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Abstract: A privacy-constrained information extraction problem is considered where for a pair
of correlated discrete random variables (X, Y) governed by a given joint distribution, an agent
observes Y and wants to convey to a potentially public user as much information about Y as
possible while limiting the amount of information revealed about X. To this end, the so-called
rate-privacy function is investigated to quantify the maximal amount of information (measured in
terms of mutual information) that can be extracted from Y under a privacy constraint between X and
the extracted information, where privacy is measured using either mutual information or maximal
correlation. Properties of the rate-privacy function are analyzed and its information-theoretic and
estimation-theoretic interpretations are presented for both the mutual information and maximal
correlation privacy measures. It is also shown that the rate-privacy function admits a closed-form
expression for a large family of joint distributions of (X, Y). Finally, the rate-privacy function
under the mutual information privacy measure is considered for the case where (X, Y) has a joint
probability density function by studying the problem where the extracted information is a uniform
quantization of Y corrupted by additive Gaussian noise. The asymptotic behavior of the rate-privacy
function is studied as the quantization resolution grows without bound and it is observed that not
all of the properties of the rate-privacy function carry over from the discrete to the continuous case.

Keywords: data privacy; equivocation; rate-privacy function; information theory; minimum
mean-squared error estimation; additive channels; mutual information; maximal correlation

1. Introduction

With the emergence of user-customized services, there is an increasing desire to balance between
the need to share data and the need to protect sensitive and private information. For example,
individuals who join a social network are asked to provide information about themselves which
might compromise their privacy. However, they agree to do so, to some extent, in order to benefit
from the customized services such as recommendations and personalized searches. As another
example, a participatory technology for estimating road traffic requires each individual to provide
her start and destination points as well as the travel time. However, most participating individuals
prefer to provide somewhat distorted or false information to protect their privacy. Furthermore,
suppose a software company wants to gather statistical information on how people use its software.
Since many users might have used the software to handle some personal or sensitive information -for
example, a browser for anonymous web surfing or a financial management software- they may not
want to share their data with the company. On the other hand, the company cannot legally collect the
raw data either, so it needs to entice its users. In all these situations, a tradeoff in a conflict between
utility advantage and privacy breach is required and the question is how to achieve this tradeoff. For
example, how can a company collect high-quality aggregate information about users while strongly
guaranteeing to its users that it is not storing user-specific information?

To deal with such privacy considerations, Warner [3] proposed the randomized response model
in which each individual user randomizes her own data using a local randomizer (i.e., a noisy
channel) before sharing the data to an untrusted data collector to be aggregated. As opposed to
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conditional security, see, e.g., [4–6], the randomized response model assumes that the adversary can
have unlimited computational power and thus it provides unconditional privacy. This model, in which
the control of private data remains in the users’ hands, has been extensively studied since Warner.
As a special case of the randomized response model, Duchi et al. [7], inspired by the well-known
privacy guarantee called differential privacy introduced by Dwork et al. [8–10], introduced locally
differential privacy (LDP). Given a random variable X ∈ X, another random variable Z ∈ Z is said
to be the ε-LDP version of X if there exists a channel Q : X → Z such that Q(B|x)

Q(B|x′) ≤ exp(ε) for
all measurable B ⊂ Z and all x, x′ ∈ X. The channel Q is then called as the ε-LDP mechanism.
Using Jensen’s inequality, it is straightforward to see that any ε-LDP mechanism leaks at most ε bits
of private information, i.e., the mutual information between X and Z satisfies I(X, Z) ≤ ε.

There have been numerous studies on the tradeoff between privacy and utility for different
examples of randomized response models with different choices of utility and privacy measures. For
instance, Duchi et al. [7] studied the optimal ε-LDP mechanism M : X → Z which minimizes the risk
of estimation of a parameter θ related to PX . Kairouz et al. [11] studied an optimal ε-LDP mechanism
in the sense of mutual information, where an individual would like to release an ε-LDP version Z
of X that preserves as much information about X as possible. Calmon et al. [12] proposed a novel
privacy measure (which includes maximal correlation and chi-square correlation) between X and Z
and studied the optimal privacy mechanism (according to their privacy measure) which minimizes
the error probability Pr(X̂(Z) 6= X) for any estimator X̂ : Z → X.

In all above examples of randomized response models, given a private source, denoted by X,
the mechanism generates Z which can be publicly displayed without breaching the desired privacy
level. However, in a more realistic model of privacy, we can assume that for any given private data
X, nature generates Y, via a fixed channel PY|X . Now we aim to release a public display Z of Y
such that the amount of information in Y is preserved as much as possible while Z satisfies a privacy
constraint with respect to X. Consider two communicating agents Alice and Bob. Alice collects all
her measurements from an observation into a random variable Y and ultimately wants to reveal this
information to Bob in order to receive a payoff. However, she is worried about her private data,
represented by X, which is correlated with Y. For instance, X might represent her precise location
and Y represents measurement of traffic load of a route she has taken. She wants to reveal these
measurements to an online road monitoring system to received some utility. However, she does
not want to reveal too much information about her exact location. In such situations, the utility
is measured with respect to Y and privacy is measured with respect to X. The question raised in
this situation then concerns the maximum payoff Alice can get from Bob (by revealing Z to him)
without compromising her privacy. Hence, it is of interest to characterize such competing objectives
in the form of a quantitative tradeoff. Such a characterization provides a controllable balance between
utility and privacy.

This model of privacy first appears in Yamamoto’s work [13] in which the
rate-distortion-equivocation function is defined as the tradeoff between a distortion-based utility and
privacy. Recently, Sankar et al. [14], using the quantize-and-bin scheme [15], generalized Yamamoto’s
model to study privacy in databases from an information-theoretic point of view. Calmon and
Fawaz [16] and Monedero et al. [17] also independently used distortion and mutual information for
utility and privacy, respectively, to define a privacy-distortion function which resembles the classical
rate-distortion function. More recently, Makhdoumi et al. [18] proposed to use mutual information for
both utility and privacy measures and defined the privacy funnel as the corresponding privacy-utility
tradeoff, given by

tR(X; Y) := min
PZ|Y :X(−−Y(−− Z

I(Y;Z)≥R

I(X; Z) (1)

where X (−− Y (−− Z denotes that X, Y and Z form a Markov chain in this order. Leveraging
well-known algorithms for the information bottleneck problem [19], they provided a locally optimal
greedy algorithm to evaluate tR(X; Y). Asoodeh et al. [1], independently, defined the rate-privacy
function, gε(X; Y), as the maximum achievable I(Y; Z) such that Z satisfies I(X; Z) ≤ ε, which is a
dual representation of the privacy funnel (1), and showed that for discrete X and Y, g0(X; Y) > 0
if and only if X is weakly independent of Y (cf, Definition 9). Recently, Calmon et al. [20] proved an
equivalent result for tR(X; Y) using a different approach. They also obtained lower and upper bounds
for tR(X; Y) which can be easily translated to bounds for gε(X; Y) (cf. Lemma 1). In this paper, we
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develop further properties of gε(X; Y) and also determine necessary and sufficient conditions on PXY,
satisfying some symmetry conditions, for gε(X; Y) to achieve its upper and lower bounds.

The problem treated in this paper can also be contrasted with the better-studied concept of
secrecy following the pioneering work of Wyner [21]. While in secrecy problems the aim is to
keep information secret only from wiretappers, in privacy problems the aim is to keep the private
information (not necessarily all the information) secret from everyone including the intended receiver.

1.1. Our Model and Main Contributions

Using mutual information as measure of both utility and privacy, we formulate the
corresponding privacy-utility tradeoff for discrete random variables X and Y via the rate-privacy
function, gε(X; Y), in which the mutual information between Y and displayed data (i.e., the
mechanism’s output), Z, is maximized over all channels PZ|Y such that the mutual information
between Z and X is no larger than a given ε. We also formulate a similar rate-privacy function
ĝε(X; Y) where the privacy is measured in terms of the squared maximal correlation, ρ2

m, between,
X and Z. In studying gε(X; Y) and ĝε(X; Y), any channel Q : Y → Z that satisfies I(X; Z) ≤ ε and
ρ2

m(X; Z) ≤ ε, preserves the desired level of privacy and is hence called a privacy filter. Interpreting
I(Y; Z) as the number of bits that a privacy filter can reveal about Y without compromising privacy,
we present the rate-privacy function as a formulation of the problem of maximal privacy-constrained
information extraction from Y.

We remark that using maximal correlation as a privacy measure is by no means new as it appears
in other works, see, e.g., [22,23] and [12] for different utility functions. We do not put any likelihood
constraints on the privacy filters as opposed to the definition of LDP. In fact, the optimal privacy
filters that we obtain in this work induce channels PZ|X that do not satisfy the LDP property.

The quantity gε(X; Y) is related to a notion of the reverse strong data processing inequality as
follows. Given a joint distribution PXY, the strong data processing coefficient was introduced in
[24,25], as the smallest s(X; Y) ≤ 1 such that I(X; Z) ≤ s(X; Y)I(Y; Z) for all PZ|Y satisfying the
Markov condition X (−− Y (−− Z. In the rate-privacy function, we instead seek an upper bound
on the maximum achievable rate at which Y can display information, I(Y; Z), while meeting the
privacy constraint I(X; Z) ≤ ε. The connection between the rate-privacy function and the strong data
processing inequality is further studied in [20] to mirror all the results of [25] in the context of privacy.

The contributions of this work are as follows:

• We study lower and upper bounds of gε(X; Y). The lower bound, in particular, establishes a
multiplicative bound on I(Y; Z) for any optimal privacy filter. Specifically, we show that for a
given (X, Y) and ε > 0 there exists a channel Q : Y → Z such that I(X; Z) ≤ ε and

I(Y; Z) ≥ λ(X; Y)ε (2)

where λ(X; Y) ≥ 1 is a constant depending on the joint distribution PXY. We then give
conditions on PXY such that the upper and lower bounds are tight. For example, we show that
the lower bound is achieved when Y is binary and the channel from Y to X is symmetric. We
show that this corresponds to the fact that both Y = 0 and Y = 1 induce distributions PX|Y(·|0)
and PX|Y(·|1) which are equidistant from PX in the sense of Kullback-Leibler divergence. We
then show that the upper bound is achieved when Y is an erased version of X, or equivalently,
PY|X is an erasure channel.

• We propose an information-theoretic setting in which gε(X; Y) appears as a natural
upper-bound for the achievable rate in the so-called "dependence dilution" coding problem.
Specifically, we examine the joint-encoder version of an amplification-masking tradeoff, a setting
recently introduced by Courtade [26] and we show that the dual of gε(X; Y) upper bounds
the masking rate. We also present an estimation-theoretic motivation for the privacy measure
ρ2

m(X; Z) ≤ ε. In fact, by imposing ρ2
m(X; Y) ≤ ε, we require that an adversary who observes Z

cannot efficiently estimate f (X), for any function f . This is reminiscent of semantic security
[27] in the cryptography community. An encryption mechanism is said to be semantically
secure if the adversary’s advantage for correctly guessing any function of the privata data given
an observation of the mechanism’s output (i.e., the ciphertext) is required to be negligible.
This, in fact, justifies the use of maximal correlation as a measure of privacy. The use of
mutual information as privacy measure can also be justified using Fano’s inequality. Note that
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I(X; Z) ≤ ε can be shown to imply that Pr(X̂(Z) 6= X) ≥ H(X)−1−ε
log(|X|) and hence the probability of

adversary correctly guessing X is lower-bounded.
• We also study the rate of increase g′0(X; Y) of gε(X; Y) at ε = 0 and show that this rate can

characterize the behavior of gε(X; Y) for any ε ≥ 0 provided that g0(X; Y) = 0. This again has
connections with the results of [25]. Letting

Γ(R) := max
PZ|Y :X(−−Y(−−Z

I(Y;Z)≤R

I(X; Z)

one can easily show that Γ′(0) = limR→0
Γ(R)

R = s(X; Y), and hence the rate of increase of Γ(R)
at R = 0 characterizes the strong data processing coefficient. Note that here we have Γ(0) = 0.

• Finally, we generalize the rate-privacy function to the continuous case where X and Y are both
continuous and show that some of the properties of gε(X; Y) in the discrete case do not carry
over to the continuous case. In particular, we assume that the privacy filter belongs to a family
of additive noise channels followed by an M-level uniform scalar quantizer and give asymptotic
bounds as M→ ∞ for the rate-privacy function.

1.2. Organization

The rest of the paper is organized as follows. In Section 2, we define and study the rate-privacy
function for discrete random variables for two different privacy measures, which, respectively, lead
to the information-theoretic and estimation-theoretic interpretations of the rate-privacy function. In
Section 3, we provide such interpretations for the rate-privacy function in terms of quantities from
information and estimation theory. Having obtained lower and upper bounds of the rate-privacy
function, in Section 4 we determine the conditions on PXY such that these bounds are tight. The
rate-privacy function is then generalized and studied in Section 5 for continuous random variables.

2. Utility-Privacy Measures: Definitions and Properties

Consider two random variables X and Y, defined over finite alphabets X and Y, respectively,
with a fixed joint distribution PXY. Let X represent the private data and let Y be the observable
data, correlated with X and generated by the channel PY|X predefined by nature, which we call the
observation channel. Suppose there exists a channel PZ|Y such that Z, the displayed data made available
to public users, has limited dependence with X. Such a channel is called the privacy filter. This setup
is shown in Figure 1. The objective is then to find a privacy filter which gives rise to the highest
dependence between Y and Z. To make this goal precise, one needs to specify a measure for both
utility (dependence between Y and Z) and also privacy (dependence between X and Z).

X Y Z

Fixed channel (observation channel) Privacy filter

Figure 1. Information-theoretic privacy.

2.1. Mutual Information as Privacy Measure

Adopting mutual information as a measure of both privacy and utility, we are interested
in characterizing the following quantity, which we call the rate-privacy function (since mutual
information is adopted for utility, the privacy-utility tradeoff characterizes the optimal rate for a given
privacy level, where rate indicates the precision of the displayed data Z with respect to the observable
data Y for a privacy filter, which suggests the name),

gε(X; Y) := sup
PZ|Y∈Dε(P)

I(Y; Z) (3)
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where (X, Y) has fixed distribution PXY = P and

Dε(P) := {PZ|Y : X(−−Y(−−Z, I(X; Z) ≤ ε}

(here X(−−Y(−−Z means that X, Y, and Z form a Markov chain in this order). Equivalently, we call
gε(X; Y) the privacy-constrained information extraction function, as Z can be thought of as the extracted
information from Y under privacy constraint I(X; Z) ≤ ε.

Note that since I(Y; Z) is a convex function of PZ|Y and furthermore the constraint set Dε(P) is
convex, [28, Theorem 32.2] implies that we can restrict Dε(P) in (3) to {PZ|Y : X(−−Y(−−Z, I(X; Z) =
ε} whenever ε ≤ I(X; Y) . Note also that since for finite X and Y, PZ|Y → I(Y; Z) is a continuous
map, therefore Dε(P) is compact and the supremum in (3) is indeed a maximum. In this case, using
the Support Lemma [29], one can readily show that it suffices that the random variable Z is supported
on an alphabet Z with cardinality |Z| ≤ |Y|+ 1. Note further that by the Markov condition X(−−
Y(−−Z, we can always restrict ε ≥ 0 to only 0 ≤ ε < I(X; Y), because I(X; Z) ≤ I(X; Y) and hence for
ε ≥ I(X; Y) the privacy constraint is removed and thus by setting Z = Y, we obtain gε(X; Y) = H(Y).

As mentioned earlier, a dual representation of gε(X; Y), the so called privacy funnel, is introduced
in [18,20], defined in (1), as the least information leakage about X such that the communication rate
is greater than a positive constant; I(Y; Z) ≥ R for some R > 0. Note that if tR(X; Y) = ε then
gε(X; Y) = R.

Given ε1 < ε2 and a joint distribution P = PX × PY|X , we have Dε1(P) ⊂ Dε2(P) and
hence ε → gε(X; Y) is non-decreasing, i.e., gε1(X; Y) ≤ gε2(X; Y). Using a similar technique as in
[30, Lemma 1], Calmon et al. [20] showed that the mapping R 7→ tR(X;Y)

R is non-decreasing for R > 0.

This, in fact, implies that ε 7→ gε(X;Y)
ε is non-increasing for ε > 0. This observation leads to a lower

bound for the rate privacy function gε(X; Y) as described in the following lemma.

Lemma 1 ([20]). For a given joint distribution P defined over X ×Y, the mapping ε 7→ gε(X;Y)
ε is

non-increasing on ε ∈ (0, ∞) and gε(X; Y) lies between two straight lines as follows:

ε
H(Y)

I(X; Y)
≤ gε(X; Y) ≤ H(Y|X) + ε (4)

for ε ∈ (0, I(X; Y)).

X PY|X Y

e

Zδ

Figure 2. Privacy filter that achieves the lower bound in (4) where Zδ is the output of an erasure
privacy filter with erasure probability specified in (5).

Using a simple calculation, the lower bound in (4) can be shown to be achieved by the privacy
filter depicted in Figure 2 with the erasure probability

δ = 1− ε

I(X; Y)
(5)

In light of Lemma 1, the possible range of the map ε 7→ gε(X; Y) is as depicted in Figure 3.
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Figure 3. The region of gε(X; Y) in terms of ε specified by (4).

We next show that ε 7→ gε(X; Y) is concave and continuous.

Lemma 2. For any given pair of random variables (X, Y) over X×Y, the mapping ε 7→ gε(X; Y) is concave
for ε ≥ 0.

Proof. It suffices to show that for any 0 ≤ ε1 < ε2 < ε3 ≤ I(X; Y), we have

gε3(X; Y)− gε1(X; Y)
ε3 − ε1

≤ gε2(X; Y)− gε1(X; Y)
ε2 − ε1

(6)

which, in turn, is equivalent to(
ε2 − ε1

ε3 − ε1

)
gε3(X; Y) +

(
ε3 − ε2

ε3 − ε1

)
gε1(X; Y) ≤ gε2(X; Y) (7)

Let PZ1|Y : Y → Z1 and PZ3|Y : Y → Z3 be two optimal privacy filters in Dε1(P) and Dε3(P) with
disjoint output alphabets Z1 and Z3, respectively.

We introduce an auxiliary binary random variable U ∼ Bernoulli(λ), independent of (X, Y),
where λ := ε2−ε1

ε3−ε1
and define the following random privacy filter PZλ |Y: We pick PZ3|Y if U = 1 and

PZ1|Y if U = 0, and let Zλ be the output of this random channel which takes values in Z1 ∪Z3. Note
that (X, Y)(−−Z(−− U. Then we have

I(X; Zλ) = I(X; Zλ, U) = I(X; Zλ|U) = λI(X; Z3) + (1− λ)I(X; Z1),
≤ ε2

which implies that PZλ |Y ∈ Dε2(P). On the other hand, we have

gε2(X; Y) ≥ I(Y; Zλ) = I(Y; Zλ, U) = I(Y; Zλ|U) = λI(Y; Z3) + (1− λ)I(Y; Z1)

=

(
ε2 − ε1

ε3 − ε1

)
gε3(X; Y) +

(
ε3 − ε2

ε3 − ε1

)
gε1(X; Y)

which, according to (7), completes the proof.

Remark 1. By the concavity of ε 7→ gε(X; Y), we can show that gε(X; Y) is a strictly increasing function
of ε ≤ I(X; Y). To see this, assume there exists ε1 < ε2 ≤ I(X; Y) such that gε1(X; Y) = gε2(X; Y).
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Since ε 7→ gε(X; Y) is concave, then it follows that for all ε ≥ ε2, gε(X; Y) = gε2(X; Y) and since for
ε = I(X; Y), gI(X;Y)(X; Y) = H(Y), implying that for any ε ≥ ε2, we must have gε(X; Y) = H(Y)
which contradicts the upper bound shown in (4).

Corollary 3. For any given pair of random variables (X, Y) over X ×Y, the mapping ε 7→ gε(X; Y) is
continuous for ε ≥ 0.

Proof. Concavity directly implies that the mapping ε 7→ gε(X; Y) is continuous on (0, ∞) (see for
example [31, Theorem 3.2]). Continuity at zero follows from the continuity of mutual information.

Remark 2. Using the concavity of the map ε 7→ gε(X; Y), we can provide an alternative proof for the
lower bound in (4). Note that point (I(X; Y), H(Y)) is always on the curve gε(X; Y), and hence by
concavity, the straight line ε 7→ ε

H(Y)
I(X;Y) is always below the lower convex envelop of gε(X; Y), i.e., the

chord connecting (0, g0(X; Y)) to (I(X; Y), H(Y)), and hence gε(X; Y) ≥ ε
H(Y)

I(X;Y) . In fact, this chord
yields a better lower bound for gε(X; Y) on ε ∈ [0, I(X; Y] as

gε(X; Y) ≥ ε
H(Y)

I(X; Y)
+ g0(X; Y)

[
1− ε

I(X; Y)

]
(8)

which reduces to the lower bound in (4) only if g0(X; Y) = 0.

2.2. Maximal Correlation as Privacy Measure

By adopting the mutual information as the privacy measure between the private and the
displayed data, we make sure that only limited bits of private information is revealed during the
process of transferring Y. In order to have an estimation theoretic guarantee of privacy, we propose
alternatively to measure privacy using a measure of correlation, the so-called maximal correlation.

Given the collection Cof all pairs of random variables (U, V) ∈ U ×V where U and V are
general alphabets, a mapping T : C → [0, 1] defines a measure of correlation [32] if T(U, V) = 0
if and only if U and V are independent (in short, U⊥⊥V) and T(U, V) attains its maximum value if
X = f (Y) or Y = g(X) almost surely for some measurable real-valued functions f and g. There
are many different examples of measures of correlation including the Hirschfeld-Gebelein-Rényi
maximal correlation [32–34], the information measure [35], mutual information and f -divergence
[36].

Definition 4 ([34]). Given random variables X and Y, the maximal correlation ρm(X; Y) is defined
as follows (recall that the correlation coefficient between U and V, is defined as ρ(U; V) := cov(U;V)

σU σV
,

where cov(U; V), σU and σV are the covariance between U and V, the standard deviations of U and
V, respectively):

ρm(X; Y) := sup
f ,g

ρ( f (X), g(Y)) = sup
( f (X),g(Y))∈S

E[ f (X)g(Y)]

where S is the collection of pairs of real-valued random variables f (X) and g(Y) such that E f (X) =
Eg(Y) = 0 and E f 2(X) = Eg2(Y) = 1. If S is empty (which happens precisely when at least one of X
and Y is constant almost surely) then one defines ρm(X; Y) to be 0. Rényi [34] derived an equivalent
characterization of maximal correlation as follows:

ρ2
m(X; Y) = sup

f :E f (X)=0,E f 2(X)=1
E
[
E2[ f (X)|Y]

]
. (9)

Measuring privacy in terms of maximal correlation, we propose

ĝε(X; Y) := sup
PZ|Y∈D̂ε(P)

I(Y; Z)

as the corresponding rate-privacy tradeoff, where

D̂ε(P) := {PZ|Y : X(−−Y(−−Z, ρ2
m(X; Z) ≤ ε, PXY = P}



Information 2016, 7, 15 8 of 37

Again, we equivalently call ĝε(X; Y) as the privacy-constrained information extraction function,
where here the privacy is guaranteed by ρ2

m(X; Z) ≤ ε.
Setting ε = 0 corresponds to the case where X and Z are required to be statistically independent,

i.e., absolutely no information leakage about the private source X is allowed. This is called perfect
privacy. Since the independence of X and Z is equivalent to I(X; Z) = ρm(X; Z) = 0, we have
ĝ0(X; Y) = g0(X; Y). However, for ε > 0, both gε(X; Y) ≤ ĝε(X; Y) and gε(X; Y) ≥ ĝε(X; Y) might
happen in general. For general ε ≥ 0, it directly follows using [23, Proposition 1] that

ĝε(X; Y) ≤ gε′(X; Y)

where ε′ := log(kε + 1) and k := |X| − 1
Similar to gε(X; Y), we see that for ε1 ≤ ε2, D̂ε1(P) ⊂ D̂ε2(P) and hence ε → ĝε(X; Y) is

non-decreasing. The following lemma is a counterpart of Lemma 1 for ĝε(X; Y).

Lemma 5. For a given joint distribution PXY defined over X×Y, ε 7→ ĝε(X;Y)
ε is non-increasing on (0, ∞).

Proof. Like Lemma 1, the proof is similar to the proof of [30, Lemma 1]. We, however, give a brief
proof for the sake of completeness.

For a given channel PZ|Y ∈ D̂ε(P) and δ ≥ 0, we can define a new channel with an additional
symbol e as follows

PZ′ |Y(z
′|y) =

{
(1− δ)PZ|Y(z′|y) if z′ 6= e
δ if z′ = e

(10)

It is easy to check that I(Y; Z′) = (1− δ)I(Y; Z) and also ρ2
m(X; Z′) = (1− δ)ρ2

m(X; Z); see [37, Page 8],
which implies that PZ′ |Y ∈ D̂ε′(P) where ε′ = (1− δ)ε. Now suppose that PZ|Y achieves ĝε(X; Y), that
is, ĝε(X; Y) = I(Y; Z) and ρ2

m(X; Z) = ε. We can then write

ĝε(X; Y)
ε

=
I(Y; Z)

ε
=

I(Y; Z′)
ε′

≤ gε′(X; Y)
ε′

Therefore, for ε′ ≤ ε we have gε′ (X;Y)
ε′ ≥ gε(X;Y)

ε .

Similar to the lower bound for gε(X; Y) obtained from Lemma 1, we can obtain a lower bound
for ĝε(X; Y) using Lemma 5. Before we get to the lower bound, we need a data processing lemma for
maximal correlation. The following lemma proves a version of strong data processing inequality for
maximal correlation from which the typical data processing inequality follows, namely, ρm(X; Z) ≤
min{ρm(Y; Z), ρm(X; Y)} for X, Y and Z satisfying X(−−Y(−−Z.

Lemma 6. For random variables X and Y with a joint distribution PXY, we have

sup
X(−− Y(−− Z

ρm(Y;Z) 6=0

ρm(X; Z)
ρm(Y; Z)

= ρm(X; Y)

Proof. For arbitrary zero-mean and unit variance measurable functions f ∈ L2(X) and g ∈ L2(Z)
and X(−−Y(−−Z, we have

E[ f (X)g(Z)] = E [E[ f (X)|Y]E[g(Z)|Y]] ≤ ρm(X; Y)ρm(Y; Z)

where the inequality follows from the Cauchy-Schwartz inequality and (9). Thus we obtain
ρm(X; Z) ≤ ρm(X; Y)ρm(Y; Z).

This bound is tight for the special case of X → Y → X′, where PX′ |Y is the backward channel
associated with PY|X . In the following, we shall show that ρm(X; Y)ρm(Y; X′) = ρm(X; X′).
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To this end, first note that the above implies that ρm(X; Y)ρm(Y; X′) ≥ ρm(X; X′). Since PXY =
PX′Y, it follows that ρm(X; Y) = ρm(Y; X′) and hence the above implies that ρ2

m(X; Y) ≥ ρm(X; X′).
One the other hand, we have

E[[E[ f (X)|Y]]2] = E[E[ f (X)|Y]E[ f (X′)|Y]] = E[E[ f (X) f (X′)|Y]] = E[ f (X) f (X′)]

which together with (9) implies that

ρ2
m(X; Y) ≤ sup

f :E f (X)=0,E f 2(X)=1
E[ f (X) f (X′)] ≤ ρm(X; X′)

Thus, ρ2
m(X; Y) = ρm(X; X′) which completes the proof.

Now a lower bound of ĝε(X; Y) can be readily obtained.

Corollary 7. For a given joint distribution PXY defined over X×Y, we have for any ε > 0

ĝε(X; Y) ≥ H(Y)
ρ2

m(X; Y)
min{ε, ρ2

m(X; Y)}

Proof. By Lemma 6, we know that for any Markov chain X(−−Y(−−Z, we have ρm(X; Z) ≤ ρm(X; Y)
and hence for ε ≥ ρ2

m(X; Y), the privacy constraint ρ2
m(X; Z) ≤ ε is not restrictive and hence

ĝε(X; Y) = H(Y) by setting Y = Z. For 0 < ε ≤ ρ2
m(X; Y), Lemma 5 implies that

ĝε(X; Y)
ε

≥ H(Y)
ρ2

m(X; Y)

from which the result follows.

A loose upper bound of ĝε(X; Y) can be obtained using an argument similar to the one used for
gε(X; Y). For the Markov chain X(−−Y(−−Z, we have

I(Y; Z) = I(X; Z) + I(Y; Z|X) ≤ I(X; Z) + H(Y|X)

(a)
≤ log

(
kρ2

m(X; Z) + 1
)
+ H(Y|X) (11)

where k := |X| − 1 and (a) comes from [23, Proposition 1]. We can, therefore, conclude from (11) and
Corollary 7 that

ε
H(Y)

ρ2
m(X; Y)

≤ ĝε(X; Y) ≤ log (kε + 1) + H(Y|X) (12)

Similar to Lemma 2, the following lemma shows that the ĝε(X; Y) is a concave function of ε.

Lemma 8. For any given pair of random variables (X, Y) with distribution P over X ×Y, the mapping
ε 7→ ĝε(X; Y) is concave for ε ≥ 0.

Proof. The proof is similar to that of Lemma 2 except that here for two optimal filters PZ1|Y : Y → Z1

and PZ3|Y : Y → Z3 in D̂ε1(P) and D̂ε3(P), respectively, and the random channel PZλ |Y : Y → Z
with output alphabet Z1 ∪Z3 constructed using a coin flip with probability γ, we need to show that
PZλ |Y ∈ D̂ε2(P), where 0 ≤ ε1 < ε2 < ε3 ≤ ρ2

m(X; Y). To show this, consider f : X → R such that
E[ f (X)] = 0 and E[ f 2(X)] = 1 and let U be a binary random variable as in the proof of Lemma 2. We
then have

E[E2[ f (X)|Zλ]] = E
[
E[E2[ f (X)|Zλ]|U]

]
(a)
= γE[E2[ f (X)|Z3]] + (1− γ)E[E2[ f (X)|Z1]] (13)
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where (a) comes from the fact that U is independent of X. We can then conclude from (13) and the
alternative characterization of maximal correlation (9) that

ρ2
m(X; Zλ) = sup

f :E[ f (X)]=0,E[ f 2(X)]=1
E[E2[ f (X)|Zλ]]

= sup
f :E[ f (X)]=0,E[ f 2(X)]=1

[
γE[E2[ f (X)|Z3]] + (1− γ)E[E2[ f (X)|Z1]]

]
≤ γρ2

m(X; Z3) + (1− γ)ρ2
m(X; Z1) ≤ γε3 + (1− γ)ε1

from which we can conclude that PZλ |Y ∈ D̂ε2(P).

2.3. Non-Trivial Filters For Perfect Privacy

As it becomes clear later, requiring that g0(X; Y) = 0 is a useful assumption for the analysis of
gε(X; Y). Thus, it is interesting to find a necessary and sufficient condition on the joint distribution
PXY which results in g0(X; Y) = 0.

Definition 9 ([38]). The random variable X is said to be weakly independent of Y if the rows of the
transition matrix PX|Y, i.e., the set of vectors {PX|Y(·|y), y ∈Y}, are linearly dependent.

The following lemma provides a necessary and sufficient condition for g0(X; Y) > 0.

Lemma 10. For a given (X, Y) with a given joint distribution PXY = PY × PX|Y, g0(X; Y) > 0 (and
equivalently ĝ0(X; Y) > 0) if and only if X is weakly independent of Y.

Proof. ⇒ direction:
Assuming that g0(X; Y) > 0 implies that there exists a random variable Z over an alphabet Z

such that the Markov condition X(−−Y(−−Z is satisfied and Z⊥⊥X while I(Y; Z) > 0. Hence, for any
z1 and z2 in Z, we must have PX|Z(x|z1) = PX|Z(x|z2) for all x ∈ X, which implies that

∑
y∈Y

PX|Y(x|y)PY|Z(y|z1) = ∑
y∈Y

PX|Y(x|y)PY|Z(y|z2)

and hence
∑

y∈Y
PX|Y(x|y)

[
PY|Z(y|z1)− PY|Z(y|z2)

]
= 0

Since Y is not independent of Z, there exist z1 and z2 such that PY|Z(y|z1) 6= PY|Z(y|z2) and hence
the above shows that the set of vectors PX|Y(·|y), y ∈Y is linearly dependent.

⇐ direction:
Berger and Yeung [38, Appendix II], in a completely different context, showed that if X being

weakly independent of Y, one can always construct a binary random variable Z correlated with Y
which satisfies X(−−Y(−−Z and X⊥⊥Z, and hence g0(X; Y) > 0.

Remark 3. Lemma 10 first appeared in [1]. However, Calmon et al. [20] studied (1), the dual version
of gε(X; Y), and showed an equivalent result for tR(X; Y). In fact, they showed that for a given PXY,
one can always generate Z such that I(X; Z) = 0, I(Y; Z) > 0 and X(−−Y(−−Z, or equivalently
g0(X; Y) > 0, if and only if the smallest singular value of the conditional expectation operator f 7→
E[ f (X)|Y] is zero. This condition can, in fact, be shown to be equivalent to the condition in Lemma 10.

Remark 4. It is clear that, according to Definition 9, X is weakly independent of Y if |Y| > |X|.
Hence, Lemma 10 implies that g0(X; Y) > 0 if Y has strictly larger alphabet than X.

In light of the above remark, in the most common case of |Y| = |X|, one might have
g0(X; Y) = 0, which corresponds to the most conservative scenario as no privacy leakage implies
no broadcasting of observable data. In such cases, the rate of increase of gε(X; Y) at ε = 0, that
is g′0(X; Y) := d

dε gε(X; Y)|ε=0, which corresponds to the initial efficiency of privacy-constrained
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information extraction, proves to be very important in characterizing the behavior of gε(X; Y) for all
ε ≥ 0. This is because, for example, by concavity of ε 7→ gε(X; Y), the slope of gε(X; Y) is maximized
at ε = 0 and so

g′0(X; Y) = lim
ε→0

gε(X; Y)
ε

= sup
ε>0

gε(X; Y)
ε

and hence gε(X; Y) ≤ εg′0(X; Y) for all ε ≤ I(X; Y) which, together with (4), implies that gε(X; Y) =
ε

H(Y)
I(X;Y) if g′0(X; Y) ≤ H(Y)

I(X;Y) . In the sequel, we always assume that X is not weakly independent of Y,
or equivalently g0(X; Y) = 0. For example, in light of Lemma 10 and Remark 4, we can assume that
|Y| ≤ |X|.

It is easy to show that, X is weakly independent of binary Y if and only if X and Y are
independent (see, e.g., [38, Remark 2]). The following corollary, therefore, immediately follows from
Lemma 10.

Corollary 11. Let Y be a non-degenerate binary random variable correlated with X. Then g0(X; Y) = 0.

3. Operational Interpretations of the Rate-Privacy Function

In this section, we provide a scenario in which gε(X; Y) appears as a boundary point of
an achievable rate region and thus giving an information-theoretic operational interpretation for
gε(X; Y). We then proceed to present an estimation-theoretic motivation for ĝε(X; Y).

3.1. Dependence Dilution

Inspired by the problems of information amplification [39] and state masking [40], Courtade [26]
proposed the information-masking tradeoff problem as follows. The tuple (Ru, Rv, ∆A, ∆M) ∈ R4 is said
to be achievable if for two given separated sources U ∈ U and V ∈ V and any ε > 0 there exist
mappings f : Un → {1, 2, . . . , 2nRu} and g : Vn → {1, 2, . . . , 2nRv} such that I(Un; f (Un), g(Vn)) ≤
n(∆M + ε) and I(Vn; f (Un), g(Vn)) ≥ n(∆A − ε). In other words, (Ru, Rv, ∆A, ∆M) is achievable if
there exist indices K and J of rates Ru and Rv given Un and Vn, respectively, such that the receiver in
possession of (K, J) can recover at most n∆M bits about Un and at least n∆A about Vn. The closure of
the set of all achievable tuple (Ru, Rv, ∆A, ∆M) is characterized in [26]. Here, we look at a similar
problem but for a joint encoder. In fact, we want to examine the achievable rate of an encoder
observing both Xn and Yn which masks Xn and amplifies Yn at the same time, by rates ∆M and
∆A, respectively.

We define a (2nR, n) dependence dilution code by an encoder

fn : Xn ×Yn → {1, 2, . . . , 2nR}

and a list decoder
gn : {1, 2, . . . , 2nR} → 2Y

n

where 2Y
n

denotes the power set of Yn. A dependence dilution triple (R, ∆A, ∆M) ∈ R3
+ is said to be

achievable if, for any δ > 0, there exists a (2nR, n) dependence dilution code that for sufficiently large
n satisfies the utility constraint:

Pr (Yn /∈ gn(J)) < δ (14)

having a fixed list size
|gn(J)| = 2n(H(Y)−∆A), ∀J ∈ {1, 2, . . . , 2nR} (15)

where J := fn(Xn, Yn) is the encoder’s output, and satisfies the privacy constraint:

1
n

I(Xn; J) ≤ ∆M + δ (16)

Intuitively speaking, upon receiving J, the decoder is required to construct list gn(J) ⊂ Yn

of fixed size which contains likely candidates of the actual sequence Yn. Without any observation,
the decoder can only construct a list of size 2nH(Y) which contains Yn with probability close to one.
However, after J is observed and the list gn(J) is formed, the decoder’s list size can be reduced to
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2n(H(Y)−∆A) and thus reducing the uncertainty about Yn by 0 ≤ n∆A ≤ nH(Y). This observation led
Kim et al. [39] to show that the utility constraint (14) is equivalent to the amplification requirement

1
n

I(Yn; J) ≥ ∆A − δ (17)

which lower bounds the amount of information J carries about Yn. The following lemma gives an
outer bound for the achievable dependence dilution region.

Theorem 12. Any achievable dependence dilution triple (R, ∆A, ∆M) satisfies
R ≥ ∆A

∆A ≤ I(Y; U)

∆M ≥ I(X; U)− I(Y; U) + ∆A

for some auxiliary random variable U ∈ U with a finite alphabet and jointly distributed with X and Y.

Before we prove this theorem, we need two preliminary lemmas. The first lemma is an extension
of Fano’s inequality for list decoders and the second one makes use of a single-letterization technique
to express I(Xn; J)− I(Yn; J) in a single-letter form in the sense of Csiszár and Körner [29].

Lemma 13 ([39,41]). Given a pair of random variables (U, V) defined over U×V for finite V and arbitrary
U, any list decoder g : U→ 2V , U 7→ g(U) of fixed list size m (i.e., |g(u)| = m, ∀u ∈ U), satisfies

H(V|U) ≤ hb(pe) + pe log |V|+ (1− pe) log m

where pe := Pr(V /∈ g(U)) and hb : [0, 1]→ [0, 1] is the binary entropy function.

This lemma, applied to J and Yn in place of U and V, respectively, implies that for any list
decoder with the property (14), we have

H(Yn|J) ≤ log |gn(J)|+ nεn (18)

where εn := 1
n + (log |Y| − 1

n log |gn(J)|)pe and hence εn → 0 as n→ ∞.

Lemma 14. Let (Xn, Yn) be n i.i.d. copies of a pair of random variables (X, Y). Then for a random variable J
jointly distributed with (Xn, Yn), we have

I(Xn; J)− I(Yn; J) =
n

∑
i=1

[I(Xi; Ui)− I(Yi; Ui)]

where Ui := (J, Xn
i+1, Yi−1).

Proof. Using the chain rule for the mutual information, we can express I(Xn; J) as follows

I(Xn; J) =
n

∑
i=1

I(Xi; J|Xn
i+1) =

n

∑
i=1

I(Xi; J, Xn
i+1)

=
n

∑
i=1

[I(Xi; J, Xn
i+1, Yi−1)− I(Xi; Yi−1|J, Xn

i+1)]

=
n

∑
i=1

I(Xi; Ui)−
n

∑
i=1

I(Xi; Yi−1|J, Xn
i+1) (19)
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Similarly, we can expand I(Yn; J) as

I(Yn; J) =
n

∑
i=1

I(Yi; J|Yi−1) =
n

∑
i=1

I(Yi; J, Yi−1)

=
n

∑
i=1

[I(Yi; J, Xn
i+1, Yi−1)− I(Yi; Xn

i+1|J, Yi−1)]

=
n

∑
i=1

I(Yi; Ui)−
n

∑
i=1

I(Yi; Xn
i+1|J, Yi−1) (20)

Subtracting (20) from (19), we get

I(Xn; J)− I(Yn; J) =
n

∑
i=1

[I(Xi; Ui)− I(Yi; Ui)]−
n

∑
i=1

[I(Xi; Yi−1|J, Xn
i+1)− I(Xn

i+1; Yi|J, Yi−1)]

(a)
=

n

∑
i=1

[I(Xi; Ui)− I(Yi; Ui)]

where (a) follows from the Csiszár sum identity [42].

Proof of Theorem 12. The rate R can be bounded as

nR ≥ H(J) ≥ I(Yn; J) (21)
= nH(Y)− H(Yn|J)
(a)
≥ nH(Y)− log |gn(J)| − nεn

(b)
= n∆A − nεn (22)

where (a) follows from Fano’s inequality (18) with εn → 0 as n → ∞ and (b) is due to (15). We can
also upper bound ∆A as

∆A
(a)
= H(Yn)− log |gn(J)|
(b)
≤ H(Yn)− H(Yn|J) + nεn

=
n

∑
i=1

H(Yi)− H(Yi|Yi−1, J) + nεn

≤
n

∑
i=1

H(Yi)− H(Yi|Yi−1, Xn
i+1, J) + nεn

=
n

∑
i=1

I(Yi; Ui) + nεn (23)

where (a) follows from (15), (b) follows from (18), and in the last equality the auxiliary random
variable Ui := (Yi−1, Xn

i+1, J) is introduced.
We shall now lower bound I(Xn; J):

n(∆M + δ) ≥ I(Xn; J)
(a)
= I(Yn; J) +

n

∑
i=1

[I(Xi; Ui)− I(Yi; Ui)]

(b)
≥ n∆A +

n

∑
i=1

[I(Xi; Ui)− I(Yi; Ui)]− nεn (24)

where (a) follows from Lemma 14 and (b) is due to Fano’s inequality and (15) (or equivalently from
(17)).
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Combining (22), (23) and (24), we can write

R ≥ ∆A − εn

∆A ≤ I(YQ; UQ|Q) + εn = I(YQ; UQ, Q) + εn

∆M ≥ ∆A + I(XQ; UQ|Q)− I(YQ; UQ|Q)− ε′n
= ∆A + I(XQ; UQ, Q)− I(YQ; UQ, Q)− ε′n

where ε′n := εn + δ and Q is a random variable distributed uniformly over {1, 2, . . . , n} which is
independent of (X, Y) and hence I(YQ; UQ|Q) = 1

n ∑n
i=1 I(Yi; Ui). The results follow by denoting

U := (UQ, Q) and noting that YQ and XQ have the same distributions as Y and X, respectively.

If the encoder does not have direct access to the private source Xn, then we can define the encoder
mapping as fn : Yn → {1, 2, . . . , snR}. The following corollary is an immediate consequence of
Theorem 12.

Corollary 15. If the encoder does not see the private source, then for all achievable dependence dilution triple
(R, ∆A, ∆M), we have 

R ≥ ∆A

∆A ≤ I(Y; U)

∆M ≥ I(X; U)− I(Y; U) + ∆A

for some joint distribution PXYU = PXYPU|Y where the auxiliary random variable U ∈ U satisfies |U| ≤
|Y|+ 1.

Remark 5. If source Y is required to be amplified (according to (17)) at maximum rate, that is, ∆A =
I(Y; U) for an auxiliary random variable U which satisfies X(−−Y(−−U, then by Corollary 15, the
best privacy performance one can expect from the dependence dilution setting is

∆∗M = min
U:X(−− Y(−− U

I(Y;U)≥∆A

I(X; U) (25)

which is equal to the dual of gε(X; Y) evaluated at ∆A, t∆A(X; Y), as defined in (1).

The dependence dilution problem is closely related to the discriminatory lossy source coding
problem studied in [15]. In this problem, an encoder f observes (Xn, Yn) and wants to describe this
source to a decoder, g, such that g recovers Yn within distortion level D and I( f (Xn, Yn); Xn) ≤
n∆M. If the distortion level is Hamming measure, then the distortion constraint and the amplification
constraint are closely related via Fano’s inequality. Moreover, dependence dilution problem reduces
to a secure lossless (list decoder of fixed size 1) source coding problem by setting ∆A = H(H), which
is recently studied in [43].

3.2. MMSE Estimation of Functions of Private Information

In this section, we provide a justification for the privacy guarantee ρ2
m(X; Z) ≤ ε. To this end, we

recall the definition of the minimum mean squared error estimation.

Definition 16. Given random variables U and V, mmse(U|V) is defined as the minimum error of an
estimate, g(V), of U based on V, measured in the mean-square sense, that is

mmse(U|V) := inf
g∈L2(V)

E[(U − g(V))2] = E[(U −E[U|V])2] = E[var(U|V)] (26)

where var(U|V) denotes the conditional variance of U given V.

It is easy to see that mmse(U|V) = 0 if and only if U = f (V) for some measurable function f
and mmse(U|V) = var(U) if and only if U⊥⊥V. Hence, unlike for the case of maximal correlation, a
small value of mmse(U|V) implies a strong dependence between U and V. Hence, although it is not a
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"proper" measure of correlation, in a certain sense it measures how well one random variable can be
predicted from another one.

Given a non-degenerate measurable function f : X → R, consider the following constraint on
mmse( f (X)|Y)

(1− ε)var( f (X)) ≤ mmse( f (X)|Z) ≤ var( f (X)). (27)

This guarantees that no adversary knowing Z can efficiently estimate f (X). First consider the case
where f is an identity function, i.e., f (x) = x. In this case, a direct calculation shows that

mmse(X|Z) (a)
= E[(X−E[X|Z])2] = E[X2]−E[(E[X|Z])2]

= var(X)(1− ρ2(X;E[X|Z]))
(b)
≥ var(X)(1− ρ2

m(X; Z))

where (a) follows from (26) and (b) is due to the definition of maximal correlation. Having imposed
ρ2

m(X; Z) ≤ ε, we, can therefore conclude that the MMSE of estimating X given Z satisfies

(1− ε)var(X) ≤ mmse(X|Z) ≤ var(X) (28)

which shows that ρ2
m(X; Z) ≤ ε implies (27) for f (x) = x. However, in the following we show that the

constraint ρ2
m(X; Z) ≤ ε is, indeed, equivalent to (27) for any non-degenerate measurable f : X → R.

Definition 17 ([44]). A joint distribution PUV satisfies a Poincaré inequality with constant c ≤ 1 if for
all f : U→ R

c · var( f (U)) ≤ mmse( f (U)|V)

and the Poincaré constant for PUV is defined as

ϑ(U; V) := inf
f

mmse( f (U)|V)

var( f (U))

The privacy constraint (27) can then be viewed as

ϑ(X; Z) ≥ 1− ε. (29)

Theorem 18 ([44]). For any joint distribution PUV , we have

ϑ(U; V) = 1− ρ2
m(U; V)

In light of Theorem 18 and (29), the privacy constraint (27) is equivalent to ρ2
m(X; Z) ≤ ε, that is,

ρ2
m(X; Z) ≤ ε⇐⇒ (1− ε)var( f (X)) ≤ mmse( f (X)|Z) ≤ var( f (X))

for any non-degenerate measurable functions f : X → R.
Hence, ĝε(X; Y) characterizes the maximum information extraction from Y such that no

(non-trivial) function of X can be efficiently estimated, in terms of MMSE (27), given the extracted
information.

4. Observation Channels for Minimal and Maximal gε(X; Y)

In this section, we characterize the observation channels which achieve the lower or upper
bounds on the rate-privacy function in (4). We first derive general conditions for achieving the lower
bound and then present a large family of observation channels PY|X which achieve the lower bound.
We also give a family of PY|X which attain the upper bound on gε(X; Y).

4.1. Conditions for Minimal gε(X; Y)

Assuming that g0(X; Y) = 0, we seek a set of conditions on PXY such that gε(X; Y) is linear in ε,
or equivalently, gε(X; Y) = ε

H(Y)
I(X;Y) . In order to do this, we shall examine the slope of gε(X; Y) at zero.
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Recall that by concavity of gε(X; Y), it is clear that g′0(X; Y) ≥ H(Y)
I(X;Y) . We strengthen this bound in the

following lemmas. For this, we need to recall the notion of Kullback-Leibler divergence. Given two
probability distribution P and Q supported over a finite alphabet U,

D(P||Q) := ∑
u∈U

P(u) log
(

P(u)
Q(u)

)
(30)

Lemma 19. For a given joint distribution PXY = PY × PX|Y, if g0(X; Y) = 0, then for any ε ≥ 0

g′0(X; Y) ≥ max
y∈Y

− log PY(y)
D(PX|Y(·|y)||PX(·))

Proof. The proof is given in Appendix A.

Remark 6. Note that if for a given joint distribution PXY, there exists y0 ∈ Y such that
D(PX|Y(·|y0)||PX(·)) = 0, it implies that PX|Y(·|y0) = PX(x). Consider the binary random variable
Z ∈ {1, e} constructed according to the distribution PZ|Y(1|y0) = 1 and PZ|Y(e|y) = 1 for y ∈Y\{y0}.
We can now claim that Z is independent of X, because PX|Z(x|1) = PX|Y(x|y0) = PX(x) and

PX|Z(x|e) = ∑
y 6=y0

PX|Y(x|y)PY|Z(y|e) = ∑
y 6=y0

PX|Y(x|y) PY(y)
1− PY(y0)

=
1

1− PY(y0)
∑

y 6=y0

PXY(x, y) = PX(x)

Clearly, Z and Y are not independent, and hence g0(X; Y) > 0. This implies that the right-hand
side of inequality in Lemma 19 can not be infinity.

In order to prove the main result, we need the following simple lemma.

Lemma 20. For any joint distribution PXY, we have

H(Y)
I(X; Y)

≤ max
y∈Y

− log PY(y)
D(PX|Y(·|y)||PX(x))

where equality holds if and only if there exists a constant c > 0 such that − log PY(y) =
cD(PX|Y(·|y)||PX(x)) for all y ∈Y.

Proof. It is clear that

H(Y)
I(X; Y)

=
−∑y∈Y PY(y) log PY(y)

∑y∈Y PY(y)D(PX|Y(·|y)||PX(x))
≤ max

y∈Y

− log PY(y)
D(PX|Y(·|y)||PX(x))

where the inequality follows from the fact that for any three sequences of positive numbers {ai}n
i=1,

{bi}n
i=1 and {λi}n

i=1 we have ∑n
i=1 λiai

∑n
i=1 λibi

≤ max1≤i≤n
ai
bi

where equality occurs if and only if ai
bi
= c for all

1 ≤ i ≤ n.

Now we are ready to state the main result of this subsection.

Theorem 21. For a given (X, Y) with joint distribution PXY = PY × PX|Y, if g0(X; Y) = 0 and ε 7→
gε(X; Y) is linear for 0 ≤ ε ≤ I(X; Y), then for any y ∈Y

H(Y)
I(X; Y)

=
− log PY(y)

D(PX|Y(·|y)||PX(·))
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Proof. Note that the fact that g0(X; Y) = 0 and gε(X; Y) is linear in ε is equivalent to gε(X; Y) =

ε
H(Y)

I(X;Y) . It is, therefore, immediate from Lemmas 19 and 20 that we have

g′0(X; Y)
(a)
=

H(Y)
I(X; Y)

(b)
≤ max

y∈Y

− log PY(y)
D(PX|Y(·|y)||PX(x))

(c)
≤ g′0(X; Y) (31)

where (a) follows from the fact that gε(X; Y) = ε
H(Y)

I(X;Y) and (b) and (c) are due to Lemmas 20 and 19,
respectively. The inequality in (31) shows that

H(Y)
I(X; Y)

= max
y∈Y

− log PY(y)
D(PX|Y(·|y)||PX(x))

(32)

According to Lemma 20, (32) implies that the ratio of − log PY(y)
D(PX|Y(·|y)||PX(x)) does not depend on y ∈Y

and hence the result follows.

This theorem implies that if there exists y = y1 and y = y2 such that log PY(y)
D(PX|Y(·|y)||PX(x)) results in

two different values, then ε 7→ gε(X, Y) cannot achieve the lower bound in (4), or equivalently

gε(X; Y) > ε
H(Y)

I(X; Y)

This, therefore, gives a necessary condition for the lower bound to be achievable. The following
corollary simplifies this necessary condition.

Corollary 22. For a given joint distribution PXY = PY × PX|Y, if g0(X; Y) = 0 and ε 7→ gε(X; Y) is linear,
then the following are equivalent:

(i) Y is uniformly distributed,
(ii) D(PX|Y(·|y)||PX(·)) is constant for all y ∈Y.

Proof. (i)⇒ (ii):
From Theorem 21, we have for all y ∈Y

H(Y)
I(X; Y)

=
− log(PY(y))

D
(

PX|Y(·|y)||PX(·)
) (33)

Letting D := D
(

PX|Y(·|y)||PX(·)
)

for any y ∈ Y, we have ∑y PY(y)D = I(X; Y) and hence
D = I(X; Y), which together with (33) implies that H(Y) = − log(PY(y)) for all y ∈ Y and hence Y
is uniformly distributed.

(ii)⇒ (i):
When Y is uniformly distributed, we have from (33) that I(X; Y) = D

(
PX|Y(·|y)||PX(·)

)
which

implies that D
(

PX|Y(·|y)||PX(·)
)

is constant for all y ∈Y.

Example 1. Suppose PY|X is a binary symmetric channel (BSC) with crossover probability 0 < α < 1
and PX = Bernoulli(0.5). In this case, PX|Y is also a BSC with input distribution PY = Bernoulli(0.5).
Note that Corollary 11 implies that g0(X; Y) = 0. We will show that gε(X; Y) is linear as a function of
ε ≥ 0 for a larger family of symmetric channels (including BSC) in Corollary 24. Hence, the BSC with
uniform input nicely illustrates Corollary 22, because D(PX|Y(·|y)||PX(·)) = 1− h(α) for y ∈ {0, 1}.

Example 2. Now suppose PX|Y is a binary asymmetric channel such that PX|Y(·|0) = Bernoulli(α0),
PX|Y(·|1) = Bernoulli(α1) for some 0 < α0, α1 < 1 and input distribution PY = Bernoulli(p), 0 < p ≤
0.5. It is easy to see that if α0 + α1 = 1 then D(PX|Y(·|y)||PX(·)) does not depend on y and hence we
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can conclude from Corollary 22 (noticing that g0(X; Y) = 0) that in this case for any p < 0.5, gε(X; Y)
is not linear and hence for 0 < ε < I(X; Y)

gε(X; Y) > ε
H(Y)

I(X; Y)

In Theorem 21, we showed that when gε(X; Y) achieves its lower bound, illustrated in (4), the
slope of the mapping ε 7→ gε(X; Y) at zero is equal to − log PY(y)

D(PX|Y(·|y)||PX(·))
for any y ∈ Y. We will show

in the next section that the reverse direction is also true at least for a large family of binary-input
symmetric output channels, for instance when PY|X is a BSC, and thus showing that in this case,

g′0(X; Y) =
− log PY(y)

D(PX|Y(·|y)||PX(·))
, ∀y ∈Y ⇐⇒ gε(X; Y) = ε

H(Y)
I(X; Y)

, 0 ≤ ε ≤ I(X; Y)

4.2. Special Observation Channels

In this section, we apply the results of last section to different joint distributions PXY. In the first
family of channels from X to Y, we look at the case where Y is binary and the reverse channel PX|Y
has symmetry in a particular sense, which will be specified later. One particular case of this family of
channels is when PX|Y is a BSC. As a family of observation channels which achieves the upper bound
of gε(X; Y), stated in (4), we look at the class of erasure channels from X → Y, i.e., Y is an erasure
version of X.

4.2.1. Observation Channels With Symmetric Reverse

The first example of PXY that we consider for binary Y is the so-called Binary Input Symmetric
Output (BISO) PX|Y, see for example [45,46]. Suppose Y = {0, 1} and X = {0,±1,±2, . . . ,±k},
and for any x ∈ X we have PX|Y(x|1) = PX|Y(−x|0). This clearly implies that p0 := PX|Y(0|0) =

PX|Y(0|1). We notice that with this definition of symmetry, we can always assume that the output
alphabet X = {±1,±2, . . . ,±k} has even number of elements because we can split X = 0 into two
outputs, X = 0+ and X = 0−, with PX|Y(0

−|0) = PX|Y(0
+|0) = p0

2 and PX|Y(0
−|1) = PX|Y(0

+|1) =
p0
2 . The new channel is clearly essentially equivalent to the original one, see [46] for more details.

This family of channels can also be characterized using the definition of quasi-symmetric channels
[47, Definition 4.17]. A channel W is BISO if (after making |X| even) the transition matrix PX|Y
can be partitioned along its columns into binary-input binary-output sub-arrays in which rows are
permutations of each other and the column sums are equal. It is clear that binary symmetric channels
and binary erasure channels are both BISO. The following lemma gives an upper bound for gε(X, Y)
when PX|Y belongs to such a family of channels.

Lemma 23. If the channel PX|Y is BISO, then for ε ∈ [0, I(X; Y)],

ε
H(Y)

I(X; Y)
≤ gε(X; Y) ≤ H(Y)− I(X; Y)− ε

C(PX|Y)

where C(PX|Y) denotes the capacity of PX|Y.

Proof. The lower bound has already appeared in (4). To prove the upper bound note that by
Markovity X(−−Y(−−Z, we have for any x ∈ X and z ∈Z

PX|Z(x|z) = PX|Y(x|0)PY|Z(0|z) + PX|Y(x|1)PY|Z(1|z) (34)

Now suppose Z0 := {z : PY|Z(0|z) ≤ PY|Z(1|z)} and similarly Z1 := {z : PY|Z(1|z) ≤
PY|Z(0|z)}. Then (34) allows us to write for z ∈Z0

PX|Z(x|z) = PX|Y(x|0)h−1
b (H(Y|Z = z)) + PX|Y(x|1)(1− h−1

b (H(Y|Z = z))) (35)
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where h−1
b : [0, 1]→ [0, 0.5] is the inverse of binary entropy function, and for z ∈Z1,

PX|Z(x|z) = PX|Y(x|0)(1− h−1
b (H(Y|Z = z))) + PX|Y(x|1)h−1

b (H(Y|Z = z)) (36)

Letting P ⊗ h−1
b (H(Y|z)) and P̃ ⊗ h−1

b (H(Y|z)) denote the right-hand sides of (35) and (36),
respectively, we can, hence, write

H(X|Z) = ∑
z∈Z

PZ(z)H(X|Z = z)

(a)
= ∑

z∈Z0

PZ(z)H(P⊗ h−1
b (H(Y|Z = z))) + ∑

z∈Z1

PZ(z)H(P̃⊗ h−1
b (H(Y|Z = z)))

(b)
≤ ∑

z∈Z0

PZ(z)
[
(1− H(Y|Z = z))H(P⊗ h−1

b (0)) + H(Y|Z = z)H(P⊗ h−1
b (1))

]
+ ∑

z∈Z1

PZ(z)
[
(1− H(Y|Z = z))H(P̃⊗ h−1

b (0)) + H(Y|Z = z)H(P̃⊗ h−1
b (1))

]
(c)
= ∑

z∈Z0

PZ(z) [(1− H(Y|Z = z))H(X|Y) + H(Y|Z = z)H(Xunif)]

+ ∑
z∈Z1

PZ(z) [(1− H(Y|Z = z))H(X|Y) + H(Y|Z = z)H(Xunif)]

= H(X|Y)[1− H(Y|Z)] + H(Y|Z)H(Xunif)

where H(Xunif) denotes the entropy of X when Y is uniformly distributed. Here, (a) is due to (35) and
(36), (b) follows form convexity of u 7→ H(P⊗ h−1

b (u))) for all u ∈ [0, 1] [48] and Jensen’s inequality.
In (c), we used the symmetry of channel PX|Y to show that H(X|Y = 0) = H(X|Y = 1) = H(X|Y).
Hence, we obtain

H(Y|Z) ≥ H(X|Z)− H(X|Y)
H(Xunif)− H(X|Y) =

I(X; Y)− I(X; Z)
C(PX|Y)

where the equality follows from the fact that for BISO channel (and in general for any
quasi-symmetric channel) the uniform input distribution is the capacity-achieving distribution [47,
Lemma 4.18]. Since gε(X; Y) is attained when I(X; Z) = ε, the conclusion immediately follows.

This lemma then shows that the larger the gap between I(X; Y) and I(X; Y′) is for Y′ ∼
Bernoulli(0.5), the more gε(X; Y) deviates from its lower bound. When Y ∼ Bernoulli(0.5), then
C(PY|X) = I(X; Y) and H(Y) = 1 and hence Lemma 23 implies that

ε

I(X; Y)
≤ gε(X; Y) ≤ 1− I(X; Y)− ε

I(X; Y)
=

ε

I(X; Y)

and hence we have proved the following corollary.

Corollary 24. If the channel PX|Y is BISO and Y ∼ Bernoulli(0.5), then for any ε ≥ 0

gε(X; Y) =
1

I(X; Y)
min{ε, I(X; Y)}

This corollary now enables us to prove the reverse direction of Theorem 21 for the family of BISO
channels.

Theorem 25. If PX|Y is a BISO channel, then the following statements are equivalent:

(i) gε(X; Y) = ε
H(Y)

I(X;Y) for 0 ≤ ε ≤ I(X; Y).
(ii) The initial efficiency of privacy-constrained information extraction is

g′0(X; Y) =
− log PY(y)

D(PX|Y(·|y)||PX(·))
, ∀y ∈Y
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Proof. (i)⇒ (ii).
This follows from Theorem 21.
(ii)⇒ (i).
Let Y ∼ Bernoulli(p) for 0 < p < 1, and, as before, X = {±1,±2, . . . ,±k}, so that PX|Y is

determined by a 2× (2k) matrix. We then have

− log PY(0)
D(PX|Y(·|0)||PX(·))

=
log(1− p)

H(X|Y) + ∑k
x=−k PX|Y(x|0) log(PX(x))

(37)

and
− log PY(1)

D(PX|Y(·|1)||PX(·))
=

log(p)
H(X|Y) + ∑k

x=−k PX|Y(x|1) log(PX(x))
. (38)

The hypothesis implies that (37) is equal to (38), that is,

log(1− p)
H(X|Y) + ∑k

x=−k PX|Y(x|0) log(PX(x))
=

log(p)
H(X|Y) + ∑k

x=−k PX|Y(x|1) log(PX(x))
(39)

It is shown in Appendix B that (39) holds if and only if p = 0.5. Now we can invoke Corollary 24
to conclude that gε(X; Y) = ε

H(Y)
I(X;Y) .

This theorem shows that for any BISO PX|Y channel with uniform input, the optimal privacy
filter is an erasure channel depicted in Figure 2. Note that if PX|Y is a BSC with uniform input PY =

Bernoulli(0.5), then PY|X is also a BSC with uniform input PX = Bernoulli(0.5). The following corollary
specializes Corollary 24 for this case.

Corollary 26. For the joint distribution PXPY|X = Bernoulli(0.5)×BSC(α), the binary erasure channel with
erasure probability (shown in Figure 4)

δ(ε, α) := 1− ε

I(X; Y)
(40)

for 0 ≤ ε ≤ I(X; Y), is the optimal privacy filter in (3). In other words, for ε ≥ 0

gε(X; Y) =
1

I(X; Y)
min{ε, I(X; Y)}

Moreover, for a given 0 < α < 1
2 , PX = Bernoulli(0.5) is the only distribution for which ε 7→ gε(X; Y)

is linear. That is, for PXPY|X = Bernoulli(p)× BSC(α), 0 < p < 0.5, we have

gε(X; Y) > ε
H(Y)

I(X; Y)

Proof. As mentioned earlier, since PX = Bernoulli(0.5) and PY|X is BSC(α), it follows that PX|Y is also
a BSC with uniform input and hence from Corollary 24, we have gε(X; Y) = ε

I(X;Y) . As in this case
gε(X; Y) achieves the lower bound given in Lemma 1, we conclude from Figure 2 that BEC(δ(ε, α)),
where δ(ε, α) = 1 − ε

I(X;Y) , is an optimal privacy filter. The fact that PX = Bernoulli(0.5) is the
only input distribution for which ε 7→ gε(X; Y) is linear follows from the proof of Theorem 25. In
particular, we saw that a necessary and sufficient condition for gε(X; Y) being linear is that the ratio
− log PY(y)

D(PX|Y(·|y)||PX(·))
is constant for all y ∈ Y. As shown before, this is equivalent to Y ∼ Bernoulli(0.5).

For the binary symmetric channel, this is equivalent to X ∼ Bernoulli(0.5).
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1− α
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1− δ(ε, α)

1− δ(ε, α)

Figure 4. Optimal privacy filter for PY|X = BSC(α) with uniform X where δ(ε, α) is specified in (40).

The optimal privacy filter for BSC(α) and uniform X is shown in Figure 4. In fact, this corollary
immediately implies that the general lower-bound given in (4) is tight for the binary symmetric
channel with uniform X.

4.2.2. Erasure Observation Channel

Combining (8) and Lemma 1, we have for ε ≤ I(X; Y)

ε
H(Y)

I(X; Y)
+ g0(X; Y)

[
1− ε

I(X; Y)

]
≤ gε(X; Y) ≤ H(Y|X) + ε (41)

In the following we show that the above upper and lower bound coincide when PY|X is an
erasure channel, i.e., PY|X(x|x) = 1− δ and PY|X(e|x) = δ for all x ∈ X and 0 ≤ δ ≤ 1.

Lemma 27. For any given (X, Y), if PY|X is an erasure channel (as defined above), then

gε(X; Y) = H(Y|X) + min{ε, I(X; Y)}

for any ε ≥ 0.

Proof. It suffices to show that if PY|X is an erasure channel, then g0(X; Y) = H(Y|X). This follows,
since if g0(X; Y) = H(Y|X), then the lower bound in (41) becomes H(Y|X) + ε and thus gε(X; Y) =
H(Y|X) + ε.

Let |X| = m and Y = X ∪ {e} where e denotes the erasure symbol. Consider the following
privacy filter to generate Z ∈Y:

PZ|Y(z|y) =
{ 1

m if y 6= e, z 6= e,
1 if y = z = e.

For any x ∈ X, we have

PZ|X(z|x) = PZ|Y(z|x)PY|X(x|x) + PZ|Y(z|e)PY|X(e|x) =
[

1− δ

m

]
1{z 6=e} + δ1{z=e}

which implies Z⊥⊥X and thus I(X; Z) = 0. On the other hand, PZ(z) =
[

1−δ
m

]
1{z 6=e} + δ1{z=e}, and

therefore we have

g0(X; Y) ≥ I(Y; Z) = H(Z)− H(Z|Y) = H
(

1− δ

m
, . . . ,

1− δ

m
, δ

)
− (1− δ) log(m)

= h(δ) = H(Y|X)

It then follows from Lemma 1 that g0(X; Y) = H(Y|X), which completes the proof.

Example 3. In light of this lemma, we can conclude that if PY|X = BEC(δ), then the optimal privacy
filter is a combination of an identity channel and a BSC(α(ε, δ)), as shown in Figure 5, where 0 ≤
α(ε, δ) ≤ 1

2 is the unique solution of

(1− δ)[hb(α ∗ p)− hb(α)] = ε (42)
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where X ∼ Bernoulli(p), p ≤ 0.5 and a ∗ b = a(1 − b) + b(1 − a). Note that it is easy to check
that I(X; Z) = (1− δ)[hb(α ∗ p) − hb(α)]. Therefore, in order for this channel to be a valid privacy
filter, the crossover probability, α(ε, δ), must be chosen such that I(X; Z) = ε. We note that for fixed
0 < δ < 1 and 0 < p < 0.5, the map α 7→ (1− δ)[hb(α ∗ p)− hb(α)] is monotonically decreasing on
[0, 1

2 ] ranging over [0, (1− δ)hb(p)] and since ε ≤ I(X; Y) = (1− δ)hb(p), the solution of the above
equation is unique.

1

0

1

0

e

1− δ

1− δ

1

0

e

1− α(ε, δ)

1− α(ε, δ)

Figure 5. Optimal privacy filter for PY|X = BEC(δ) where δ(ε, α) is specified in (42).

Combining Lemmas 1 and 27 with Corollary 26, we can show the following extremal property of
the BEC and BSC channels, which is similar to other existing extremal properties of the BEC and the
BSC, see, e.g., [46] and [45]. For X ∼ Bernoulli(0.5), we have for any channel PY|X ,

gε(X; Y) ≥ ε

I(X; Y)
= gε(BSC(α̂))

where gε(BSC(α)) is the rate-privacy function corresponding to PXY = Bernoulli(0.5)× BSC(α) and
α̂ := h−1

b (H(X|Y)). Similarly, if X ∼ Bernoulli(p), we have for any channel PY|X with H(Y|X) ≤ 1,

gε(X; Y) ≤ H(Y|X) + ε = gε(BEC(δ̂))

where gε(BEC(δ)) is the rate-privacy function corresponding to PXY = Bernoulli(p) × BEC(δ) and
δ̂ := h−1

b (H(Y|X)).

5. Rate-Privacy Function for Continuous Random Variables

In this section we extend the rate-privacy function gε(X; Y) to the continuous case. Specifically,
we assume that the private and observable data are continuous random variables and that the filter
is composed of two stages: first Gaussian noise is added and then the resulting random variable
is quantized using an M-bit accuracy uniform scalar quantizer (for some positive integer M ∈ N).
These filters are of practical interest as they can be easily implemented. This section is divided in two
subsections, in the first we discuss general properties of the rate-privacy function and in the second
we study the Gaussian case in more detail. Some observations on ĝε(X; Y) for continuous X and Y
are also given.

5.1. General Properties of the Rate-Privacy Function

Throughout this section we assume that the random vector (X, Y) is absolutely continuous with
respect to the Lebesgue measure on R2. Additionally, we assume that its joint density fX,Y satisfies
the following.

(a) There exist constants C1 > 0, p > 1 and bounded function C2 : R→ R such that

fY(y) ≤ C1|y|−p

and also for x ∈ R
fY|X(y|x) ≤ C2(x)|y|−p

(b) E[X2] and E[Y2] are both finite,
(c) the differential entropy of (X, Y) satisfies h(X, Y) > −∞,
(d) H(bYc) < ∞, where bac denotes the largest integer ` such that ` ≤ a.
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Note that assumptions (b) and (c) together imply that h(X, Y), h(X) and h(Y) are finite, i.e.,
the maps x 7→ fX(x)| log fX(x)|, y 7→ fY(y)| log fY(y)| and (x, y) 7→ fX,Y(x, y)| log( fX,Y(x, y))|
are integrable. We also assume that X and Y are not independent, since otherwise the problem to
characterize gε(X; Y) becomes trivial by assuming that the displayed data Z can equal the observable
data Y.

We are interested in filters of the form QM(Y + γN) where γ ≥ 0, N ∼ N(0, 1) is a standard
normal random variable which is independent of X and Y, and for any positive integer M,QM denotes
the M-bit accuracy uniform scalar quantizer, i.e., for all x ∈ R

QM(x) =
1

2M

⌊
2Mx

⌋
Let Zγ = Y + γN and ZM

γ = QM(Zγ) = QM(Y + γN). We define, for any M ∈ N,

gε,M(X; Y) := sup
γ≥0,

I(X;ZM
γ )≤ε

I(Y; ZM
γ ) (43)

and similarly
gε(X; Y) := sup

γ≥0,
I(X;Zγ)≤ε

I(Y; Zγ) (44)

The next theorem shows that the previous definitions are closely related.

Theorem 28. Let ε > 0 be fixed. Then lim
M→∞

gε,M(X; Y) = gε(X; Y).

Proof. See Appendix C.

In the limit of large M, gε(X; Y) approximates gε,M(X; Y). This becomes relevant when gε(X; Y)
is easier to compute than gε,M(X; Y), as demonstrated in the following subsection. The following
theorem summarizes some general properties of gε(X; Y).

Theorem 29. The function ε 7→ gε(X; Y) is non-negative, strictly-increasing, and satisfies

lim
ε→0

gε(X; Y) = 0 and gI(X;Y)(X; Y) = ∞

Proof. See Apendix C.

As opposed to the discrete case, in the continuous case gε(X; Y) is no longer bounded. In the
following section we show that ε 7→ gε(X; Y) can be convex, in contrast to the discrete case where it
is always concave.

We can also define ĝε,M(X; Y) and ĝε(X; Y) for continuous X and Y, similar to (43) and (44), but
where the privacy constraints are replaced by ρ2

m(X; ZM
γ ) ≤ ε and ρ2

m(X; Zγ) ≤ ε, respectively. It
is clear to see from Theorem 29 that ĝ0(X; Y) = g0(X; Y) = 0 and ĝρ2(X;Y)(X; Y) = ∞. However,
although we showed that gε(X; Y) is indeed the asymptotic approximation of gε,M(X; Y) for M large
enough, it is not clear that the same statement holds for ĝε(X; Y) and ĝε,M(X; Y).

5.2. Gaussian Information

The rate-privacy function for Gaussian Y has an interesting interpretation from an estimation
theoretic point of view. Given the private and observable data (X, Y), suppose an agent is required to
estimate Y based on the output of the privacy filter. We wish to know the effect of imposing a privacy
constraint on the estimation performance.

The following lemma shows that gε(X; Y) bounds the best performance of the predictability of Y
given the output of the privacy filter. The proof provided for this lemma does not use the Gaussianity
of the noise process, so it holds for any noise process.
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Lemma 30. For any given private data X and Gaussian observable data Y, we have for any ε ≥ 0

inf
γ≥0,

I(X;Zγ)≤ε

mmse(Y|Zγ) ≥ var(Y)2−2gε(X;Y)

Proof. It is a well-known fact from rate-distortion theory that for a Gaussian Y and its reconstruction
Ŷ

I(Y; Ŷ) ≥ 1
2

log
var(Y)

E[(Y− Ŷ)2]

and hence by setting Ŷ = E[Y|Zγ], where Zγ is an output of a privacy filter, and noting that I(Y; Ŷ) ≤
I(Y; Zγ), we obtain

mmse(Y|Zγ) ≥ var(Y)2−2I(Y;Zγ) (45)

from which the result follows immediately.

According to Lemma 30, the quantity λε(X) := 2−2gε(X;Y) is a parameter that bounds the
difficulty of estimating Gaussian Y when observing an additive perturbation Z with privacy
constraint I(X; Z) ≤ ε. Note that 0 < λε(X) ≤ 1, and therefore, provided that the privacy threshold
is not trivial (i.e, ε < I(X; Y)), the mean squared error of estimating Y given the privacy filter output
is bounded away from zero, however the bound decays exponentially at rate of gε(X; Y).

To finish this section, assume that X and Y are jointly Gaussian with correlation coefficient ρ. The
value of gε(X; Y) can be easily obtained in closed form as demonstrated in the following theorem.

Theorem 31. Let (X, Y) be jointly Gaussian random variables with correlation coefficient ρ. For any ε ∈
[0, I(X; Y)) we have

gε(X; Y) =
1
2

log
(

ρ2

2−2ε + ρ2 − 1

)

Proof. One can always write Y = aX + N1 where a2 = ρ2 var(Y)
var(X)

and N1 is a Gaussian random variable

with mean 0 and variance σ2 = (1− ρ2)var(Y) which is independent of (X, Y). On the other hand,
we have Zγ = Y + γN where N is the standard Gaussian random variable independent of (X, Y) and
hence Zγ = aX + N1 + γN. In order for this additive channel to be a privacy filter, it must satisfy

I(X; Zγ) ≤ ε

which implies
1
2

log
(
var(Y) + γ2

σ2 + γ2

)
≤ ε

and hence

γ2 ≥ 2−2ε + ρ2 − 1
1− 2−2ε

var(Y) =: γ∗

Since γ 7→ I(Y; Zγ) is strictly decreasing (cf., Appendix C), we obtain

gε(X; Y) = I(Y; Zγ∗) =
1
2

log
(

1 +
var(Y)

γ2

)
=

1
2

log
(

1 +
1− 2−2ε

2−2ε + ρ2 − 1

)
(46)

According to (46), we conclude that the optimal privacy filter for jointly Gaussian (X, Y) is

an additive Gaussian channel with signal to noise ratio
1− 2−2ε

2−2ε + ρ2 − 1
, which shows that if perfect

privacy is required, then the displayed data is independent of the observable data Y, i.e., g0(X; Y) = 0.
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Remark 7. We could assume that the privacy filter adds non-Gaussian noise to the observable data
and define the rate-privacy function accordingly. To this end, we define

g f
ε (X; Y) := sup

γ≥0,

I(X;Z f
γ)

I(Y; Z f
γ)

where Z f
γ = Y + γM f and M f is a noise process that has stable distribution with density f and is

independent of (X, Y). In this case, we can use a technique similar to Oohama [49] to lower bound
g f

ε (X; Y) for jointly Gaussian (X, Y). Since X and Y are jointly Gaussian, we can write X = aY + bN
where a2 = ρ2 var(X)

var(Y) , b =
√
(1− ρ2)varX, and N is a standard Gaussian random variable that is

independent of Y. We can apply the conditional entropy power inequality (cf., [42, Page 22]) for a
random variable Z that is independent of N, to obtain

22h(X|Z) ≥ 22h(aY|Z) + 22h(N) = a222h(Y|Z) + 2πe(1− ρ2)var(X)

and hence
2−2I(X;Z)22h(X) ≥ a222h(Y)2−2I(Y;Z) + 2πe(1− ρ2)var(X)

Assuming Z = Z f
γ and taking infimum from both sides of above inequality over γ such that

I(X; Z f
γ) ≤ ε, we obtain

g f
ε (X; Y) ≥ 1

2
log
(

ρ2

2−2ε + ρ2 − 1

)
= gε(X; Y)

which shows that for Gaussian (X, Y), Gaussian noise is the worst stable additive noise in the sense
of privacy-constrained information extraction.

We can also calculate ĝε(X; Y) for jointly Gaussian (X, Y).

Theorem 32. Let (X, Y) be jointly Gaussian random variables with correlation coefficient ρ. For any ε ∈
[0, ρ2) we have that

ĝε(X; Y) =
1
2

log
(

ρ2

ρ2 − ε

)
Proof. Since for the correlation coefficient between Y and Zγ we have for any γ ≥ 0,

ρ2(Y; Zγ) =
var(Y)

var(Y) + γ2

we can conclude that

ρ2(X; Zγ) =
ρ2var(Y)

var(Y) + γ2

Since ρ2
m(X; Z) = ρ2(X; Z) (see, e.g., [34]), the privacy constraint ρ2

m(X; Z) ≤ ε implies that

ρ2var(Y)
var(Y) + γ2 ≤ ε

and hence

γ2 ≥ (ρ2 − ε)var(Y)
ε

=: γ̂2
ε

By monotonicity of the map γ 7→ I(Y; Zγ), we have

ĝε(X; Y) = I(Y; Zγ̂ε) =
1
2

log
(

1 +
var(Y)

γ̂2
ε

)
=

1
2

log
(

ρ2

ρ2 − ε

)



Information 2016, 7, 15 26 of 37

Theorems 31 and 32 show that unlike to the discrete case (cf. Lemmas 2 and 8), ε 7→ gε(X; Y) and
ε 7→ ĝε(X; Y) are convex.

6. Conclusions

In this paper, we studied the problem of determining the maximal amount of information that
one can extract by observing a random variable Y, which is correlated with another random variable
X that represents sensitive or private data, while ensuring that the extracted data Z meets a privacy
constraint with respect to X. Specifically, given two correlated discrete random variables X and Y,
we introduced the rate-privacy function as the maximization of I(Y; Z) over all stochastic ”privacy
filters” PZ|Y such that pm(X; Z) ≤ ε, where pm(·; ·) is a privacy measure and ε ≥ 0 is a given
privacy threshold. We considered two possible privacy measure functions, pm(X; Z) = I(X; Z)
and pm(X; Z) = ρ2

m(X; Z) where ρm denotes maximal correlation, resulting in the rate-privacy
functions gε(X; Y) and ĝε(X; Y), respectively. We analyzed these two functions, noting that each
function lies between easily evaluated upper and lower bounds, and derived their monotonicity
and concavity properties. We next provided an information-theoretic interpretation for gε(X; Y) and
an estimation-theoretic characterization for ĝε(X; Y). In particular, we demonstrated that the dual
function of gε(X; Y) is a corner point of an outer bound on the achievable region of the dependence
dilution coding problem. We also showed that ĝε(X; Y) constitutes the largest amount of information
that can be extracted from Y such that no meaningful MMSE estimation of any function of X can be
realized by just observing the extracted information Z. We then examined conditions on PXY under
which the lower bound on gε(X; Y) is tight, hence determining the exact value of gε(X; Y). We also
showed that for any given Y, if the observation channel PY|X is an erasure channel, then gε(X; Y)
attains its upper bound. Finally, we extended the notions of the rate-privacy functions gε(X; Y) and
ĝε(X; Y) to the continuous case where the observation channel consists of an additive Gaussian noise
channel followed by uniform scalar quantization.
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Appendix A. Proof of Lemma 19

Given a joint distribution PXY defined over X ×Y where X = {1, 2, . . . , m} and Y =
{1, 2, . . . , n} with n ≤ m, we consider a privacy filter specified by the following distribution for δ > 0
and Z = {k, e}

PZ|Y(k|y) = δ1{y=k} (A1)

PZ|Y(e|y) = 1− δ1{y=k} (A2)

where 1{·} denotes the indicator function. The system of X (−−Y (−− Z in this case is depicted in
Figure 6 for the case of k = 1.

X Y Z

PY|X

...
...

1

e

δ
1−

δ

Figure 6. The privacy filter associated with (A1) and (A2) with k = 1. We have PZ|Y(·|1) = Bernoulli(δ)

and PZ|Y(·|y) = Bernoulli(0) for y ∈ {2, 3, . . . , n}.
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We clearly have PZ(k) = δPY(k) and PZ(e) = 1− δPY(k), and hence

PX|Z(x|k) = PXZ(x, k)
δPY(k)

=
PXYZ(x, k, k)

δPY(k)
=

δPXY(x, k)
δPY(k)

= PX|Y(x|k)

and also,

PX|Z(x|e) =
PXZ(x, e)

1− δPY(k)
=

∑y PXYZ(x, y, e)
1− δPY(k)

=
∑y 6=k PXYZ(x, y) + (1− δ)PXY(x, k)

1− δPY(k)
=

PX(x)− δPXY(x, k)
1− δPY(k)

It, therefore, follows that for k ∈ {1, 2, . . . , n}

H(X|Z = k) = H(X|Y = k)

and

H(X|Z = e) = H
(

PX(1)− δPXY(1, k)
1− δPY(k)

, . . . ,
PX(m)− δPXY(m, k)

1− δPY(k)

)
=: hX(δ)

We then write

I(X; Z) = H(X)− H(X|Z) = H(X)− δPY(k)H(X|Y = k)− (1− δPY(k))hX(δ)

and hence,
d
dδ

I(X; Z) = −PY(k)H(X|Y = k) + PY(k)hX(δ)− (1− δPY(k))h′X(δ)

where

h′X(δ) =
d
dδ

hX(δ) = −
m

∑
x=1

PX(x)PY(k)− PXY(x, k)
[1− δPY(k)]2

log
(

PX(x)− δPXY(x, y)
1− δPY(k)

)
Using the first-order approximation of mutual information for δ = 0, we can write

I(X; Z) =
d
dδ

I(X; Z)|δ=0δ + o(δ)

= δ

[
m

∑
x=1

PXY(x, k) log
(

PXY(x, k)
PX(x)PY(k)

)]
+ o(δ)

= δPY(k)D(PX|Y(·|k)||PX(·)) + o(δ) (A3)

Similarly, we can write

I(Y; Z) = h(Z)−
n

∑
y=1

PY(y)h(Z|Y = y) = h(Z)− PY(k)h(δ) = h(δPY(k))− PY(k)h(δ)

= −δPY(k) log(PY(k))−Ψ(1− δPY(k)) + PY(k)Ψ(1− δ)

where Ψ(x) := x log x which yields

d
dδ

I(Y; Z) = −Ψ(PY(k)) + PY(k) log
(

1− δPY(k)
1− δ

)
From the above, we obtain

I(Y; Z) =
d
dδ

I(Y; Z)|δ=0δ + o(δ)

= −δΨ(PY(k)) + o(δ) (A4)
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Clearly from (A3), in order for the filter PZ|Y specified in (A1) and (A2) to belong to Dε(PXY), we
must have

ε

δ
= PY(k)D(PX|Y(·|k)||PX(·)) +

o(δ)
δ

and hence from (A4), we have

I(Y; Z) =
−Ψ(PY(k))

PY(k)D(PX|Y(·|k)||PX(·))
ε + o(δ)

This immediately implies that

g′0(X; Y) = lim
ε↓0

gε(X; Y)
ε

≥ −Ψ(PY(k))
PY(k)D(PX|Y(·|k)||PX(·))

=
− log(PY(k))

D
(

PX|Y(·|k)||PX(·)
) (A5)

where we have used the assumption g0(X, Y) = 0 in the first equality.

Appendix B. Completion of Proof of Theorem 25

To prove that the equality (39) has only one solution p = 1
2 , we first show the following lemma.

Lemma 33. Let P and Q be two distributions over X = {±1,±2, . . . ,±k} which satisfy P(x) = Q(−x).
Let Rλ := λP + (1− λ)Q for λ ∈ (0, 1). Then

D(P||R1−λ)

D(P||Rλ)
<

log(1− λ)

log(λ)
(A6)

for λ ∈ (0, 1
2 ) and

D(P||R1−λ)

D(P||Rλ)
>

log(1− λ)

log(λ)
(A7)

for λ ∈ ( 1
2 , 1).

Note that it is easy to see that the map λ 7→ D(P||Rλ) is convex and strictly decreasing and hence
D(P||Rλ) > D(P||R1−λ) when λ ∈ (0, 1

2 ) and D(P||Rλ) < D(P||R1−λ) when λ ∈ ( 1
2 , 1). Inequality

(A6) and (A7) strengthen these monotonic behavior and show that D(P||Rλ) >
log(λ)

log(1−λ)
D(P||R1−λ)

and D(P||Rλ) <
log(λ)

log(1−λ)
D(P||R1−λ) for λ ∈ (0, 1

2 ) and λ ∈ ( 1
2 , 1), respectively.

Proof. Without loss of generality, we can assume that P(x) > 0 for all x ∈ X. Let X+ := {x ∈
X|P(X) > P(−x)}, X− := {x ∈ X|P(X) < P(−x)} and X0 := {x ∈ X|P(X) = P(−x)}. We notice
that when x ∈ X+, then −x ∈ X−, and hence |X+| = |X−| = m for a 0 < m ≤ k. After relabelling if
needed, we can therefore assume that X+ = {1, 2, . . . , m} and X− = {−m, . . . ,−2,−1}. We can write

D(P||Rλ) =
k

∑
x=−k

log
(

P(x)
λP(x) + (1− λ)Q(x)

)
=

k

∑
x=−k

log
(

P(x)
λP(x) + (1− λ)P(−x)

)
(a)
=

m

∑
x=1

[
P(x) log

(
P(x)

λP(x) + (1− λ)P(−x)

)
+ P(−x) log

(
P(−x)

λP(−x) + (1− λ)P(x)

)]
(b)
=

m

∑
x=1

P(x) log
(

1
λ + (1− λ)ζx

)
+ P(x)ζx log

 1

λ + (1−λ)
ζx


(c)
=

m

∑
x=1

P(x)Ξ(λ, ζx) log
(

1
λ

)
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where (a) follows from the fact that for x ∈ X0, log
(

P(x)
Rλ(x)

)
= 0 for any λ ∈ (0, 1), and in (b) and (c)

we introduced ζx := P(−x)
P(x) and

Ξ(λ, ζ) :=
1

log
(

1
λ

)
log

(
1

λ + (1− λ)ζ

)
+ ζ log

 1

λ + (1−λ)
ζ


Similarly, we can write

D(P||R1−λ) =
k

∑
x=−k

log
(

P(x)
(1− λ)P(x) + λQ(x)

)
=

k

∑
x=−k

log
(

P(x)
(1− λ)P(x) + λP(−x)

)
=

m

∑
x=1

[
P(x) log

(
P(x)

(1− λ)P(x) + λP(−x)

)
+ P(−x) log

(
P(−x)

(1− λ)P(−x) + λP(x)

)]

=
m

∑
x=1

[
P(x) log

(
1

1− λ + λζx

)
+ P(x)ζx log

(
1

1− λ + λ
ζx

)]

=
m

∑
x=1

P(x)Ξ(1− λ, ζx) log
(

1
1− λ

)
which implies that

D(P||Rλ)

− log(λ)
− D(P||R1−λ)

− log(1− λ)
=

m

∑
x=1

P(x) [Ξ(λ, ζx)− Ξ(1− λ, ζx)]

Hence, in order to show (A6), it suffices to verify that

Φ(λ, ζ) := Ξ(λ, ζ)− Ξ(1− λ, ζ) > 0 (A8)

for any λ ∈ (0, 1
2 ) and ζ ∈ (1, ∞). Since log(λ) log(1− λ) is always positive for λ ∈ (0, 1

2 ), it suffices
to show that

h(ζ) := Φ(λ, ζ) log(1− λ) log(λ) > 0 (A9)

for λ ∈ (0, 1
2 ) and ζ ∈ (1, ∞). We have

h′′(ζ) = A(λ, ζ)B(λ, ζ) (A10)

where
A(λ, ζ) :=

1 + ζ

(1− λ + λζ)2(λ + (1− λ)ζ)2ζ

and

B(λ, ζ) := λ2(1 + λ(λ− 2)(ζ − 1)2 + ζ(ζ − 1)) log(λ)− (1− λ)2(λ2(ζ − 1)2 + ζ) log(1− λ).

We have
∂2

∂ζ2 B(λ, ζ) = 2λ2(1− λ)2 log
(

λ

1− λ

)
< 0

because λ ∈ (0, 1
2 ) and hence λ < 1 − λ. This implies that the map ζ 7→ B(λ, ζ) is concave for

any λ ∈ (0, 1
2 ) and ζ ∈ (1, ∞). Moreover, since ζ 7→ B(λ, ζ) is a quadratic polynomial with negative

leading coefficient, it is clear that limζ→∞ B(λ, ζ) = −∞. Consider now g(λ) := B(λ, 1) = λ2 log(λ)−
(1− λ)2 log(1− λ). We have limλ→0 g(λ) = g( 1

2 ) = 0 and g′′(λ) = 2 log
(

λ
1−λ

)
< 0 for λ ∈ (0, 1

2 ).

It implies that λ 7→ g(λ) is concave over (0, 1
2 ) and hence g(λ) > 0 over (0, 1

2 ) which implies that
B(λ, 1) > 0. This together with the fact that ζ 7→ B(λ, ζ) is concave and it approaches to −∞ as
ζ → ∞ imply that there exists a real number c = c(λ) > 1 such that B(λ, ζ) > 0 for all ζ ∈ (1, c)
and B(λ, ζ) < 0 for all ζ ∈ (c, ∞). Since A(λ, ζ) > 0, it follows from (A10) that ζ 7→ h(ζ) is convex



Information 2016, 7, 15 30 of 37

over (1, c) and concave over (c, ∞). Since h(1) = h′(1) = 0 and limζ→∞ h(ζ) = ∞, we can conclude
that h(ζ) > 0 over (1, ∞). That is, Φ(λ, ζ) > 0 and thus Ξ(λ, ζ)− Ξ(1− λ, ζ) > 0, for λ ∈ (0, 1

2 ) and
ζ ∈ (1, ∞).

The inequality (A7) can be proved by (A6) and switching λ to 1− λ.

Letting P(·) = PX|Y(·|1) and Q(·) = PX|Y(·|0) and λ = Pr(Y = 1) = p, we have
Rp(x) = PX(x) = pP(x) + (1 − p)Q(x) and R1−p = PX(−x) = (1 − p)P(x) + pQ(x). Since
D(PX|Y(·|0)||PX(·)) = D(P||R1−p), we can conclude from Lemma 33 that

D(PX|Y(·|0)||PX(·))
− log(1− p)

<
D(PX|Y(·|1)||PX(·))

− log(p)

over p ∈ (0, 1
2 ) and

D(PX|Y(·|0)||PX(·))
− log(1− p)

>
D(PX|Y(·|1)||PX(·))

− log(p)

over p ∈ ( 1
2 , 1), and hence equation (39) has only solution p = 1

2 .

Appendix C. Proof of Theorems 28 and 29

The proof of Theorem 29 does not depend on the proof of Theorem 28, so, there is no harm in
proving the former theorem first. The following version of the data-processing inequality will be
required.

Lemma 34. Let X and Y be absolutely continuous random variables such that X, Y and (X, Y) have finite
differential entropies. If V is an absolutely continuous random variable independent of X and Y, then

I(X; Y + V) ≤ I(X; Y)

with equality if and only if X and Y are independent.

Proof. Since X(−−Y(−−(Y + V), the data processing inequality implies that I(X; Y + V) ≤ I(X; Y).
It therefore suffices to show that this inequality is tight if and only X and Y are independent. It is
known that data processing inequality is tight if and only if X(−−(Y + V)(−−Y. This is equivalent
to saying that for any measurable set A ⊂ R and for PY+V almost all z, Pr(X ∈ A|Y + V = z, Y =
y) = Pr(X ∈ A|Y + V = z). On the other hand, due to the independence of V and (X, Y), we have
Pr(X ∈ A|Y + V = z, Y = y) = Pr(X ∈ A|Y = z − v). Hence, the equality holds if and only if
Pr(X ∈ A|Y + V = z) = Pr(X ∈ A|Y = z− v) which implies that X and Y must be independent.

Lemma 35. In the notation of Section 5.1, the function γ 7→ I(Y; Zγ) is strictly-decreasing and continuous.
Additionally, it satisfies

I(Y; Zγ) ≤
1
2

log
(

1 +
var(Y)

γ2

)
with equality if and only if Y is Gaussian. In particular, I(Y; Zγ)→ 0 as γ→ ∞.

Proof. Recall that, by assumption b), var(Y) is finite. The finiteness of the entropy of Y follows
from assumption, the corresponding statement for Y + γN follows from a routine application of the
entropy power inequality [50, Theorem 17.7.3] and the fact that var(Y + γN) = var(Y) + γ2 < ∞,
and for (Y, Y + γN) the same conclusion follows by the chain rule for differential entropy. The data
processing inequality, as stated in Lemma 34, implies

I(Y; Zγ+δ) ≤ I(Y; Y + γN) = I(Y; Zγ)

Clearly Y and Y + γN are not independent, therefore the inequality is strict and thus γ 7→
I(Y, Zγ) is strictly-decreasing.

Continuity will be studied for γ = 0 and γ > 0 separately. Recall that h(γN) = 1
2 log(2πeγ2). In

particular, lim
γ→0

h(γN) = −∞. The entropy power inequality shows then that lim
γ→0

I(Y; Y + γN) = ∞.
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This coincides with the convention I(Y; Z0) = I(Y; Y) = ∞. For γ > 0, let (γn)n≥1 be a sequence of
positive numbers such that γn → γ. Observe that

I(Y; Zγn) = h(Y + γnN)− h(γnN) = h(Y + γnN)− 1
2

log(2πeγ2
n)

Since lim
n→∞

1
2

log(2πeγ2
n) =

1
2

log(2πeγ2), we only have to show that h(Y + γnN) → h(Y + γN)

as n → ∞ to establish the continuity at γ. This, in fact, follows from de Bruijn’s identity (cf., [50,
Theorem 17.7.2]).

Since the channel from Y to Zγ is an additive Gaussian noise channel, we have I(Y; Zγ) ≤
1
2

log
(

1 +
var(Y)

γ2

)
with equality if and only if Y is Gaussian. The claimed limit as γ→ 0 is clear.

Lemma 36. The function γ 7→ I(X; Zγ) is strictly-decreasing and continuous. Moreover, I(X; Zγ) → 0
when γ→ ∞.

Proof. The proof of the strictly-decreasing behavior of γ 7→ I(X; Zγ) is proved as in the previous
lemma.

To prove continuity, let γ ≥ 0 be fixed. Let (γn)n≥1 be any sequence of positive numbers
converging to γ. First suppose that γ > 0. Observe that

I(X; Zγn) = h(Y + γnN)− h(Y + γnN|X)

for all n ≥ 1. As shown in Lemma 35, h(Y + γnN) → h(Y + γN) as n → ∞. Therefore, it is enough
to show that h(Y + γnN|X) → h(Y + γN|X) as n → ∞. Note that by de Bruijn’s identity, we have
h(Y + γnN|X = x)→ h(Y + γN|X = x) as n→ ∞ for all x ∈ R. Note also that since

h(Zγn |X = x) ≤ 1
2

log (2πevar(Zγn |x))

we can write

h(Zγn |X) ≤ E
[

1
2

log(2πevar(Zγn |X))

]
≤ 1

2
log (2πeE[var(Zγn |X)])

and hence we can apply dominated convergence theorem to show that h(Y + γnN|X) → h(Y +
γN|X) as n→ ∞.

To prove the continuity at γ = 0, we first note that Linder and Zamir [51, Page 2028] showed that
h(Y + γnN|X = x) → h(Y|X = x) as n → ∞, then, as before, by dominated convergence theorem
we can show that h(Y + γnN|X) → h(Y|X). Similarly [51] implies that h(Y + γnN) → h(Y). This
concludes the proof of the continuity of γ 7→ I(X; Zγ).

Furthermore, by the data processing inequality and previous lemma,

0 ≤ I(X; Zγ) ≤ I(Y; Zγ) ≤
1
2

log
(

1 +
var(Y)

γ2

)
and hence we conclude that lim

γ→∞
I(X; Zγ) = 0.

Proof of Theorem 29. The nonnegativity of gε(X; Y) follows directly from definition.
By Lemma 36, for every 0 < ε ≤ I(X; Y) there exists a unique γε ∈ [0, ∞) such that

I(X; Zγε) = ε, so gε(X; Y) = I(Y; Zγε). Moreover, ε 7→ γε is strictly decreasing. Since γ 7→ I(Y; Zγ) is
strictly-decreasing, we conclude that ε 7→ gε(X; Y) is strictly increasing.

The fact that ε 7→ γε is strictly decreasing, also implies that γε → ∞ as ε→ 0. In particular,

lim
ε→0

gε(X; Y) = lim
ε→0

I(Y; Zγε) = lim
γε→∞

I(Y; Zγε) = lim
γ→∞

I(Y; Zγ) = 0

By the data processing inequality we have that I(X; Zγ) ≤ I(X; Y) for all γ ≥ 0, i.e., any filter
satisfies the privacy constraint for ε = I(X; Y). Thus, gI(X;Y)(X; Y) ≥ I(Y; Y) = ∞.
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In order to prove Theorem 28, we first recall the following theorem by Rényi [52].

Theorem 37 ([52]). If U is an absolutely continuous random variable with density fU(x) and if H(bUc) <
∞, then

lim
n→∞

H(n−1bnUc)− log(n) = −
∫
R

fU(x) log fU(x)dx

provided that the integral on the right hand side exists.

We will need the following consequence of the previous theorem.

Lemma 38. If U is an absolutely continuous random variable with density fU(x) and if H(bUc) < ∞, then
H(QM(U))−M ≥ H(QM+1(U))− (M + 1) for all M ≥ 1 and

lim
n→∞

H(QM(U))−M = −
∫
R

fU(x) log fU(x)dx

provided that the integral on the right hand side exists.

The previous lemma follows from the fact that QM+1(U) is constructed by refining the
quantization partition for QM(U).

Lemma 39. For any γ ≥ 0,

lim
M→∞

I(X; ZM
γ ) = I(X; Zγ) and lim

M→∞
I(Y; ZM

γ ) = I(Y; Zγ)

Proof. Observe that

I(X; ZM
γ ) = I(X;QM(Y + γN))

= H(QM(Y + γN))− H(QM(Y + γN)|X)

= [H(QM(Y + γN))−M]−
∫
R

fX(x)[H(QM(Y + γN)|X = x)−M]dx

By the previous lemma, the integrand is decreasing in M, and thus we can take the limit with
respect to M inside the integral. Thus,

lim
M→∞

I(X; ZM
γ ) = h(Y + γN)− h(Y + γN|X) = I(X; Zγ)

The proof for I(Y; ZM
γ ) is analogous.

Lemma 40. Fix M ∈ N. Assume that fY(y) ≤ C|y|−p for some positive constant C and p > 1. For integer
k and γ ≥ 0, let

pk,γ := Pr
(
QM(Y + γN) =

k
2M

)
Then

pk,γ ≤
C2(p−1)M+p

kp + 1{γ>0}
γ2M+1

k
√

2π
e−k2/22M+3γ2

Proof. The case γ = 0 is trivial, so we assume that γ > 0. For notational simplicity, let ra =
a

2M for all
a ∈ Z. Assume that k ≥ 0. Observe that

pk,γ =
∫ ∞

−∞

∫ ∞

−∞
fγN(n) fY(y)1[rk ,rk+1)

(y + n)dydn

=
∫ ∞

−∞

e−n2/2γ2√
2πγ2

Pr (Y ∈ [rk, rk+1)− n)dn

We will estimate the above integral by breaking it up into two pieces.
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First, we consider

rk
2∫

−∞

e−n2/2γ2√
2πγ2

Pr (Y ∈ [rk, rk+1)− n)dn

When n ≤ rk
2 , then rk − n ≥ rk/2. By the assumption on the density of Y,

Pr (Y ∈ [rk, rk+1)− n) ≤ C
2M

( rk
2

)−p

(The previous estimate is the only contribution when γ = 0.) Therefore,

rk
2∫

−∞

e−n2/2γ2√
2πγ2

Pr (Y ∈ [rk, rk+1)− n)dn ≤ C
2M

( rk
2

)−p

rk
2∫

−∞

e−n2/2γ2√
2πγ2

dn

≤ C2(p−1)M+p

kp

Using the trivial bound Pr (Y ∈ [rk, rk+1)− n) ≤ 1 and well known estimates for the error
function, we obtain that

∞∫
rk
2

e−n2/2γ2√
2πγ2

Pr (Y ∈ [rk, rk+1)− n)dn <
1√
2π

2γ

rk
e−r2

k /8γ2

=
γ2M+1

k
√

2π
e−k2/22M+3γ2

Therefore,

pk,γ ≤
C2(p−1)M+p

kp +
γ2M+1

k
√

2π
e−k2/22M+3γ2

The proof for k < 0 is completely analogous.

Lemma 41. Fix M ∈ N. Assume that fY(y) ≤ C|y|−p for some positive constant C and p > 1. The mapping
γ 7→ H(QM(Y + γN)) is continuous.

Proof. Let (γn)n≥1 be a sequence of non-negative real numbers converging to γ0. First, we will
prove continuity at γ0 > 0. Without loss of generality, assume that γn > 0 for all n ∈ N. Define
γ∗ = inf{γn|n ≥ 1} and γ∗ = sup{γn|n ≥ 1}. Clearly 0 < γ∗ ≤ γ∗ < ∞. Recall that

pk,γ =
∫
R

e−z2/2γ2√
2πγ2

Pr
(

Y ∈
[

k
2M ,

k + 1
2M

)
− z
)

dz

Since, for all n ∈ N and z ∈ R,

e−z2/2γ2
n√

2πγ2
n

Pr
(

Y ∈
[

k
2M ,

k + 1
2M

)
− z
)
≤ e−z2/2(γ∗)2√

2πγ2∗

the dominated convergence theorem implies that

lim
n→∞

pk,γn = pk,γ0 (A11)

The previous lemma implies that for all n ≥ 0 and |k| > 0,

pk,γn ≤
C2(p−1)M+p

kp +
γn2M+1

k
√

2π
e−k2/22M+3γ2

n
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Thus, for k large enough, pk,γn ≤
A
kp for a suitable positive constant A that does not depend on

n. Since the function x 7→ −x log(x) is increasing in [0, 1/2], there exists K′ > 0 such that for |k| > K′

−pk,γn log(pk,γn) ≤
A
kp log(A−1kp)

Since ∑
|k|>K′

A
kp log(A−1kp) < ∞, for any ε > 0 there exists Kε such that

∑
|k|>Kε

A
kp log(A−1kp) < ε

In particular, for all n ≥ 0,

H(Q(Y + γnN))− ∑
|k|≤Kε

−pk,γn log(pk,γn) = ∑
|k|>Kε

−pk,γn log(pk,γn) < ε

Therefore, for all n ≥ 1,

|H(Q(Y + γnN))− H(Q(Y + γ0N))|

≤ ∑
|k|>Kε

−pk,γn log(pk,γn) +

∣∣∣∣∣∣ ∑
|k|≤Kε

pk,γ0 log(pk,γ0)− pk,γn log(pk,γn)

∣∣∣∣∣∣+ ∑
|k|>Kε

−pk,γ0 log(pk,γ0)

≤ ε +

∣∣∣∣∣∣ ∑
|k|≤Kε

pk,γ0 log(pk,γ0)− pk,γn log(pk,γn)

∣∣∣∣∣∣+ ε

By continuity of the function x 7→ −x log(x) on [0, 1] and equation (A11), we conclude that

lim sup
n→∞

|H(Q(Y + γnN))− H(Q(Y + γ0N))| ≤ 3ε

Since ε is arbitrary,
lim

n→∞
H(Q(Y + γnN)) = H(Q(Y + γ0N))

as we wanted to prove.
To prove continuity at γ0 = 0, observe that equation (A11) holds in this case as well. The rest is

analogous to the case γ0 > 0.

Lemma 42. The functions γ 7→ I(X; ZM
γ ) and γ 7→ I(Y; ZM

γ ) are continuous for each M ∈ N.

Proof. Since H(QM(Y + γN)|Y = y) and H(QM(Y + γN)|X = x) for x, y ∈ R are bounded by
M, and fY|X(y|x) satisfies assumption (b), the conclusion follows from the dominated convergence
theorem.

Proof of Theorem 28. For every M ∈ N, let ΓM
ε := {γ ≥ 0|I(X; ZM

γ ) ≤ ε}. The Markov chain
X → Y → Zγ → ZM+1

γ → ZM
γ and the data processing inequality imply that

I(X; Zγ) ≥ I(X; ZM+1
γ ) ≥ I(X; ZM

γ )

and, in particular,
ε = I(X; Zγε) ≥ I(X; ZM+1

γε
) ≥ I(X; ZM

γε
)

where γε is as defined in the proof of Theorem 29. This implies then that

γε ∈ ΓM+1
ε ⊂ ΓM

ε (A12)
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and thus
I(Y; ZM

γε
) ≤ gε,M(X; Y)

Taking limits in both sides, Lemma 39 implies

gε(X; Y) = I(Y; Zγε) ≤ lim inf
M→∞

gε,M(X; Y) (A13)

Observe that

gε,M(X; Y) = sup
γ∈ΓM

ε

I(Y; ZM
γ )

≤ sup
γ∈ΓM

ε

I(Y; Zγ)

= I(Y; ZγM
ε,min

) (A14)

where inequality follows from Markovity and γM
ε,min := infΓM

ε
γ. By equation (A12), γε ∈ ΓM+1

ε ⊂ ΓM
ε

and in particular γM
ε,min ≤ γM+1

ε,min ≤ γε. Thus, {γM
ε,min} is an increasing sequence in M and bounded

from above and, hence, has a limit. Let γε,min = lim
M→∞

γM
ε,min. Clearly

γε,min ≤ γε (A15)

By the previous lemma we know that I(X; ZM
γ ) is continuous, so ΓM

ε is closed for all M ∈ N.
Thus, we have that γM

ε,min = minΓM
ε

γ and in particular γM
ε,min ∈ ΓM

ε . By the inclusion ΓM+1
ε ⊂ ΓM

ε , we

have then that γM+n
ε,min ∈ ΓM

ε for all n ∈ N. By closedness of ΓM
ε we have then that γε,min ∈ ΓM

ε for all
M ∈ N. In particular,

I(X; ZM
γε,min

) ≤ ε

for all M ∈ N. By Lemma 39,
I(X; Zγε,min) ≤ ε = I(X; Zγε)

and by the monotonicity of γ 7→ I(X; Zγ), we obtain that γε ≤ γε,min. Combining the previous
inequality with (A15) we conclude that γε,min = γε. Taking limits in the inequality (A14)

lim sup
M→∞

gε,M(X; Y) ≤ lim sup
M→∞

I(Y; ZγM
ε,min

) = I(Y; Zγε,min)

Plugging γε,min = γε in above we conclude that

lim sup
M→∞

gε,M(X; Y) ≤ I(Y; Zγε) = gε(X; Y)

and therefore lim
M→∞

gε,M(X; Y) = gε(X; Y).
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