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Abstract: As the Internet of Things (IoT) continues to revolutionize value-added services, its con-
ventional architecture exhibits persistent scalability and security vulnerabilities, jeopardizing the
trustworthiness of IoT-based services. These architectural limitations hinder the IoT’s Sensor-as-a-
Service (SEaaS) model, which enables the commercial transmission of sensed data through cloud
platforms. This study proposes an innovative computational framework that integrates decentralized
blockchain technology into the IoT architectural design, specifically enhancing SEaaS efficiency. This
research contributes to an optimized IoT architecture with decentralized blockchain operations and
simplified public key encryption. Furthermore, this study introduces an advanced SEaaS model
featuring innovative trading operations for sensed data among diverse stakeholders. At its core,
this model presents a unique blockchain-based data-sharing mechanism that manages multiple
aspects, from enrollment to validation. Evaluations conducted in a standard Python environment
indicate that the proposed SEaaS model outperforms existing blockchain-based data-sharing models,
demonstrating approximately 40% less energy consumption, 18% increased throughput, 16% reduced
latency, and a 25% reduction in algorithm processing time. Ultimately, integrating a lightweight au-
thentication mechanism using simplified public key cryptography within the blockchain establishes
the model’s potential for efficient and secure data-sharing in IoT.

Keywords: Internet of Things (IoT); Sensor-as-a-Service (SEaaS); lightweight cryptography; decentralized
data-sharing; secure data transactions; blockchain-enhanced IoT

1. Introduction

The continuous evolution and integration of the Internet of Things (IoT) into various
sectors has brought about an era of unprecedented connectivity and data exchange, repre-
senting a transformative shift in networks, analytics, and automation [1]. IoT efficiently
connects physical devices, software, and technologies, facilitating ubiquitous applications
in smart homes, healthcare, industrial IoT, logistics, energy management, and more [2–5].
Essentially driven by its ability to link physical and digital components, the IoT stands
out as a fully connected digital ecosystem that enhances efficiency through high-level data
collection and analytical methodologies. This paradigm allows for the real-time monitoring
and management of devices and fosters the development of informed, decision-centric
services, leading to enhanced process optimization and customer experiences [6,7].

Despite its significant impacts and increased adoption, the core architectural frame-
work of IoT still faces significant challenges, especially in terms of the scalability, security,

Information 2024, 15, 212. https://doi.org/10.3390/info15040212 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040212
https://doi.org/10.3390/info15040212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-1539-0104
https://orcid.org/0000-0001-6686-7019
https://orcid.org/0009-0008-3212-5111
https://orcid.org/0000-0003-0289-0337
https://doi.org/10.3390/info15040212
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040212?type=check_update&version=1


Information 2024, 15, 212 2 of 21

and diversity of data. Despite the architectural variances in IoT systems, the conventional
models generally consist of layers such as perception, network, middleware, application,
business, and user layers, with the occasional addition of cloud and edge computing
layers [8]. These layers, though customizable, are consistently influenced by factors like
scalability, latency, security, connectivity, and regulatory compliance, amongst others [9,10].

The Sensor-as-a-Service (SEaaS) model is central to IoT’s operational efficiency, a
paradigm that has increased as a vital business instrument in the IoT landscape [11]. SEaaS
facilitates the acquisition of essential data through IoT sensors, thereby facilitating data
exchange on a commercial level. This model relies significantly on utilizing cloud systems,
serving as the foundation for critical operations, such as data collection, transmission, and
accessibility, without relying on extensive hardware or infrastructural frameworks [12].

Despite its immense potential, the SEaaS model faces fundamental and inherent
challenges, predominantly reflecting the fundamental issues affecting the broader IoT
architecture, such as data heterogeneity, decentralized environment complexity, security
vulnerabilities, and traffic management difficulties [13–15]. Such challenges amplify in
scenarios involving extensive buyer–seller interactions necessitating synchronized, secure
data transactions. The conventional architecture of an IoT cannot provide an effective
platform for supporting the practical agenda of SEaaS owing to the heterogeneity of data
issues, complexity in maintaining a decentralized environment, security threats, traffic
management, etc. [16,17]. Such a problem becomes more challenging when many buyers
must be synchronized with the seller’s data and comply with security standards. Hence,
the proposed study seeks to address the following research questions:

• How can effective data-sharing methods be developed to enhance SEaaS within a
large and decentralized network?

• What procedures can be implemented to enhance accountability among all stakehold-
ers involved in SEaaS, while maintaining cost-effectiveness?

• How can a system model of SEaaS be developed to facilitate practical deployment
within an IoT environment?

In exploring fair solutions to the above-mentioned research questions, this study pro-
poses an innovative technique to improve the SEaaS model within the IoT domain. The
originality of the contributory research objectives linked to the proposed model, distin-
guishing it from the existing literature, is outlined as follows:

• Designing a simplified and lightweight IoT architecture that integrates the decentral-
ized operation of blockchain technology with simplified public key encryption;

• Developing a novel SEaaS model featuring exclusive trading operations for sensed
data conducted by sellers, buyers, service providers, and blockchain entities;

• Introducing a pioneering blockchain-based data-sharing process encompassing enroll-
ment, sale, request, feedback management, and validation procedures;

• Benchmarking the proposed SEaaS model against recent standard blockchain-based
data-sharing methodologies to demonstrate its effectiveness across multiple perfor-
mance parameters.

The manuscript is organized as follows: Section 2 explores the related works; Section 3
identifies the research problems; Section 4 discusses the research methodology and the
development of the SEaaS algorithm; a comparative analysis of our results with other
data-sharing models is performed in Section 5; and Section 6 concludes the discussion.

2. Related Work

This section discusses various existing research methodologies undertaken to improve
the data-sharing process in the IoT environment. All the prominent recent research publi-
cations associated with data-sharing mechanisms in IoT have been studied. Further, they
were filtered to narrow down the manuscript samples based on the inclusion and exclusion
criteria. The inclusion criteria for choosing the manuscript were the research papers with a
vivid discussion of blockchain implementation and its associated methods for investigating
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the data-sharing process. The exclusion criteria for filtering the manuscripts were research
papers without illustrative algorithms and result discussion. Conventionally, there are
various data-sharing methods, viz., the publish/subscribe model, request/response model,
edge computing model, data marketplaces, blockchain for data integrity, and consent
management. To simplify the understanding of existing approaches, the discussion of
numerous research methods in this section is carried out with respect to several methods.
e.g., architecture, encryption, distributed operation, data-driven, and miscellaneous.

• Architecture-focused methods: These methods aim to develop IoT architectures for
managing large volumes of sensing data in real time [18]. Chiti and Gandini [19]
focused on enhancing interoperability in IoT architecture through distributed ledger
services, which may need further attention to the complexities in maintaining a decen-
tralized environment. Jin and Kim [20] developed a rule-based scheme to integrate
devices, IoT services, rule services, and clients within a heterogeneous IoT archi-
tecture, addressing complex control issues but lacking comprehensive solutions for
security challenges.

• Encryption-focused methods: Secure data-sharing methods in blockchain or non-
blockchain environments often rely on encryption-based operations. He et al. [21]
introduced a data-sharing mechanism integrating attribute-based encryption with
smart contracts, offering nuanced control over data access, but may require enhance-
ments for computational efficiency and scalability due to attribute-based encryption’s
complexity. Sun et al. [22] proposed a methodology aiming to enhance user expe-
rience in data access but raised concerns about the practicality of homomorphic
encryption due to its computational intensity. Researchers like Razzaq et al. [23]
and Albualyhi and Alsukayti [24] utilized the Ethereum blockchain to facilitate
open frameworks in IoT architectures, facing challenges such as network conges-
tion and scalability. Fukuda et al. [25] presented a modular design for distributed
data-sharing using streaming services to enable distributed processing tasks. Various
encryption-based and blockchain-based data-sharing models have been proposed,
including chaotic RSA encryption (Priyadharshini et al. [26]), attribute-based encryp-
tion (Zhang et al. [27]), public key encryption with a ring signature (Wu et al. [28]),
software-defined blockchain with a Byzantine algorithm (Shi et al. [29]), and homomor-
phic encryption with hashing (Zhang et al. [30]). However, this approach’s primary
limitation lies in its focus on a centralized operational approach, which may only par-
tially meet the needs of large-scale applications requiring decentralized management.

• Distributed-operation-focused methods: These methods primarily support large-
scale data-sharing services in IoT and often incorporate machine-learning, artificial
intelligence, and blockchain technologies. Debauche et al. [31] introduced an inte-
grated machine-learning scheme to process blockchain data at the cloud level for
improved data streams, while Olaniyi et al. [32] emphasized the need for enhanc-
ing blockchain security for real-time applications. However, these models need to
comprehensively address the practical implications and computational demands of
integrating these complex technologies. Zichichi et al. [33] proposed another decen-
tralized data-sharing mechanism using smart contracts and a distributed hash table
for smart query management on a ledger in the blockchain. Despite advancements,
this approach’s implementation using a hypercube-distributed hash tree increases the
routing complexity with a tree dimension expansion, suggesting the need for more
scalable systems. Fallatah et al. [34] discussed personalized data stores for service
relaying, highlighting challenges in managing large-scale informatics linked with per-
sonal data. Palaiokrassas et al. [35] developed a platform for managing sensory data
in smart cities, while Almstedt et al. [36] explored the use of small-scale blockchains.
However, these blockchain models operate with latency due to consensus mechanisms,
limiting real-time data-sharing applications.

• Data-driven methods: These methods model adversaries to address threats in specific
data-processing scenarios. Bentahar et al. [37] and AI Ma-hamid et al. [38] introduced
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key agreement and middleware schemes for authentication and data management
in IoT environments. Despite their contributions, a comprehensive approach to ad-
dress the security, scalability, and real-time processing challenges in IoT transactions
remains necessary. The integration of fog with cloud and IoT offers a wider range of
applications, improving service relaying [39]. Various techniques for disseminating in-
formation using sensing technologies, such as in public transportation scenarios, have
been discussed [40]. Othman et al. [41] proposed a unique sensing-as-a-service model
using a search optimization algorithm for a virtual sensing environment. However,
the lack of flexible interaction among entities may increase overhead during real-time
data-sharing, particularly in virtualized cloud environments.

• Miscellaneous methods: Mathew et al. [42] and Hoque et al. [43] explored novel areas
in IoT, including crowdsensing and airborne-based data services. Mathew et al. de-
veloped a crowdsourcing model integrated with smart city services to bridge the gap
between consumers and data collectors, while Hoque et al. [43] proposed IoT service
relaying using drones, particularly in smart agriculture. Woodward [44] proposed a
blockchain-based big data transmission model, and Grupac and Negoianu [45] dis-
cussed augmented reality applications. Both studies investigated the relationship
between multi-sensor fusion, dynamic routing technologies, and blockchain-enhanced
Sensor-as-a-Service (SEaaS) in IoT. While these explorations are valuable, further re-
search is needed to ensure the reliable, quality, and secure transmission of diverse
data forms. Additionally, these models should provide supportive evidence for man-
aging spatial and temporal data dynamics, which present significant challenges in
dynamic environments.

In synthesis, while each referenced work contributes uniquely to advancing IoT archi-
tectures and data-sharing methodologies, a common shortcoming pervades—a tendency
toward specialization, often neglecting a comprehensive evaluation concerning scalability,
security, and practical applicability in dynamic, real-world IoT ecosystems. Thus, this
literature review highlights the need for a holistic and integrative research approach. The
agenda is to move beyond the current limitations of specialized focus areas to unfold a
more universally applicable, resilient, and efficient SEaaS model in IoT.

Before addressing the identified research problem, it is crucial to acknowledge the
importance of offering sensing data as an IoT service. From the existing studies discussed in
this section, it was observed that cloud environments require a comprehensive examination
of various aspects, particularly those related to blockchain technology and the inherent
challenges in the IoT environment. Numerous prevalent research issues and challenges
are yet to be resolved, such as routing problems, traffic management, security concerns,
and resource allocation. These interconnected challenges are vital for achieving effective
sensing as a service in IoT systems. Hence, this section narrows down all the challenges
and highlights only those challenges that are addressed in the proposed scheme, as follows:

• Lack of accountability: Existing research studies have implemented blockchain (both
centralized and distributed, e.g., Ethereum) [24], which offers better fairness while
performing data-sharing with high-quality information. However, there must be a
dedicated model which supports accountability. Consequently, these models often
compromise with privacy and accountability, especially when handling simultaneous
transactions between buyers and sellers.

• Less study towards sensing as a service: It should be noted that approaches towards
data-sharing can be used for systems towards sensing as a service; however, they are
not explicitly meant to carry out this specific task. There are a significantly smaller
number of standard research models in which data-sharing methods are integrated
with sensing as a service over an IoT environment [26–30].

• Stale IoT architecture: While designing a decentralized blockchain operation [33], it
is essential to modify the architecture of the IoT without changing the core layer-based
operation. This demands more extensibility and flexibility in authentication, data
access, and updating tasks. The currently deployed mechanism in the IoT architecture
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needs to explore its holistic architectural potential. Our prior work has addressed
these issues [46]; however, more extensive modeling is required.

• Complex data/block management: A practical modeling of sensing as a service re-
quires consideration of the buyer and seller with a lightweight, flexible sales man-
agement scheme. Only some studies have addressed this issue. Existing problem
solutions are witnessed to use a complex key management approach that offers bet-
ter security but at the cost of the computational burden [21,22]. Hence, lightweight
data/block management must be carried out so that data sharing can be performed
without degrading computational efficiency.

With the growing trend of IoT applications, the challenges associated with security
concerns have also increased manifold. Recent state-of-the-art methods towards a secure
data-sharing operation have made some progressive contributions; however, the effec-
tiveness of the solutions presented in existing studies needs to be improved to mitigate
the increasing number of threats in IoT. The more significant problems associated with
data-sharing and management in IoT still include device vulnerabilities, the inappropriate
selection of data encryption, and weaker authentication policies. All the unattended secu-
rity loopholes in IoT also lead to a higher degree of vulnerability in accessing sensor data.
As the SEaaS model involves more about the facilitation of accessing the sensor data on
subscription, the identified research gap impedes the accomplishment of optimal security.

The endeavor to implement SEaaS in IoT and cloud environments unveils a labyrinth
of challenges primarily rooted in blockchain technology and the intrinsic issues of the IoT
framework. Despite the myriad ongoing research initiatives to navigate these complexities,
substantial impediments, such as routing problems, traffic management, security concerns,
and resource allocations, persistently obfuscate the seamless realization of SEaaS in IoT.
Central to the research problem is the glaring deficit in accountability within existing
blockchain implementations [24]. Although infused with a semblance of fairness in data-
sharing, current models require more dedicated mechanisms to bolster accountability. As a
result, the environment becomes vulnerable to privacy breaches and reliability compromises
during concurrent buyer–seller transactions [23,28].

Adding to this complexity is the need for more scholarly attention toward SEaaS.
There is a clear need for dedicated research models that seamlessly integrate data-sharing
methods with SEaaS in an IoT environment [37,38].

Additionally, the prevalent IoT architectures require a degree of obsolescence and
rigidity, necessitating urgent revitalization to accommodate the innovative decentralization
introduced by blockchain technologies [18–45]. The urgent need for architectures that
exhibit extensibility and flexibility, especially in pivotal domains such as authentication,
data access, and updating, emerges as a pressing research priority.

Further complicating the research terrain is the prevailing complexity of data/block
management strategies. Current models, albeit security-robust, are characterized by un-
wieldy computational burdens attributed to intricate key management protocols [22,26,29].
This highlights a critical research imperative: developing lightweight, efficient frameworks
that foster effortless data-sharing without compromising computational agility or security
integrity. Our research aims to navigate these multifaceted challenges to unveil ground-
breaking solutions that rejuvenate the SEaaS landscape in IoT through the innovative
integration of blockchain technology. This approach is pertinent for addressing the current
limitations and paving the way for future advancements in IoT systems. By converging
the gaps explored in the existing methodologies, research problems were identified and
discussed in the next section.

3. Problem Description

To enable secure and reliable data-sharing in IoT, conventional methodologies (de-
scribed in the previous section) use access control, which is mainly centralized. Such forms
of access controls are not feasible for data owners to gain complete control using their
deployed IoT devices/appliances in the context of SEaaS. Therefore, the primary problem
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in designing the SEaaS framework is overcoming the dependencies of the centrality control
system. From the context of blockchain deployment incorporated within data-sharing in
an IoT environment, it is a sub-optimal idea to refer to existing methods for evolving as a
candidate solution. This is because the existing blockchain [18–45] and encryption-focused
methods [21–30] do not balance data-sharing with transparency, especially with respect to
the sales management system. Therefore, the secondary problem relates to developing a so-
lution for data-sharing with regard to large-scale distributed and decentralized blockchain
architectures. One fair possibility for solving this will be redesigning the smart contract
system to support secure sale management in a complex IoT architecture.

Hence, a closer look into the above-mentioned problems will foretell the prominent
issues regarding decentralized blockchain operation and the demand for effective data-
sharing to incorporate more responsible attributes and design structures to facilitate better
system accountability. Therefore, the prime problem statement of the proposed study can be
summarized as follows—including a higher degree of accountability of reliable data transmission
in IoT using conventional blockchain.

4. Materials and Methods

This section explains the research methodology and innovative design approach
leveraging the blockchain technology in the proposed SEaaS scheme. Four pivotal ac-
tors comprise the operational dynamics of this model: seller, service provider, buyer,
and blockchain.

Seller: Sensing devices play a crucial role as sellers, capturing diverse environmental
data in the IoT context. Governed by unique encryption mechanisms and key management
techniques, these devices prioritize security, enabling authorized access. Owners possess
the authority to modify device configurations and customize them for commercial gains or
enhanced service experiences.

Service Provider: This intermediary strengthens the framework by managing the
interactions between owners (sellers) and clients (buyers). The service provider administers
enrollment, aligning buyers and sellers based on data requirements and meticulously
tracking transactional records to mitigate potential disputes. This actor operates on the
foundations of blockchain’s smart contracts or ledgers, upholding the integrity and fluidity
of operational transactions despite the inherent risks of privileged content disclosures.

Buyer: Representing the client, the buyer, be it a person or an entity, has eyes on the
services offered within the IoT spectrum. With a level of adaptability similar to cloud-
based services, the SEaaS model makes it easy for buyers to access services from the
owners. Structured on a comprehensive payment mechanism including pre-paid and post-
paid paradigms, the model ensures a streamlined financial transaction flow. Prioritizing
simplicity, it adopts a conventional payment methodology calibrated against the delivery
of relayed services.

Blockchain: By deploying the potential capabilities of the distributed Ethereum
blockchain, the proposed system manages core operations centered around smart contracts.
The architecture places significant emphasis on smart contract operations, manipulating
buyers’ and sellers’ interactions with anonymous attributes, thereby ensuring a robust
enrollment process under the vigilant supervision of the service provider. As a savvy
intermediary, the smart contract oversees financial transactions, fostering a resilient and
dynamic transactional ecosystem.

Each actor, characterized by distinct roles and responsibilities, converges to develop
a unified, secure, and efficient SEaaS model enhanced by the decentralized virtues of
blockchain technology.

4.1. Transactional Block for SEaaS

This section discusses the essential operations required to implement the proposed
SEaaS model. The proposed scheme is examined using a case study of smart appliances in
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an IoT environment. Referring to the graphical representation in Figure 1, consider that a
user owns a smart device that operates on an external power supply.
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The discussion of the above-mentioned transactional flow exhibited in Figure 1 with
steps of flow represented by numerals is as follows: The study considers that a user
possesses a smart device that works on an external power supply. The task shown in step 1
is connecting the smart appliance with wireless hotspots, followed by linking with the
service provider as a task in step 2. The inbuilt sensing devices within the smart appliances
capture their designated surrounding information precisely. The service provider then
asks the user if the sensed data are permitted to be specifically collected and if the user
is interested in selling the collected sensed data in step 3. Suppose the user responds by
playing the role of the seller; then, they are facilitated with the blockchain bearing all
the sale data. In such circumstances, the enrollment of the new seller (user) is carried
out while the new seller is also required to furnish additional information to the service
provider associated with their smart appliances, viz., identity, components, operational
configuration, settings, price, etc. At the same time, there is also a fair likelihood that certain
manufacturers of objects hosted by smart appliances (also within the smart appliances) are
enrolled via the same service provider.

In step 4, as shown in Figure 1, the service provider acquires the aggregated sensed
information from the agreed smart appliances by the new seller. It should be noted that
public key encryption can be used to encrypt the sensed data while forwarding the data. The
encrypted data is stored locally by the service provider on the permission acknowledged
by the new seller and issues the smart contract, which maintains the information related
to these sales within a blockchain to the user in step 5. The study also assumes that the
manufacturer can act as a new buyer and, hence, could be interested in the new sensed
information in encrypted form within the secured captivity of the service provider. The new
buyer further proceeds to purchase this sensed encrypted data from the service provider. In
step 6, the new buyer (manufacturer) pays the price towards the smart contract and further
updates the blockchain. The new seller uses the public key of the new buyer to encrypt its
sensed data. The system also computes a proof to provide evidence for this cryptographic
operation using the new buyer’s public key. In step 7, the new seller submits the legitimate
information to the smart contract to acquire the price money towards these successful sales
in an IoT environment. The new buyer then acquires the encrypted symmetric key from the
smart contract and generates a request to acquire encrypted data from the service provider
in step 8. In step 9, the service provider forwards the encrypted data after confirming the
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request, where the new buyer decrypts the encrypted data to access the actual sensed data
of the new seller.

Referring to Figure 1, the entire set of operations essential for developing the pro-
posed method emphasizes the implementation of a decentralized blockchain operation.
This decentralization is instrumental and involves various actors, such as users, service
providers, and product manufacturers. A strategically designed smart contract leverages
this blockchain operation, facilitating many explicit functions crucial for the enrollment pro-
cess, updating process, sales management, request, response management, and validation
in the proposed SEaaS model.

The compositional framework of the proposed smart contract Sc is expressed as follows:

Sc = ∑m
i=1 µi (1)

The above empirical expression (1) represents the design of a smart contract, Sc, which
consists of m number of internal operations µ towards its blockchain operation, especially
keeping decentralization in mind. The proposed scheme considers ten different types of
internal algorithmic operations (m = 10, i.e., µ1, µ2, . . .. . ., µ10) by varying the functionalities
of the operations µ to cater to the objective of the proposed SEaaS model. The briefing of all
the involved internal operations represented by µi in expression (2) (i.e., µ1, µ2, . . .. . ., µ10)
is as follows:

• Data-Sharing Operation (µ1): This is the default operation of the data-sharing process,
activated when the blockchain is applied and deployment of Sc is carried out.

• Enrollment Management (µ2/µ3): This operation consists of (i) Store Enrollment Data
(µ2) and (ii) Acquire Enrollment Data (µ1) that carries out storing and acquiring all
transactional information about the enrollment process to create clear accountability
towards each operation.

• Sale Management (µ4/µ5): This operation consists of (i) Sale-Updating Operation (µ4)
and (ii) Acquire Sale Data (µ5) that are responsible for facilitating and acquiring all the
undertaken sales-based information in the SEaaS model.

• Request Management (µ6/µ7): This operation consists of (i) Request-Storing Opera-
tion (µ6) and (ii) Acquire Request Information (µ7) that carry out storing and acquisi-
tion of all forms of requests based on a purchase order of sensory services in IoT. It
should be noted that Request-Storing Operation (µ6) is given more importance as it
relates to the allocation of incentive α for providing correct feedback.

• Feedback Management (µ8/µ9): This operation consists of (i) Feedback-Storing Op-
eration (µ8) and (ii) Acquire Feedback Information (µ9) that carry out storing and
acquisition of feedback (or acknowledgment). It should be noted that the study model
offers more importance to Feedback-Storing Operation (µ8) as the seller (or owner of
a service) can acquire a service fee upon invoking Feedback-Storing Operation (µ8),
which is underscored for its capability to enable the seller (or service owner) to increase
service fees concurrent with the provision of legitimate feedback, also facilitating the
withdrawal of service fees by the buyer.

• Validation Operation (µ10): This operation, dedicated solely to verifying the authentic-
ity and accuracy of feedback information provided by various participants, is crucial to
maintaining the integrity and reliability of the SEaaS model’s operational framework.

4.2. Algorithm Implementation

This section discusses the core algorithmic implementation in which unique key
management is used to further secure the blockchain-based holistic architecture in IoT.
As the proposed model mainly targets formulating a scheme that facilitates an effective
data-sharing scheme over a decentralized environment of the SEaaS model, the security and
integrity of the data to be shared are of utmost importance. Hence, before understanding
blockchain-based data-sharing in SEaaS, it is essential to describe its encryption operation
briefly. The complete encryption operation is carried out in four steps: (i) the first step
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is associated with the secure token generation, where a public key cryptography-based
encryption can be utilized to generate a pair of public and private keys; (ii) the second step
is to perform an encryption operation using the generated secure token in the prior step to
generate encrypted data Enc→ A1.A2 , where A1 represents (1 + f ).Odata and (rand) f .

∣∣ f 2
∣∣,

where f is a variable obtained by the product of two random prime numbers, Odata is
original data, and rand is any random natural number; (iii) the next step is performing a
decryption operation to acquire the original data Odata = g

(
EncZ,

∣∣ f 2
∣∣), where the variable

Enc represents encrypted data, variable z represents the lowest common multiplier between
(p− 1) and (q− 1), assuming p and q are two prime numbers selected in first steps, and
the function g(x) applied on them represents g(x) = ∆ψ/ f , where ∆ψ = ψ− 1 and ψ = | f |,
and, hence, the decrypted data are obtained; and iv) an extra layer of randomness rand1
is added to the generated encrypted data to offer an extended layer of security, where
rand1 = Enc.A3.A4. The variable A3 and A4 represents (1 + f )odata and

∣∣ f 2
∣∣, respectively.

The above-mentioned encryption operational steps are carried out in the algorithmic
process toward sharing the data and services from various actors involved in the proposed
scheme. The complete procedure is developed to support the decentralized operation of
the blockchain operation, and to support relaying seamless services over the IoT ecosystem.

The core operations involved in the proposed scheme for sharing data in the SEaaS
model are stated as Algorithm 1.

Algorithm 1 For Blockchain-Based Data-Sharing in SEaaS.

Input: Sattr (system attributes)
Output: Odata (delivery of original data from seller to buyer)
Start
1. Init Sattr → (β, k1, k2, I)
2. Scon f → Sattr
3. STG → (σ1, σ2)
4. η = k1(ltok||diden)
5. Eval(σ1, σ3, σ4, τ)
6. if auth(σ1, σ3, σ4, τ) = F
7. → Flag→ Reject request
8. else
9. → Viden = k1(λ)
10. µ2(σ1, Viden)
11. device→ (sdata)
12. if k1(sdata1) = vin f
13. (µ2,µ3)
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Store data
14. perform µ4 → Sc(I)
15. end
16. µ5 ← I
17. Obtain (ek, dk)
18. Perform µ5, µ6(α)
19. µ7 → seller(I)
20. µ8 → seller(Φ(I))
21. Validate Φ

22. µ9 → buyer(I)
23. µ10 → (Odata)
End

The discussion of the aforementioned algorithmic operation of the proposed system
extends to multiple operational blocks as follows:

• Configuration Stage: This is the first step of operation, which is related to the configu-
ration of the proposed approach towards blockchain-based data-sharing in SEaaS. The
implementation initiates by declaring the system attributes. Sattr consists of β, k1, k2, I
representing public attribute generated by the first step of encryption, first secret key,
second secret key, and identity of the smart appliance, respectively (Line 1 and Line 2).
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It is noted that k1 and k2 are two different hash keys whose key size is restricted to
256 bits and the highest natural number. This means that the proposed scheme is
intended to accommodate the secure hashing of any size of data. Apart from this,
all the actors involved in the proposed system yield a specific form of private record
(σ1, σ2) using the secret token generator STG (Line 3). This is meant to facilitate trans-
actional information within the blockchain, while a leader security token, ltok, is used
for enrollment. To perform validation of the smart appliance’s legitimacy bearing the
identity diden in the blockchain, the service provider further computes a verification
key η (Line 4).

• Enrollment Process: After the configuration stage is accomplished, the following line
of action is directed toward the enrollment process, which is necessary for utilizing the
SEaaS model by various actors in the IoT environment. One of the essential steps in the
enrollment process is to evaluate some crucial information to ascertain the genuineness
of the smart appliances in IoT. For this purpose, the algorithm constructs a method
Eval to assess some of the essential information (σ1, σ3, σ4, τ) that represents public
information of the actor’s account, the real identity of smart appliances, supporting
attribute σ4 to prove the genuine identity of smart devices and signatures, respec-
tively (Line 5). The signature attribute is generated as τ = ds(σ1, σ3, σ4), where the
method ds represents the Elgamal signature. The service provider initially assesses the
genuineness of signature attribute τ by verifying the public key attribute σ1, original
identity attribute σ3, supporting attribute σ4, and signature attribute τ (Line 5). The
algorithm authenticates all these attributes, and if they are violated (Line 6), then
the algorithm denies the request for data-sharing (Line 7). Otherwise, the algorithm
computes the virtual identity attribute Viden (Line 9). During this computation of Viden,
the algorithm applies its primary hash key k1 to a matrix λ using the leader token
ltok (Line 9). The variable matrix λ is formed by concatenating the leader token ltok,
public key σ1, and the original identity of smart appliances σ3. Further, the algorithm
forwards σ1 and Viden information to the smart contract to reposition it using the Store
Enrollment Data µ2 operation (Line 10). It should be noted that the service provider
uses the local database to store all the lists of Viden information that could be used for
future reference. Another essential factor towards this enrollment operation of the
proposed algorithm is that the system permits the enrollment process, provided σ1
and Viden are already indexed in the identity of smart contract I.

• Managing Sensed Information in IoT: Consider that the new seller utilizes its virtual
identity, Viden, to initiate the selling process to the enrolled service provider. In such
cases, the sensed information from the seller’s smart appliances must be securely
forwarded to the new buyer via the service provider. The service provider acquires
the seamless transmission of a specific set of information from the smart appliances of
the new seller (Line 11). The information captured by the service provider includes
(i) the device’s identity diden, (ii) start time of data collection ts, (iii) total duration
of data collection td, (iv) verification code of source information vc = (k1(s′t||Odata)),
(v) encrypted data Enc1 = Enc(s′t||(ts + i.td)) , and (vi) verification information evalu-
ated by the algorithm vin f = k1(γ), where the variable γ represents the concatenation
of user verification key η, device identity diden, ts, td, vc, and Enc1. Further, it should
be noted that st and s′t represent the key owned by the sensor owner for a long time
and the secret key for that particular session, respectively. The computation of s′t is
performed by applying the primary hash key k1 to the concatenated value of st and the
session time ts. The service provider computes the verification key η1 using primary
hash key k1 over the concatenated value of the leader token ltok and the device identity
diden. This computation is performed over sdata1 to check its validity with verification
information vin f (Line 12). The variable sdata1 bears concatenated information on the
service provider verification key η1, device identity diden, ts, td, vc, and Enc1. For the
matching conditional logic stated in Line 12 of the algorithm, the system stores the
following information locally, device identity diden, ts, td, vc, and Enc1, followed by the



Information 2024, 15, 212 11 of 21

Sales-Updating Operation µ4 for relaying sales information to the smart contract Sc(I)
where I represents the identity of the smart contract (Line 13 and Line 14). The sales
information will further consist of concatenated information on device identity diden,
Viden, cost, ts, td, and data, where the new variables, cost and data, relate to anticipated
service cost by seller and content of data being sold, respectively.

• Request Management: The next part of the algorithmic implementation is associated
with the buyer’s request to obtain the sensed information as a service from the buyer.
For this purpose, the implementation uses the operation of acquiring sales data µ5 to
obtain information on the device identity diden, the virtual identity of the seller Viden,
cost, ts, td, and data utilizing the smart contract Sc with identity I (Line 16). Further,
the first step of encryption is implemented to generate the security token as ek and dk,
representing the buyer’s public and private keys (Line 17). In the following line of
operation, the algorithm uses the Request-Storing Operation µ5, where the algorithm
obtains information on the device identity diden, new and prior virtual identity of the
seller, instantaneous time, and public key of the buyer that are finally forwarded to
Sc (Line 18). Further, the algorithm executes a Request-Storing Operation µ6 while
allocating α incentive for appropriate transactional information.

• Feedback Management: The algorithm uses Acquire Request Information µ7 to obtain
requests from the smart contract Sc, where the requested information consists of device
identity diden, the old and new virtual identities of the seller, the instantaneous time
of receiving the request, and the public key of the buyer ek (Line 19). To generate
feedback on the newly acquired request, the seller uses the primary session token st to
create a secondary session key s′t. This operation is carried out as s′t = k1(B), where
the variable B represents the concatenation of the primary session token st and the
total duration of data collection td. Further, the public key of the buyer is used to
encrypt the secondary session token s′t by the seller, followed by generating feedback
Φ (Line 20) using the Feedback-Storing Operation µ8 that is forwarded to the smart
contract Sc with the identity I.

• Authentication of Service Relaying: This is the final operation of the proposed al-
gorithm, which involves validating the feedback Φ (Line 21). The algorithm uses
Acquire Feedback Information µ9, where the buyer verifies the information from the
data owned at that time by the smart contract Sc with identity I (Line 22). Finally, the
algorithm retrieves the original data Odata using the validation operation µ10 (Line 23).
In the final stage of the operation, the generated request and compliance using the
generated feedback are cross-checked by the service provider from the smart contract.
The system indexes the successful transaction as a record upon finding a valid request.
Hence, the algorithm completes its operations towards a completely decentralized
data-sharing mechanism using a distributed blockchain in the IoT architecture.

5. Result Discussion

This section provides a detailed analysis of the results of implementing the algo-
rithm discussed in the previous sections. To achieve the objectives of SEaaS, the pro-
posed system model has been coded in Python. It elaborates on the evaluation environ-
ment, the strategy, and a comprehensive discussion of the outcomes achieved during the
study implementation.

5.1. Assessment Environment

The assessment environment is designed in a planned manner to map its applicability
to real-world cases of blockchain deployed in a large environment. In all real-world
cases, there is an eventual anticipation for autonomous and continuous operations to be
performed by smart contracts without involving human interaction. A discussion of such
a form of real-time design methods has also been carried out in the existing literature
(e.g., Deniziak et al. [18], He et al. [21], and Albulayhi and Alsukayti [24]) where it was
learned that a smart contract executes its actions upon fulfillment of its specified conditions.
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Regarding the proposed SEaaS model, a smart contract must also be investigated in similar
scenarios to prove its applicability in real-time environments. To fulfill this agenda, the
model is initially required to consider IoT devices in the form of standard sensor nodes
with a specific area to carry out an observation. Apart from this, the sensors must be
represented as core actors in the proposed SEaaS model (i.e., buyer and seller), where the
model implements the algorithm discussed in the previous section. This is the primary
justification for designing the test environment and undertaking the initialized values of
the parameters involved in the assessment.

A use case illustrated in Figure 1 was developed in this subsection. A hypothetical
model of 200 sensor nodes dispersed over 1000 m × 1000 m was conceived for simulation
purposes, representing a smart city region. Table 1 lists the simulation parameters used in
the experiment.

Table 1. Adopted simulation parameters.

Parameters Values

Total sensors/smart appliances 200

Number of sellers 5–10

Number of buyers 10

Number of service provider 2

Data packets 50 gigabytes

Size of control message 10 bits

Bandwidth 5 gigabytes per second

Initialized energy of nodes 10 J

Of the 200 sensors, a scheme was devised in which a minimum of five and a maximum
of ten seller nodes were randomly selected. These nodes express interest in selling the
sensed data. Concurrently, the model considers another set of ten randomly chosen buyer
nodes. Both sellers and buyers undergo a verification process, culminating in confirmation
only after completing their enrollment.

Two service providers were incorporated into the model, tasked with facilitating
synchronized transactions between buyers and sellers. The choice of assigned values is
driven by the intention to develop a controlled research environment within the scope of a
smart city. The sellers’ and buyers’ numbers can grow exponentially in this environment.

The algorithm commences its experimentation with these predefined values. These
values are subject to incremental adjustments in alignment with escalating traffic loads
in the IoT environment, facilitating an efficient evaluation of the system’s operational
performance. The goal is to interpret the system’s capabilities and adaptability in response
to varying network demands, offering insights into its functional robustness and scalability
within a dynamic smart city ecosystem.

5.2. Assessment Strategy

This assessment strategy of the proposed study is primarily based on two key compo-
nents: (i) a comprehensive IoT architecture and (ii) blockchain. These components function
in a synchronized manner to achieve the unified objective of seamless data sharing, an
essential aspect in realizing the vision of the SEaaS model. To conduct a comprehensive
benchmark analysis, this study thoroughly investigates influential research studies aligning
with a common purpose. A range of models are listed below, each followed by a detailed
examination of their similarities and differences in relation to the proposed SEaaS:

• SDS (Secure Data-Sharing): The model developed by Priyadharshini and Canessane [26]
aims to address existing security challenges in blockchain technology. It presents a
notable integration of the Rivest–Shamir–Adleman (RSA) algorithm and a chaotic
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map, enhancing the security of data sharing within the IoT environment, marked by
many devices.

# Congruence with SEaaS: A significant use of public key encryption is employed
to strengthen blockchain-based data-sharing in IoT.

# Distinctiveness: The SEaaS model introduces a novel approach by orchestrating
sales transactions using smart contracts, a functionality that is notably absent
in the SDS framework.

• BaDS (Blockchain-augmented Data-Sharing): Developed by Zhang et al. [27], this
exceptional architecture improves data sharing in the IoT framework by utilizing an
attribute-based signature encryption combined with a ciphertext policy.

# Congruence with SEaaS: A shared adherence to using smart contracts as instru-
mental components in promoting secure data-sharing within IoT architectures.

# Distinctiveness: The SEaaS ecosystem operates in an environment where equal
importance is given to device and user (seller/buyer) identities, growing into
a more decentralized setting. This contrasts with BaDS, which prioritizes the
device identity through control tables.

• ADS (Anonymized Data-Sharing): Developed by Wu et al. [28], this model adopts
public key encryption to enhance anonymity. This is a popular model for strengthen-
ing authenticity, accountability, and privacy in the context of data sharing.

# Congruence with SEaaS: A unified step towards utilizing blockchain, public
key encryption, and signatures, thereby constructing a stronghold of anonymity.

# Distinctiveness: SEaaS navigates the anonymity landscape through the decen-
tralized management of encrypted device and user (seller) virtual identities.
This approach is less cumbersome than the exclusive dependence on signatures,
as ADS advocates.

• SLTA (Secure and Lightweight Trust Architecture): Developed by Shi et al. [29], the
SLTA model presents a system of selective data sharing with privileged owners in a
distinct, trust-oriented IoT architecture. Oracle is used for facilitating data collection,
followed by tamper prevention by edge devices, along with identity management in
a distributed manner.

# Congruence with SEaaS: A collective ode to distributed identity management
in the blockchain-empowered data-sharing.

# Distinctiveness: SEaaS establishes an innovative route through simplified
mathematical methodologies enhanced by multilayered security protection
without complex orchestrations, a deviation from SLTA’s trust-centric identity
management principles.

• EDS (Efficient Data-Sharing): Developed by Zhang et al. [30], this model introduces
an innovative payment channel network within blockchain technology, incorporating
hashing and homomorphic encryption. This approach aims to overcome conventional
obstacles related to transaction success rates and overhead challenges. The model also
claims a decreased overhead while adopting a multi-path routing scheme.

# Congruence with SEaaS: A mutual commitment to incorporating hashing into
the fabric of transaction processes.

# Distinctiveness: SEaaS was developed by introducing a new IoT architec-
ture with innovative system features, stimulating a dynamic data-sharing
ecosystem. This approach contrasts with EDS’s preference for orchestrating
multi-hop routing.

A significant insight gained from reviewing the models mentioned above is the con-
spicuous absence of a dedicated case study focused on data-sharing schemes. In contrast,
the SEaaS model excels with its deep consideration of trading sensing services within a de-
centralized environment, enhanced by an updated IoT architecture. A key feature of SEaaS
is its departure from the complexities associated with traditional public key encryption,
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resulting in a system characterized by reduced computational iterations and lower memory
requirements during the SEaaS trading process. The established models and the proposed
scheme were evaluated in a uniform simulation environment for a robust assessment, ex-
ploring factors such as energy consumption, throughput, latency, and processing time. The
numerical results, comparing the SEaaS model with various existing models, are presented
in Table 2, offering a clear and detailed comparison.

Table 2. Numerical outcomes of comparative assessment.

Approaches Energy Used Throughput Latency Processing Time

Proposed 3.188 8.529 0.917 1.087

SDS 8.271 5.615 3.19 5.096

BaDS 8.022 7.188 2.09 3.817

ADS 7.912 6.672 2.89 3.588

SLTA 6.193 6.987 2.61 3.118

EDS 6.025 6.996 2.26 2.671

The discussion of the accomplished numerical outcomes concerning its rationale is
carried out next.

5.3. Discussion of Outcomes

The efficiency and applicability of an IoT architecture are fundamentally reflected
in the prolonged sustainability of the sensors deployed within smart appliances. An
essential measure to evaluate this aspect is to assess the cumulative energy consumption
of smart devices throughout the entire operation of the data-sharing mechanism. This
approach is instrumental in highlighting the operational efficiency and sustainability of the
implemented architecture, thereby providing valuable insights into its overall performance
and viability. The consequential outcomes of this evaluative measure are comprehensively
illustrated in Figure 2.
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A meticulous examination of Figure 2 reveals that the proposed SEaaS model yields a
reduction in energy consumption of approximately 40% compared to the existing blockchain-
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based data-sharing models under consideration. The dominant factors contributing to this
enhancement are outlined as follows:

The models such as SDS, BaDS, and ADS demonstrate a considerably elevated level
of energy consumption. This is primarily attributed to their reliance on sophisticated
public key encryption, requiring a complex key management mechanism. Unlike these
models, the SLTA and EDS models do not encounter the complexities associated with key
management, resulting in nearly equivalent performance levels. Specifically, SLTA employs
a blockchain constructed using a software-defined structure, while EDS utilizes hashing,
contributing to marginally reduced energy consumption relative to SDS, BaDS, and ADS.

The proposed SEaaS model minimizes energy consumption owing to its extensive
deployment of logical operations and a more streamlined utilization of encryption steps.
The service provider facilitates the interaction between the seller and buyer, simplifying the
task of assessing compliance or contradictions within the smart contract. This refinement
leads to accelerated computations and reduced energy consumption, resulting from the
reduced reliance on more resource-intensive encryption operations.

Moving forward to the throughput assessment, this includes the exchange involving
requests, responses, and the acquisition of original data by the buyer. An optimized IoT
architecture attempting for a lightweight operation should demonstrate a well-structured,
scalable, and highly accessible form of blockchain, provided that its throughput demon-
strates significant enhancement. Figure 3 displays the comparative results, presenting the
throughput performance of the proposed SEaaS model relative to the existing blockchain-
based data-sharing schemes. This comparative analysis highlights the effectiveness and
efficiency of the proposed model, affirming its suitability and robustness in the context of
contemporary IoT architectures.
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An in-depth examination of Figure 3 reveals that the proposed SEaaS model demon-
strates an approximate 18% increase in throughput compared to existing data-sharing
models. To understand the rationale behind this enhancement, it is necessary to consider
the critical factors affecting data transmission performance. These factors are predominantly
associated with the structure and management of the blockchain within a decentralized IoT
architecture, including the size and timing of the blockchain, network latency, congestion,
resource availability, and smart contract complexities.

Most existing models, such as SDS, BaDS, ADS, SLTA, and EDS, have been established
for identity management, accompanied by extensive cryptographic operations. Although
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this approach enhances security, it concurrently hampers data transmission, potentially di-
minishing throughput. Conversely, the SEaaS model introduces a meticulously structured
smart contract management system in a decentralized format. This structure, comple-
mented by the service provider’s autonomous validation of transactional sales, ensures
that the throughput remains resilient and unaffected by such decentralized blockchain
operations. Latency, another crucial performance metric, measures the efficacy of the
transmission rates between buyers and sellers. An ideal IoT architecture should proficiently
manage the latency. As the bandwidth remains relatively constant, prioritizing streamlined
and accelerated operational procedures is essential for effective data transactions within
the IoT-cloud environment. Figure 4 illustrates the latency performance outcomes, where
the proposed scheme demonstrates superior results compared to the pre-existing models.
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Figure 4 illustrates that SEaaS reduces latency by about 16% compared to other an-
alyzed data-sharing models. Factors contributing to latency in blockchain-based IoT
architectures include data volume, blockchain scalability, transaction processing speed,
network latency, and block confirmation times. While SDS enhances security with chaotic
maps and RSA algorithms, it complicates storage, retrieval, and computational processes,
increasing data transmission times. Conversely, the SEaaS model employs structured,
decentralized blockchain operations, facilitating flexible and rapid transactional assessment
and enhancing path and route determinacy, thus reducing latency.

Lastly, Figure 5 focuses on the algorithm-processing time, which is crucial for eval-
uating computational efficiency. SEaaS demonstrates approximately a 25% reduction in
processing time compared to other models, primarily due to transaction validation and
confirmation times. Different blockchain forms may vary in confirmation times, affect-
ing processing times. SEaaS supports concurrency and parallelism within smart contract
design, offering performance not typically observed in conventional data-sharing schemas.
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6. Discussion and Conclusions

This manuscript has presented an insight into a novel arena of highly networked
and structured business processes associated with the sensory data and services currently
protected by the blockchain. Reviewing the existing literature, various loopholes have
been noted in catering to sensing as a service in IoT, viz., the lack of accountability, a
smaller number of prominent studies towards sensing as a service, the adoption of stale
IoT architecture, and complex data/block management. Such forms of identified research
challenges have been addressed in the proposed study model. Therefore, it acts as the
overall relevance of the discussed model in which the identified issues are solved by
introducing a novel data-sharing process using a decentralized blockchain with unique
internal operations involved in smart contracts.

The proposed study model significantly addresses the prevailing challenges of deliv-
ering sensing as a service, revealing a novel IoT architecture enhanced by decentralized
blockchain operations. This architectural innovation improves the Sensor-as-a-Service
(SEaaS) model, ensuring enhanced accountability and effective block management, thereby
facilitating an efficient relay of services within the IoT environment. The SEaaS framework,
strategically designed for adaptability within a smart city context, co-ordinates synchro-
nized interactions between sellers, buyers, and service providers to ensure secure and
trustworthy transactions. At its core, the study unveils a systematically developed smart
contract design rich in exclusive operations such as data-sharing, enrollment management,
and diverse aspects of transaction validation, ensuring a seamless and effective trading
process within SEaaS. This innovative approach is strengthened by a distinct configura-
tion and enrollment management process, a crucial improvement designed to enhance
the accountability of each blockchain transaction, addressing a significant gap in current
research paradigms. A sophisticated management strategy further distinguishes the model,
allowing for a fine-tuned multi-level identification of actors and an efficient transaction
process, all achieved without imposing undue computational burdens on constrained sen-
sor resources. Benchmark evaluations of this innovative scheme highlight its superiority,
demonstrating remarkable improvements in throughput, energy consumption, latency, and
processing time. Apart from this, it is also essential to offer a brief overview of the research
questions and their solutions obtained from the study.

• RQ1: How can effective data-sharing methods be developed to enhance SEaaS within
a large and decentralized network?
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# Solution: The proposed system introduces a highly interconnected and collab-
orative network system in which the seller’s information is subjected to better
exposure by prospective buyers and protected using a simplified encryption
operation. A specific attribute µ1 has been used for performing data-sharing
operations, which is also an integral part of the smart contract system. Apart
from this, the adoption of decentralized Ethereum has been shown to use a spe-
cific configuration stage using public key attributes. Moreover, the proposed
model also involves a particular module for managing sensed information in
IoT, which makes the data and its associated computation much easier and
faster, even for concurrent buyers.

• RQ2: What procedures can be implemented to enhance accountability among all
stakeholders involved in SEaaS, while maintaining cost-effectiveness?

# Solution: The complete system is developed using a ‘no trust’-based approach
where all the actors involved in the system are subjected to an enrollment
process. This process uses the public key, original identity, supporting, and sig-
nature attributes. Further, the Elgamal signature is used to secure the attributes.
When subjected to Ethereum, all these attributes are computationally complex
to be unnoticed in case of malicious activity. Hence, it is a robust trapdoor
function that offers higher forward/backward secrecy and maintains higher ac-
countability for all the actors involved. It is cost-effective and can be justified by
the lower algorithm processing time obtained in the benchmarked outcomes.

• RQ3: How can a system model of SEaaS be developed to facilitate practical deploy-
ment within an IoT environment?

# Solution: The proposed system has developed an analytical model whose
deployment scenario is chosen to work in a distributed and decentralized
manner. For this purpose, a practical case study of a manufacturing firm
(shown in Figure 1) has been used for modeling, while this architecture offers
omnidirectional connectivity to all the actors with robust security rules using
Ethereum. Hence, any individual actor or organization can easily use this
environment without involving potential re-engineering processes in their
existing networks.

The far-out consequences, as well as potential advantages of employing the presented
scheme, are as follows:

• The proposed SEaaS model introduces an explicit operation towards relaying sensing
data as a service, considering four prominent actors, viz., the seller, buyer, service
provider, and blockchain, in a more comprehensive manner. This architectural de-
ployment can be carried out by various users ranging from personal individuals to
corporate service providers or the manufacturing industry.

• The proposed deployment architecture is designed flexibly, which any industry can
adopt without demanding a complex re-engineering process. The ideal setting is
to follow the data-sharing protocols, and the rest of the internal operations are au-
tonomously carried out by the proposed study model.

• One of the most beneficial consequences and advantages of the proposed model is
associated with sale management, request management, feedback management, and
the validation operation, which not only enhances the current productivity of sales
but also offers potential security against any uncertain threats.

• The proposed model is deployed with a unique configuration process and enrollment
management, which is meant to retain a maximum level of accountability for every
transaction process suitable for both the buyer and seller, irrespective of any domain
of services being offered via IoT.

• The cost-effectiveness of the proposed model can be realized owing to its inclusion of
the unique management of sensed information where a multi-level identification of
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actors and various transaction processes is carried out without inducing any computa-
tional burden on resource-constrained sensors.

A possible limitation of the proposed model is the need for a dedicated module for
optimizing the performance of the blockchain to more complex networks. Future ad-
vancements are anticipated to refine the blockchain’s smart contract management within
the SEaaS model, targeting enhanced optimization and sustainability. An investigation
into deep learning is expected to reveal advanced predictive analytics, fostering optimal
convergence and improving performance. Emphasis will also be directed toward mini-
mizing computational efforts through complex data augmentation strategies aligned with
prevailing market demands. Additionally, significant efforts will be made towards de-
veloping robust security infrastructures to neutralize emergent threats such as AI-driven
cyber-attacks, ensuring uninterrupted and secure data transactions within the enhanced
SEaaS ecosystem.
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