperform classic topic modeling methods such as LDA [19–21]. Yet, extensions of this
framework, have hardly been considered so far.

Given these developments, this research study introduces a novel approach to joint
topic-sentiment modeling called the Joint Topic-Sentiment (JTS) framework. It is capable of
computing semantic clusters of topics that are associated with a sentiment. The approach
works by clustering joint feature vectors that represent both the semantic meaning and the
sentiment of each input document. As it leverages distinct components for semantic embed-
ding creation, dimensionality reduction, and clustering, the JTS framework itself allows for
a degree of flexibility. Components can be exchanged depending on the needs of the user,
e.g., if the data are multilingual or monolingual or if certain runtime requirements should be
met. We realized the JTS framework using Principal Component Analysis (PCA) and Uni-
form Manifold Approximation and Projection (UMAP) for dimensionality reduction and
k-means, a Growing Self-Organizing Map (GSOM) and Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) for clustering. The respective vari-
ants were compared against each other and previous approaches for joint topic-sentiment
modeling. Additionally, a sequential, independent topic modeling plus sentiment classi-
fication approach using BERTopic (s. Section 3) was considered for comparison. Our JTS
framework achieved a topic coherence score of up to 0.32 and a topic diversity score of up
to 0.73 whereas the highest respective scores among all other approaches were 0.22 and
0.69. Simultaneously, the sentiment classification accuracy improved from 0.35, which was
the best value among the existing joint topic-sentiment models, to 0.72 with our approach.
The uniformity of sentiments within the clusters reached up to 0.9 compared to 0.56 of the
independent BERTopic plus sentiment classification approach. The key contributions of
our research are therefore as follows:

• We introduce the novel JTS framework for joint topic-sentiment modeling which uses
LLMs and a clustering approach.

• Our framework was evaluated using different configurations and compared against
previous approaches as well as an independent, sequential approach.

• The results indicate that the JTS framework is capable of producing more coherent
clusters of social media posts both concerning semantics and sentiments while simul-
taneously providing the highest sentiment classification accuracy.

Going further, our study adheres to the following structure. First, in Section 2, the re-
lated work regarding topic modeling, sentiment classification, and joint-topic-sentiment
modeling is summarized. In Section 3, we present the architecture, working principles,
and implementation of our JTS framework. Moreover, the experimental setup and the
evaluation metrics are explained. We then present our results in Section 4. This is followed
by a discussion of the results and the methodology in Section 5. Finally, the contributions
of our study are summarized in Section 6.

2. Related Work

The paper draws from advancements in sentiment classification and topic modeling
which are reviewed in this section. Additionally, recent works in joint topic-sentiment
modeling are examined.

2.1. Topic Modeling

The presented JTS framework extracts semantic topics associated with sentiments from
large collections of texts. It is, therefore, closely related to classic topic modeling, which
is a technique for topic discovery in collections of documents. Formally, topic modeling
can be viewed as a form of content analysis or an unsupervised categorization task where
one or more topic codes are assigned to each document [22]. Topic modeling has been used
and developed further in many different fields including computer science, computational
linguistics, geographic information science, social sciences, and humanities [7,23–27]. Early
techniques for topic modeling include Latent Semantic Analysis (LSA) [28], Probabilistic
Latent Semantic Analysis (PLSA) [29] and Non-negative Matrix Factorization (NMF) [30]
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which are probabilistic techniques based on word co-occurrences. A major milestone in
the field was the introduction of LDA by [17] which still is one of the most widely used
topic models until today. The model parameters used for topic assignment can be inferred
using variational techniques [17], Gibb’s sampling [31] or using Variational Autoencoders
(VAEs) [32]. Notably, LDA has been widely adapted to include a variety of characteristics
such as time, space, or social media users [33,34].

With the evolution of natural language processing techniques, especially word and
paragraph embeddings [35,36], LDA has been adapted to include semantic embedding
information leading to the Embedded Topic Model (ETM) by Dieng et al. [37]. Simulta-
neously, a novel approach to topic modeling based on the clustering of such embedding
vectors has emerged. The idea was first proposed by Sia et al. [19] who showed that clus-
tering high-dimensional semantic embedding vectors can be a powerful strategy for topic
modeling which performed similarly to LDA. The idea was refined by Angelov [20] who
proposed top2vec as a standalone topic model. Its underlying rationale is the assumption
that the semantic embedding space generated by doc2vec is a continuous representation of
topics. It, therefore, makes sense to cluster document embeddings in this semantic space
to retrieve discrete topics. Grootendorst [21] extended this idea with the introduction of
BERTopic which uses state-of-the-art Sentence-BERT (SBERT) embeddings and a class-
based term frequency and inverse document frequency (tf-idf) procedure for extracting
topic-defining words.

A comprehensive comparison of those previous probabilistic and clustering-based
topic modeling methods was conducted by Grootendorst [21]. The results are summarised
in Table 1 and include three data sets: 20 Newsgroups [38], BBC News [39] and Trump’s
Tweets [21]. top2vec and BERTopic by far outperformed LDA and NMF in terms of topic
coherence measured by the Normalized Pointwise Mutual Information (NPMI) and Topic
Diversity (TD).

Table 1. Quantitative comparison of previous probabilistic and clustering-based topic models. The
highest respective values for each data set and metric are highlighted in bold.

20 Newsgroups BBC News Trump’s Tweets

NPMI TD NPMI TD NPMI TD

LDA 0.058 0.749 0.014 0.577 −0.011 0.502
NMF 0.089 0.663 0.012 0.549 0.009 0.379
top2vec 0.192 0.823 0.171 0.792 −0.169 0.658
BERTopic 0.166 0.851 0.167 0.794 0.066 0.663

2.2. Sentiment Classification

Alongside the increasing presence and availability of opinionated content such as
social media posts and personal blogs, understanding and analyzing people’s opinions
toward a particular topic has become a distinct research area called sentiment analysis [1,5].
Focusing primarily on natural language processing, studies usually classify opinions into
predefined categories such as negative/positive [40] or negative/neutral/positive [41].
Sentiment classification can occur on a document level, sentence level, or concerning
particular aspects of the content. The main approaches for sentiment classification can
generally be divided into three categories: (1) lexicon-based techniques which rely on
pre-defined dictionaries of words or phrases associated with sentiment scores, (2) machine-
learning methods relying on models such Support Vector Machines (SVMs) or random
forests for supervised learning and (3) deep learning methods relying on recurrent, Long
Short-Term Memory (LSTM) or transformer-architecture neural networks [2]. For sentiment
analysis of short-form textual content, models based on pre-trained transformer networks
such as Bidirectional Encoder Representations from Transformer (BERT) outperformed
previous methods, especially when evaluated on tweets [42]. Table 2 depicts the mean
recall of different models for sentiment classification on the English-language TweetEval
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data set [43] based on the study of Loureiro et al. [44]. The base Robustly Optimized BERT
Approach (RoBERTa) model [45] as well as Twitter-RoBERTa pre-trained on a large corpus
of tweets [44] achieved significantly higher values.

Table 2. Mean recall for different classification models on the TweetEval test data set for sentiment analysis.
The best score is highlighted in bold.

SVM FastText BiLSTM RoBERTa-Base Twitter-RoBERTa

62.9 62.9 58.3 72 73.7

BERT-based models can also be pre-trained on multiple languages, allowing for high
performance for multilingual learning tasks including sentiment classification. Table 3
shows the F1 scores for sentiment classification tasks in different languages as in the work
of Barbieri et al. [42]. The multilingual XLM-RoBERTa [46] and Twitter-XLM-RoBERTa
models fine-tuned with monolingual data greatly outperformed FastText [47] in the respec-
tive languages.

Table 3. F1 scores for sentiment classification tasks in different languages based on the work of
Barbieri et al. [42]. The highest value for each language is highlighted in bold.

FastText XLM-RoBERTa Twitter-XLM-RoBERTa

Ar 45.98 63.56 67.67
En 50.85 68.18 66.89
Fr 54.82 71.98 68.19
De 59.56 73.61 76.13
Hi 37.08 36.60 40.29
It 54.65 71.47 70.91
Pt 55.05 67.11 75.98
Sp 50.06 65.87 68.52

Concerning social media analysis, the results of a sentiment classification algorithm
might be input to further processing. To provide some examples, Camacho et al. [48]
combined sentiment analysis with spatial clustering and statistics to examine geocoded
tweets. Paul et al. [49] conducted a spatiotemporal sentiment analysis of tweets concerning
the 2016 US presidential election and Kovacs-Györi et al. [50] leveraged sentiment analysis
and spatiotemporal analysis to extract spatial and temporal patterns of park visits.

2.3. Joint Topic-Sentiment Modeling

While the individual fields of topic modeling and sentiment analysis have undergone
several evolutions in recent years, the underlying techniques primarily focus on analyzing
topics or sentiments separately from each other. Classic topic models do not output
sentiment information which might provide the user with another level of knowledge and
sentiment classification models deliver no context of what the posts are actually about.
For this reason, a small number of joint topic-sentiment models have been developed, most
of which can be considered an extension of LDA. The first major contribution to this research
strand has been made by Lin and He [14] who introduced the Joint Sentiment/Topic (JST)
model which follows an altered LDA architecture that includes an additional sentiment
layer. Consequently, topics are associated with sentiment labels, and words with both
sentiment labels and topics. Lin et al. [51] also presented Reverse-JST which reverses
the sequence of sentiment and topic generation in the modeling process. The inference
mechanism of JST relies on word co-occurrences. To circumvent the shortcomings of
the bag-of-words-based approach (e.g., if the corpus is small) Fu et al. [15] additionally
included word embeddings (e.g., word2vec or FastText) in the model resulting in the
Topic-Sentiment Joint Model with Word Embeddings (TSWE). It extends the conditioned
probability distribution of words given topics and sentiments in the JST model with a word
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embedding component. Dermouche et al. [16] introduced a topic-sentiment model similar
to JST, which, however, can produce different descriptions of topics based on the different
sentiment polarities and computes a topic-specific sentiment distribution. Liang et al. [52]
adapted the JST approach for online reviews and ratings.

The main shortcoming of the above approaches is that the inferred sentiments do not
have a direct meaning such as “negative” “neutral” or “positive”. Although paradigm
words can be injected to provide the model with a sense of orientation [14], the lexicon has to
be curated by hand and the inference mechanism uses a bag-of-words approach. This makes
the above methods not nearly as reliable in comparison to newer neural network-based
sentiment classification methods, e.g., [53,54], and renders the results hard to interpret if
more than two classes are used. Moreover, a systematic comparison of the existing joint
topic-sentiment topic models has not been conducted yet. Throughout previous works,
the data sets and metrics used for the evaluation often differ vastly, as is the case for [14–16].
In the study of Fu et al. [15], TSWE generally outperformed JST in terms of the Normalized
Mutual Information (NMI) of the extracted topics and regarding the sentiment classification
accuracy, though no tabular data are available for the latter. For TSWE, the NMI ranged
from 0.268 to 0.6 for two test data sets and different numbers of topics. JST only reached
values between 0.1 and 0.42.

3. Materials & Methods

The following section explains the main methodology we developed for this study
along with the experimental setup and the evaluation metrics. It starts with a detailed de-
scription of the presented approach and its implementation. Subsequently, the experimental
setup based on the TweetEval test data set [43] is described. Figure 1 shows the overall
design of this study including the evaluation where the proposed method is compared
against similar approaches.

JST TSWE

JTS Framework

Feature Engineering

Clustering

Information Extraction

Independent
Approach

BERTopic
(topic

modeling)

RoBERTa
(sentiment

classification)

TweetEval data set

Topic Quality (NPPMI, diversity) Sentiment Accuracy Sentiment Intensity Cluster Quality (SC, DBI)

Evaluation

Figure 1. Study design considered for the development and evaluation of the proposed topic-
sentiment modeling framework.

3.1. JTS Framework

The presented JTS framework extracts topics associated with sentiments using a
novel approach that clusters joint feature vectors that represent each social media post
both semantically and with respect to the sentiment distribution. Subsequently, semantic
and sentiment information are extracted from each cluster. The methodology therefore
consists of a three-step procedure (excluding pre-processing) that is outlined in detail
below. For clustering, we compared multiple methods in our experiments. The feature
engineering process also entails dimensionality reduction, for which we investigated PCA
and UMAP. Figure 2 depicts a visual overview of the JTS framework. Further along in this
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paper, we assumed that the model input is a collection of short-form textual social media
posts x1, x2, . . . , xn, n ∈ N.

feature vectors

clustering

information extraction
feature engineering

input documents

text

SBERT +
dim. red. +
normalization

semantics

RoBERTa,
weight α

sentiments

e1

...

e5

s1

s2

s3







k-means/
GSOM/

HDBSCAN

ci =
{d1, d6, d50,
d7, d81, d70,

... }

clustered
documents

tf-idf procedure

top k keywords

sentiment mode,
avg. probability

cluster sentiment

Figure 2. Visual overview of the JTS framework.

3.1.1. Pre-Processing

The pre-processing of texts for the JTS model variants involves a two-fold approach.
Only minimal pre-processing is required for the BERT-based language models used for sen-
timent analysis and embedding creation. They can handle language mostly as-is depending
on the vocabulary of the underlying tokenizer, e.g., WordPiece for BERT [55]. For the
keyword extraction process, the texts are pre-processed more extensively to prevent the
occurrence of non-character tokens and redundancies in the output. Each text is therefore
input to two independent pipelines resulting in two variants.

• Variant 1 (s. Section 3.1.2): User references and links are replaced with standard-
ized tokens (“@user” and “http”) as they convey no relevant semantic information.
Pota et al. [56] found that this can also be beneficial for sentiment classification. More-
over, excessive whitespace is stripped as it is not considered during tokenization.
Due to the limited previous research conducted regarding text pre-processing for
BERT-based language models, no additional steps are taken. Ek et al. [57] showed that
BERT is generally quite robust to different punctuation. Furthermore, the inclusion of
emojis can also improve sentiment classification results [58].

• Variant 2: (s. Section 3.1.4): Each text is pre-processed using a pipeline of (1) lowercas-
ing, (2) removing special characters, non-character tokens and links, (3) removing user
references and (4) converting tags to standalone words.

3.1.2. Feature Engineering

To cluster the input documents, a feature vector is obtained for each input text such that
it is represented in a continuous joint topic-sentiment space. It captures both semantics and
sentiments similar to the idea of a semantic space as proposed by Deerwester et al. [28] or
Angelov [20]. Documents that are similar both semantically and concerning the associated
sentiments are close in the joint topic-sentiment space and documents that are different are
further apart. Effectively, each feature vector consists of a semantic part and a sentiment
part which are concatenated to form a joint topic-sentiment representation.

The semantic part of the feature vector is obtained by computing a high-dimensional
vector representation of each input text using SBERT [59]. This is possible due to the short
length of social media posts which are usually within the token limit of BERT models. SBERT
has furthermore been found to perform better on Semantic Textual Similarity (STS) tasks when
compared to other approaches such as the Universal Sentence Encoder (USE) [60] and is also
more computationally efficient [59]. The high-dimensional embedding vector is then reduced
to a lower-dimensional representation with the help of dimensionality reduction. The dimen-
sionality reduction techniques we considered for this study are UMAP and PCA. While PCA
assumes that the data points lie in a linear subspace, UMAP involves manifold learning [61],
making it a technique for non-linear dimensionality reduction. As Angelov [20] and Groo-
tendorst [21] demonstrated, five-dimensional semantic vectors work well for topic modeling
purposes which also turned out to be suitable for JTS framework after experimentation with
different configurations.
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For the sentiment part of the feature vector, the JTS framework follows a multi-class
sentiment classification approach yielding “negative”, “neutral” or “positive” as output
labels. Additionally, the classifier provides softmax probabilities for each of the three
classes. The three sentiment probabilities are taken as a continuous representation of the
sentiment distribution underlying each post. The sentiment classification models consid-
ered for the implementation were Twitter-RoBERTa-base-sentiment by Loureiro et al. [44]
for English-only texts and Twitter-XLM-RoBERTa-base-sentiment by Barbieri et al. [42] for
multilingual texts. Both were chosen due to their high empirical performance.

The entries of the semantic embedding vectors of the input texts, both in high- as
well as low-dimensional form, do not have a fixed range of values. As this can skew the
importance of semantics over sentiments in the final feature vector, the reduced semantic
vector is scaled to unit length by dividing it by its norm [62]. This way, each entry can have
an absolute value of one at maximum.

Finally, the normalized reduced embedding vector [e1, e2, · · · , e5] and the sentiment
probabilities of each post [s1, s2, s3] are concatenated to achieve a continuous representation
in a joint topic-sentiment space. To give the user some control over the importance of
sentiments over semantics or vice versa, the sentiment part of the vector is weighted with a
scalar weight value α ∈ R. A higher sentiment weight α emphasizes sentiment differences
more while a smaller value decreases the importance of sentiments.

3.1.3. Clustering

After generating joint topic-sentiment vectors for all posts to be analyzed, they are
clustered to discover coherent collections of posts that are similar semantically and concern-
ing the sentiment distribution. Since different clustering approaches come with different
trade-offs, we considered three algorithms for the implementation: k-means, a GSOM, and
HDBSCAN.

k-means: The classic k-means algorithm [63,64] is the simplest of all three clustering
approaches. It requires the number of clusters k as a fixed input parameter and works well
if the clusters are spherical. However, it might produce poor results when the clusters are
non-spherical [65]. For our realization of the algorithm, we used a standard implementation
using the k-means++ initialization method [66].

GSOM: Second, the GSOM by Alahakoon et al. [67] was considered as an unsuper-
vised Artificial Neural Network (ANN) for clustering. It can be viewed as a dynamic
version of the classic Self-Organizing Map (SOM) [68] that grows the neuron grid based on
the input data. It is, therefore, not necessary to specify a static grid size, i.e., the number of
clusters. After training the network, data points can be clustered by mapping each to its Best
Matching Unit (BMU). For the implementation, we slightly modified the original GSOM
algorithm to improve its handling of large amounts of input data. Specifically, the calcula-
tion of the growth threshold GT was modified to depend on three parameters: the spread
factor SF, the number of input data points n, and some constant c. It can be written as
GT = −d · ln(SF) · n

c . Furthermore, the weight initialization strategy was implemented as
follows: Given the BMU, the location of the new neuron, and a third neighboring neuron,
two cases are distinguished: (1) If the BMU has another neighboring neuron, the weight
of the grown neuron is computed by evaluating Equation (1). (2) Else, the new neuron
is grown in between the BMU and another neuron and the weight initialization follows
Equation (2).

w⃗new = 2 · w⃗BMU − w⃗other (1)

w⃗new =
w⃗BMU + w⃗other

2
(2)

To prevent obscure initial weights beyond the value range of the training data,
the weight vector of each new node was clipped component-wise if it exceeded a specified
threshold for the minimum and maximum value. By default, the minimum threshold
was set to −1 and the maximum threshold to 1 based on the feature engineering output.
The neighborhood radius and the learning rate were adapted based on the number of
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iterations and the network size to account for both factors. Specifically, the neighborhood
radius was updated using the decaying formula in Equation (3) which incorporates the
initial neighborhood radius r(0), the current training iteration t and the total number of
(training) iterations T. Moreover, the learning rate was adapted based on the number of
nodes in the network using Equation (4) where A, A′ ∈ R are constants.

r(t) = r(0) · e
− t

T·ln(r(0)) (3)

α(t) = A · α(t−1) ·
(

1− A′

#nodes

)
(4)

The respective default parameter values used in the experiments were α(0) = 0.3,
r(0) = 6 A = 0.9, A′ = 3.8.

HDBSCAN: HDBSCAN by [69] has become a popular density-based option for clus-
tering, and has been used extensively in previous topic models such as top2vec and
BERTopic [20,21]. It does not require a pre-determined number of clusters as input but
might consider points as outliers that will not be assigned to a fixed cluster. Due to the
hierarchical nature of the algorithm, it is possible to extract a cluster hierarchy from a run
of HDBSCAN. For the experiments, we therefore extracted flat clustering results from the
hierarchy to make the outputs comparable. The criterion used for obtaining the clusters
was excess of mass which provides a global optimum to the problem of finding clusters
with the highest stability [70].

3.1.4. Information Extraction

After the clustering step, the groups consist of numerical vectors that are associated
with the respective input posts. To extract interpretable information about each cluster’s
semantic topic and sentiment, the JTS framework leverages a slightly modified tf-idf
procedure and cluster statistics.

Topic keywords. The top k keywords of each cluster are extracted based on word
importance encoded in a tf-idf weight vector [71] for each cluster. The weight vector is
computed in a two-step procedure:

1. First, based on all input documents x1, x2, . . . , xn, the vocabulary and the respective
idf values are learned.

2. Subsequently, the documents within each cluster are concatenated to one string,
and the tf-idf value is calculated using the term frequencies of the learned vocabulary
words in the cluster and the previously learned idf values.

Formally, the tf-idf value for some term t in the vocabulary is calculated as in Equation (5)
where c is a cluster of documents, tft,c the term frequency of term t in all documents of cluster
c, n the total number of documents, and df(o)t is the number of original documents containing
t. Additionally, one is added to the inverse document frequency such that terms that occur in
all documents are not completely ignored. It is also added to the numerator and denominator
of the idf equation to prevent divisions by zero.

wt,c = tft,c · log

(
1 + n

1 + df(o)t

)
+ 1 (5)

To reduce the occurrences of uninformative words in the final result, stopwords
in the language(s) of the input documents are ignored when building the vocabulary
for the tf-idf calculation. Very rare words that occur only in very few documents with
document frequency < dfmin and very frequent words with document frequency > dfmax
are ignored as well. The two thresholds and the stopwords are parameters of the keyword
extraction algorithm. Finally, for each cluster c, the top k most important words (keywords)
are extracted by computing its tf-idf vector and taking the k words with the highest
respective values.
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Cluster sentiment. To extract cluster sentiments, simple cluster statistics are used.
The main cluster sentiments consist of the mode of the sentiment predictions within
each cluster. As a supplementary measure of the sentiment intensity, the means of the
corresponding sentiment probabilities are calculated. Analogously, the mean of the scores
of each of the three sentiment classes can be calculated to obtain an average sentiment
distribution for each cluster.

Algorithm 1 provides a more formal description of the entire JTS workflow. The proce-
dures described in the above paragraphs are summarized in short functional descriptions
within the larger algorithm.

Algorithm 1: Pseudocode description of the JTS workflow
Input: Collection of social media posts X = {x1, x2, . . . , xn}, sentiment

classification model S, embedding model E, clustering algorithm A,
number of keywords k

Output: Clusters C = {c1, c2, . . . , ck} with sentiment-associated topics
Initialise lists X(v1) and X(v2) that hold the pre-processed texts
foreach post xi ∈ X do

X(v1)[i]← replace-users-and-links(xi[text])
X(v2)[i]← lowercase-and-clean(xi[text])

end
Let F be an empty list of feature vectors
foreach document d ∈ X(v1) do

e⃗← apply embedding model E on d, reduce dimensionality and normalize
s⃗← compute sentiment probabilities for d using S; multiply with weight α
F[i]← concat(⃗e, s⃗)

end
C ← apply clustering algorithm A to the joint topic-sentiment vectors in F
foreach topic-sentiment cluster c ∈ C do

c[keywords]← top k keywords from c based on the documents in X(v2)

c[sentiment]←mode of the sentiments in c
c[sentiment-intensity]←mean of the cluster sentiment probabilities

end
return topic-sentiment clusters C

3.2. Experiments

Quantitatively, the JTS framework is comparable to existing joint topic-sentiment
models. Therefore, it was benchmarked against the JST model by Lin and He [14] and TSWE
by Fu et al. [15]. To also include a conceptually similar topic model based on a clustering-
of-embedding-vectors approach, BERTopic [21] was combined with a transformer-based
sentiment classification model [72] to compute both topics and sentiments. It can be viewed
as a sequential-only approach that considers topics and sentiments independently.

3.2.1. Data and Setup

Given that joint topic-sentiment modeling fulfills two purposes simultaneously, topic
extraction and sentiment classification, the data set used for quantitative assessment was the
TweetEval test data set [43] for sentiment analysis taken from SemEval-2017, Task 4 [73]. It
consists of 12,282 multi-thematic tweets in English and a true sentiment label corresponding
to one of the three classes “negative“, “neutral”, and “positive”.

Each tweet was pre-processed as explained in Section 3.1. For JST and TSWE, the texts
were additionally lemmatized, i.e., each word was transformed into its base form using
wordnet [74], and English stopwords were removed. This decision was made based on the
fact that both operate under the bag-of-words hypothesis.
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All tested models were tuned to produce 60 topics in total, yielding a fine-grained
overview of topics and their sentiments. As JST and TSWE produce topic-sentiment pairs
where both the number of topics and sentiment components need to be specified, we
parametrized the models with 3 sentiment components and 20 topic components per
sentiment. Moreover, both models were injected with labeled sentiment paradigm words.

For the sequential BERTopic approach as well as the JTS framework, we used the
Twitter-RoBERTa-base-sentiment model to compute sentiment predictions as it has been
shown to outperform other state-of-the-art models for sentiment classification on English-
language tweets [44]. Furthermore, BERTopic was parametrized to produce exactly 60 top-
ics. We evaluated the JTS framework using different techniques for dimensionality reduc-
tion (PCA and UMAP) and clustering (k-means, a GSOM and HDBSCAN). All variants
were adjusted to produce 60 clusters in total. To realize this for the GSOM, we stopped the
network’s growth after 60 neurons had been reached. The sentiment weight during the
generation of the feature vectors was always set to α = 1

3 to emphasize semantics slightly
higher. For the computation of semantic embedding vectors, we used the all-MiniLM-L12-
v2 SBERT model for the English language. Finally, for all models, only words with an
absolute document frequency≥ 10 and relative document frequency≤ 0.7 were considered
in the keyword extraction process and English stopwords were ignored.

3.2.2. Software

All variants of the JTS framework were implemented in Python 3.9 [75] using NumPy
1.24.3 [76], scikit-learn 1.2.2 [77], SBERT as available in sentence-transformers 2.2.2 [59] and
the transformers package version 4.29.2 [78]. We chose these packages due to their extensive
functionality and ease of use. The unified Application Programming Interface (API) of the
transformers package by Wolf et al. [78] also allows for the integration of current and future
language models with even better performance or multilingual capabilities. The code for the
full workflow is available by request. JST and TSWE were realized using the jointtsmodel
package [79] version 1.6 as it provides a uniform, comparable implementation of these
approaches. For BERTopic, we used the original implementation of Grootendorst [21] with
version number 0.15.0.

3.2.3. Evaluation Metrics

The evaluation of the JTS framework mainly focused on semantic topic quality, senti-
ment prediction quality, and the uniformity of sentiments in each cluster.

Topic Quality. A major part of the quantitative evaluation is concerned with semantic
cluster quality assessment which is equivalent to measuring topic quality and coherence in
topic modeling. In the early days of topic modeling, perplexity (e.g., [17]) was often used as
an evaluation metric for topic coherence. However, it has been shown to negatively correlate
with human judgment, making it unsuited for what is supposed to be measured [80]. More
recently, topic models have mostly been evaluated using information theoretic measures of
topic coherence—in particular, the NPMI. It is based on the Positive Mutual Information
(PMI) by Fano [81] and compares the probability of two words occurring together with the
expected probability of them occurring together if independence is assumed. Equation (6)
depicts its formal computation given a target word w and a context word c [82].

PMI(w, c) = log2
P[w, c]

P[w] · P[c] (6)

Bouma [83] normalized the equation with the self-information (− log2 P[w, c]) result-
ing in a value range of [−1, 1] where a value of −1 means that w and c never occur together,
0 that the words occur together as expected by random chance and 1 means that there
is complete co-occurrence. Jurafsky and Martin [84] argued, however, that negative PMI
values tend to be unreliable. If two words occur with individual probability 10−3, one
would need to show that the probability of them occurring together is≪10−6 to state that
they occur together less often than by chance. This assertion is hard to make unless the
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corpus of documents is huge. Moreover, it is unclear whether it is even possible to evaluate
scores of unrelatedness with human judgment [82,84–86]. For this reason, the Positive
Pointwise Mutual Information (PPMI) is often used instead [82,84] which is written as
max{PMI, 0}. It can also be normalized using the self-information yielding the Normalized
Positive Pointwise Mutual Information (NPPMI) which takes on values in the range of [0, 1]
where 1 means complete co-occurrence and 0 no significant co-occurrence. The formula is
depicted in Equation (7).

NPPMI(w, c) =
max

{
log2

P[w,c]
P[w]·P[c] , 0

}

− log2 P[w, c]
(7)

For this paper’s experiments, we computed a topic coherence score for each cluster
by taking the average NPPMI of the top k words of the respective topic-sentiment cluster.
Subsequently, we calculated a model-level Topic Coherence (TC) score as the mean of all
cluster-wise topic coherence scores [87].

As an additional measure for topic quality, we used the TD [37]. It provides a metric
on how different the computed topics are with respect to their vocabulary and is defined as
the fraction of unique words in the top k words of all topics. A topic diversity score close to
0 indicates that topics are likely redundant while a score close to 1 indicates that the topics
are more varied. Moreover, as an overall measure of the Topic Quality (TQ) of a model,
we used the product of the model-level topic coherence and topic diversity which can be
written as TQ = TD · TC as proposed by Dieng et al. [37].

Sentiment Quality. We measured the uniformity of the sentiments within a cluster
using the fraction of sentiment labels that aligned with the global cluster sentiment label. It
is referred to as the Sentiment Uniformity (SU) going further. The model-level sentiment
uniformity was determined by calculating the mean of all cluster-wise values. Since each
topic-sentiment model also computed sentiment labels for each input text, we measured
the overall correctness of the predicted sentiments using the exact match ratio [88] which is
referred to as Sentiment Exact Match Ratio (S-EMR) in the results section. It reflects the
classification accuracy regarding the true sentiment labels and is calculated as the fraction
of samples that were labeled correctly.

Cluster Quality. Since the JTS framework is a clustering-based approach, we also
evaluated the quality of the clusters in the joint feature vector space. To realize this, we
used two common measures for cluster quality: the Silhouette Coefficient (SC) [89] and the
Davies–Bouldin Index (DBI) [90]. The SC is calculated for each sample based on cluster
cohesion (mean intra-cluster distance) and separation (mean distance to all data points
in the nearest neighboring cluster) as the difference of the two values divided by the
maximum. An overall SC is then obtained by calculating the mean of all sample-wise
scores. It has a range of [−1, 1] where a value of 1 indicates that the clusters are internally
cohesive and well-separated. The DBI, on the other hand, is computed as the average
similarity of each cluster with its most similar cluster. Similarity, in this context, is the
ratio between inter-cluster and intra-cluster distances. Lower DBI values indicate better
clustering results, i.e., increased separation in between clusters and decreased variation
within clusters. In our experiments, we calculated the average SC and DBI for all JTS
variants. The output values cannot be compared to the adversarial approaches, however.
JST and TSWE do not directly yield clusters of vectors due to their working principles.
They are rather based on a generative process where words in documents are drawn from
a distribution based on topics and sentiments. BERTopic furthermore operates on a purely
semantic vector space that is different to the joint topic-sentiment space used by our JTS
framework. A comparison of SC and DBI values would therefore be misleading.

4. Results

To maintain structure, the experimental results are divided into two parts: First,
JST, TSWE, and BERTopic are compared against the JTS framework when PCA was used
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for dimensionality reduction. Second, the same comparison is made when UMAP was
used instead.

4.1. JTS with PCA

The results of the quantitative evaluation when PCA was used for reducing the
semantic embedding vectors to five dimensions are depicted in Table 4. The JTS approach
consistently yielded better topic coherence than JST, TSWE and BERTopic for all three
tested clustering algorithms. However, k-means and the GSOM performed poorly with
respect to topic diversity and yielded overall topic quality scores similar to the other
methods. An exception in this regard was the JTS approach using HDBSCAN which
delivered the highest topic diversity. In terms of sentiment classification accuracy, JST
and TSWE achieved a S-EMR of merely 0.35, making the classifications not particularly
meaningful. The RoBERTa-based sentiment classification model used in the BERTopic and
JTS approaches, in contrast, delivered a S-EMR of 0.72. While the sentiment uniformity was
1.00 for JST and TSWE by definition of their working principles, the clusters produced by
BERTopic and JTS with k-means and the GSOM were not as uniform. The interpretability
of the respective cluster sentiments was therefore strongly limited. The value was better
when HDBSCAN was used for clustering, delivering a sentiment uniformity of 0.88.

Cluster quality based on the SC was better for the JTS variants that used k-means and
the GSOM for clustering. The SC score of 0.15 still indicates that the clusters overlapped,
though. HDBSCAN yielded a significantly worse SC of −0.53. The cause of this might be
the “cluster” of outliers HDBSCAN produces. The DBI provides a slightly different picture
with HDBSCAN achieving the lowest (best) score of 1.33. k-means and the GSOM were not
far off, achieving marginally higher values of 1.45 and 1.47.

Table 4. Performance metrics for 60 clusters computed on the TweetEval data set averaged over a
total of 10 runs when PCA was used for dimensionality reduction for the JTS variants. The sentiment
statistics marked with * were computed independently from the topic model and k denotes the
number of keywords used for the computation of TC and TD. The best scores for each metric are
highlighted in bold.

k = 10 k = 25
S-EMR SU SC DBI

TC TD TQ TC TD TQ

JST 0.22 0.58 0.12 0.15 0.48 0.07 0.35 1.00 - -
TSWE 0.22 0.50 0.11 0.16 0.40 0.07 0.35 1.00 - -
BERTopic 0.18 0.69 0.12 0.12 0.46 0.05 0.72 * 0.56 * - -
JTS(k-means) 0.25 0.44 0.11 0.20 0.35 0.07 0.72 0.58 0.15 1.45
JTS(GSOM) 0.24 0.43 0.11 0.20 0.34 0.07 0.72 0.57 0.15 1.47
JTS(HDBSCAN) 0.22 0.76 0.17 0.16 0.65 0.10 0.72 0.88 −0.53 1.33

Overall, the JTS framework using k-means and a GSOM performed similarly to the
other approaches in combination with PCA for dimensionality reduction. It provided better
sentiment classification accuracy and topic coherence for the cost of sentiment uniformity
and topic diversity. When HDBSCAN was used for clustering, an improvement could also
be achieved for topic diversity and the sentiment uniformity was high as well. However,
the SC was significantly lower than for the variants based on k-means and the GSOM.

4.2. JTS with UMAP

The results were consistently better when UMAP was used for dimensionality reduc-
tion of the semantic embedding vectors. The output metrics are depicted in Table 5. All JTS
variants vastly outperformed the other approaches in almost all aspects. Topic coherence
was significantly higher across the board. Topic diversity was once again higher when
HDBSCAN was used for clustering, although, k-means and the GSOM now yielded similar
scores to JST, TSWE and BERTopic. Consequently, the overall topic quality scores were
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also higher for all JTS variants. In addition, the sentiment classification accuracy was again
significantly better for all models that used the RoBERTa-based sentiment classification
model. In contrast to the previous PCA-based variants, the JTS variants that used UMAP
for dimensionality reduction also achieved high sentiment uniformity scores.

The SC scores for all UMAP-based variants were noticeably higher compared to the
JTS variants using PCA. k-means performed best, achieving a SC of 0.33, and the GSOM
yielded a similar value of 0.31. HDBSCAN yielded a very low SC score of−0.09 similarly to
the previous section. Regarding the DBI, k-means and the GSOM both delivered a value of
1.02 when combined with UMAP and HDBSCAN produced a slightly higher score of 1.32.

Table 5. Performance metrics for 60 clusters computed on the TweetEval data set averaged over a total
of 10 runs when UMAP was used for dimensionality reduction for the JTS variants. The sentiment
statistics marked with * were computed independently from the topic model and k denotes the
number of keywords used for the computation of TC and TD. The best scores for each metric are
highlighted in bold.

k = 10 k = 25
S-EMR SU SC DBI

TC TD TQ TC TD TQ

JST 0.22 0.58 0.12 0.15 0.48 0.07 0.35 1.00 - -
TSWE 0.22 0.50 0.11 0.16 0.40 0.07 0.35 1.00 - -
BERTopic 0.18 0.69 0.12 0.12 0.46 0.05 0.72 * 0.56 * - -
JTS(k-means) 0.31 0.58 0.18 0.22 0.48 0.11 0.72 0.89 0.33 1.02
JTS(GSOM) 0.31 0.56 0.17 0.21 0.48 0.10 0.72 0.90 0.31 1.02
JTS(HDBSCAN) 0.32 0.73 0.23 0.19 0.60 0.11 0.72 0.77 −0.09 1.32

The results support the use of UMAP for a real-world JTS model. The clustering
algorithms performed quite similarly overall, with the only exception being that HDBSCAN
delivered better topic diversity but lower sentiment uniformity and worse SC and DBI
scores. Compared to the other approaches, the JTS framework produced clusters of higher
semantic quality and with better sentiment classification accuracy.

5. Discussion

The discussion is divided into a discussion of the experimental results and a discussion
of the methodology.

5.1. Discussion of Results

The experiments show that the JTS framework can be a powerful tool for joint topic-
sentiment modeling. It produced clusters that were of higher quality semantically when
compared to previous approaches and yielded more accurate sentiments. The outputs
were significantly better when UMAP was used for dimensionality reduction instead of
PCA which supports its use in other topic modeling approaches such as [20,21]. However,
UMAP does not scale nearly as well as PCA in terms of runtime and memory requirements
for large data sets [91] which is why both techniques were considered for the experiments.
Therefore, if very large data sets are to be analyzed, the JTS framework using PCA and
HDBSCAN might be suited best. For all other scenarios, one of the variants using UMAP
is recommended given the significantly improved results. The evaluation metrics are
not as clear regarding the choice of the clustering algorithm. HDBSCAN was slightly
advantageous for the PCA-based configuration in terms of semantic topic quality, sentiment
uniformity and the average DBI. For the UMAP-based configuration, no consistently best
clustering approach could be identified.

5.2. Discussion of the Methodology

As the experimental results indicate, the choice of the individual components of the
JTS framework is not trivial. The results of previous studies [44,59] clearly favor the use of
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BERT for semantic embedding computation and sentiment classification and UMAP had an
advantage over PCA in the experiments. However, the choice of the clustering algorithm
largely depends on the needs of the user. k-means allows for a hard clustering where
each data point is assigned to exactly one cluster but requires previous knowledge in the
form of the number of assumed clusters as input. HDBSCAN was slightly superior in the
experiments but often produced a large cluster of outliers when applied to data sets beyond
the evaluation data. Such a collection of outliers is not coherent and does not provide any
usable information. Moreover, a presumed number of clusters is once again required as
input to extract flat clusters from the cluster hierarchy. The GSOM clustering approach
does not require such input and computes the number of clusters naturally based on the
accumulated error of the SOM nodes. It also assigns each data point to exactly one cluster
like k-means. However, the topic-sentiment clusters computed with the GSOM algorithm
had a slightly worse topic quality when compared to HDBSCAN. Simultaneously, however,
the sentiment uniformity was higher with the GSOM algorithm in combination with UMAP.
The GSOM algorithm additionally allows for the visualization of the learned neuron grid
using a U-matrix-style visualization [92].

Despite their empirical performance, the BERT-based models used for the JTS variants
present a significant bottleneck in terms of runtime and memory requirements. More-
over, many aspects of BERT-based transformer models are still not fully understood [93].
During semantic embedding generation for this study, for instance, it could be observed
that the introduction of emojis tends to move the sentence embedding vectors of SBERT
further apart in semantic space. Due to the scope of this paper, this effect was not examined
further. However, it highlights the need for additional endeavors focusing on explainability.
In many contexts, language models are used as black boxes with little transparency on how
individual decisions are made and what the hidden representations mean [93]. This is also
the case for the JTS framework as implemented for this study.

Concerning future research, the incorporation of additional dimensions in the feature
vectors such as geographic space, time or image data should be explored. Additionally,
the JTS framework might benefit from the integration of generative LLMs such as the Gen-
erative Pre-trained Transformer (GPT) or Llama-2 [94–97] in several ways. The GPT family
of models specifically has been shown to be a powerful tool for sentiment analysis [98,99],
even outperforming BERT-based models in some parts. GPT and Llama-2 have also
successfully been utilized for topic modeling in approaches such as TopicGPT [100] and
PromptTopic [101] which achieved similar performance to BERTopic or even improved
upon it. However, such LLM-based techniques usually do not provide numeric embedding
vectors or sentiment probabilities which are required by the JTS framework. They can
therefore not be integrated into our method without major adjustments. Moreover, genera-
tive language models can be used to generate meaningful topic labels based on the cluster
keywords and the associated tweets. In experimental test runs, the topic labels produced
by GPT3.5 and Llama-2 were semantically correct, short, and understandable. Stammbach
et al. [102] also showed that LLMs can be a powerful tool for the automatic evaluation of
topic models.

Yet, there are several risks associated with the use of such LLMs. As the underlying
training data sets are often not public (e.g., [94,97]), there is an even higher risk for unknown
biases [103] compared to more transparent models such as BERT. As Pham et al. [100]
also pointed out, some of the test data sets used for evaluating zero-shot classification
performance might even be included in the unknown training data, thus skewing the results.
Compared to variants of SBERT and RoBERTa—which already require a fair amount of
computational resources—GPT and Llama-2 are even more resource-hungry and need a
Graphics Processing Unit (GPU) with significant memory to run efficiently [101]. However,
smaller models such as Mistral-7B [104] are becoming increasingly competitive, paving
the way for the efficient use of LLMs in the future. Consequently, the development of
a prompt-based framework for joint topic-sentiment modeling and a comparison to our
current method presents a promising opportunity for a follow-up study.
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6. Conclusions

This study introduced a novel framework for joint topic-sentiment modeling called
the JTS framework. It works by merging semantic embedding vectors and sentiment
probabilities into joint feature vectors which are then clustered. For semantic embedding
generation and sentiment classification, pre-trained BERT-based transformer models are
leveraged. From each respective cluster, the top k keywords and sentiment information are
subsequently extracted using a tf-idf procedure and simple statistics. The JTS framework
was experimentally compared against JST, TSWE, and an independent BERTopic plus
sentiment classification approach. For the implementation of the experiments, several
configurations of the JTS framework were considered. PCA and UMAP were compared
for dimensionality reduction during the feature vector generation and k-means, a GSOM
and HDBSCAN were considered for clustering. Overall, the JTS variants produced clusters
with higher semantic topic quality and more accurate sentiment predictions compared to
previous approaches.

In combination with PCA, HDBSCAN was most promising for clustering. It yielded
an overall TQ score of 0.17 based on the top 10 cluster keywords while the best score
among all other approaches was 0.12. The clusters were uniform concerning the sentiment
with a SU value of 0.88 when compared to the independent BERTopic-based approach
which only achieved a score of 0.56. For the UMAP-based variants of the JTS framework,
the results were noticeably better and all clustering algorithms outperformed the adver-
sarial approaches. Combined with HDBSCAN, our framework achieved an overall TQ of
0.23 based on the top 10 keywords while the best value among the adversarial approaches
was 0.12. The sentiment uniformity was also high for all clustering techniques in combina-
tion with UMAP ranging from 0.77 to 0.90. The S-EMR was 0.72 for all JTS variants while
JST and TSWE only reached a respective value of 0.35.

Within a larger research context, the presented JTS framework allows for simultaneous
semantic and sentiment analysis of short-form documents. Latent semantic topics are
discovered in the form of clusters of texts, and each cluster is associated with a sentiment.
The cluster sentiment contextualizes the semantic topic which might be useful in various
contexts. One such example would be disaster management [105] where Neppalli et al. [18]
showed that the sentiments of social media posts were linked to the distance to natural
disasters. Sentiment-associated semantic clusters could, therefore, be leveraged for more
efficient filtering of disaster-related social media posts. It also eases the interpretation of
the clusters due to the additional layer of information.
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