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Abstract: In this paper, we study the throughput capacity of wireless networks considering the
selfish feature of interaction between nodes. In our proposed network model, each node has a
probability of cooperating to relay transmission. According to the extent of selfishness, we, by
the application of percolation theory, construct a series of highways crossing the network. The
transmission strategy is then divided into three consecutive phases. Comparing the rate in each
phase, we find the bottleneck of rate is always in the highway phase. Finally, the result reveals
that the node’s selfishness degrades the throughput with a factor of square root of the cooperative
probability, whereas the node density has trivial impact on the throughput.
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1. Introduction

Wireless ad hoc networks (WANETs) are an emerging networking technology, which are widely
used in environmental monitoring, emergency communication, and military applications, etc. The
unique feature of such networks is formed by the huge number of nodes. Each node communicates
over a wireless channel without any centralized control. One of the problems in WANETs is the
routing protocol. Much work has been done on this issue; for example, Zuhairi et al. [1] studied
the routing protocol in Machine-to-Machine communication network, and the case of vehicular
applications was investigated by Cho et al. [2]. The routing protocol in mobile WANETs was
analyzed by Zaman et al. [3]. The other problem is the network capacity. Gupta and Kumar [4]
gave an outstanding result on the scaling law of wireless network capacity. They considered n nodes
randomly located in a unit network area, each node randomly selected a destination and derived

a capacity upper bound of O
(

1√
n

)
and a lower bound of Θ

(
1√

n log n

)
, respectively. (Given two

functions f (n) and g(n): f (n) = o(g(n)) means limn→∞ f (n)/g(n) = 0; f (n) = O(g(n)) means
limn→∞ f (n)/g(n) = c < ∞; if g(n) = O( f (n)), f (n) = Ω(g(n)) w.h.p. ; if both f (n) = Ω(g(n)) and
f (n) = O(g(n)), f (n) = Θ(g(n)); f (n) = Θ̃(g(n)) means f (n) = Θ(g(n)) when logarithmic terms
are ignored.) The results showed that the per-node rate decreases as the number of nodes increases.
This pessimistic result is a milestone work of wireless network capacity proceeding. Motivated by [4],
Franceschetti et al. [5] exploited percolation theory and variable transmission radius to construct
a highway system in the network. Based on highways systems, a per-node rate of Ω

(
1√
n

)
was

achieved. The result closed the capacity gap in Kumar’s work [4]. Since mobility plays an important
role in wireless networks, Grossglauser et al. [6] found that mobility can increase the throughput of
networks. They demonstrated that a per-node rate of Θ(1) can be achieved while the transmission
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delay was up to Θ(n). Due to the results on network capacity, many researchers became devoted to
solving the problem of capacity and delay; most of these works can be generalized into two categories:
(1) Increase the number of simultaneous transmission; (2) Decrease the count of hops from source
nodes to destination nodes. For the first case, some advanced technologies were employed, such
as directional antennas (DA) [7,8], multi-packet reception (MPR) [9] and Multi-input Multi-output
(MIMO) [10]. With regard to the second case, infrastructure or base station and nodes mobility were
explored; for example, in [11,12], the authors added a base station into the networks. By constructing
an optimized transmission scheme, the distance between source and destination can be decreased.
Mobility can increase the throughput capacity to Θ(1), but at the cost of increasing the delay to Θ(n).
Therefore, the work on the tradeoff between throughput and delay was elaborated in [13–16].

However, most of the previous works on network capacity of WANETs assumed that node was
cooperative [17–19]. That is, whenever a node receives a request to relay traffic, it will forward the
packets on no condition. This ignores the nodes’ viewpoint. In addition, previous works either
focused on dense or extended networks; that is, the node density is n or 1. They do not consider the
impact of node density on the throughput. Therefore, the question remained: what is the throughput
capacity of the network if the node exposed selfishness and the node density is general? In this
work, we study the throughput of wireless ad hoc networks with selfish nodes under general node
density. We denote these networks as SWANETs, which were widely researched in connectivity [20]
and routing protocol [21]. Minho Jo [22] et al. proposed an easy and efficient cooperative of
neighboring (COOPON) technique to detect the selfish cognitive radio attack. It is known that
selfishness always comes with a price. The price may be tolerable in small-scale WANETs, but it
may dominate the consumption of scarce network resources in large-scale WANETs. This situation
makes the investigation of throughput with selfish characteristic in large scale WANETs an important
open challenge.

In this paper, we consider n nodes randomly and independently distributed in an area with
dimension of

√
A×
√

A. The communication between source and destination nodes uses multi-hops
transmission. we define p(n) as the probability that a node will forward a packet. When p(n) < 1, in
general, there is network performance degradation because we require all communications to operate
on partial nodes, and some network resources (i.e., the selfish nodes) cannot be utilized compared to
WANETs. Therefore, it is natural to ask the following: What is the price of selfishness (performance
degradation) we have to pay in SWANETs? We formally characterize the relation between the
probability p(n), node density ζ, and network performance. Then, we answer these questions with
rigorous analysis based on reasonable assumptions on SWANETs.

The main contributions of this paper can be summarized as follows:

(1) Comparing to previous research, we firstly consider the model of selfish wireless ad hoc network,
which is more realistic.

(2) We derive the asymptotic throughput capacity of the network combining selfish feature and
general node density, which is different from the previous works of dense or extended networks.

(3) We observe that the selfishness degrades the achievable throughput with a factor
√

p(n), where
p(n) is the probability of forwarding transmission. In addition, the node density impacts the
throughput trivially.

The roadmap of the paper is as follows. In Section 2 we introduce the network model in detail.
The achievable rate is derived in Section 3. In Section 4, we discuss the results and conclude the paper
in Section 5.

2. System Assumption

In this paper, we construct a random SWANET with the general node density ζ ∈ [1, n]. The
general node density includes the case of random dense networks where ζ = n and random extended
networks where ζ = 1. The other features of the system model we considered are as follows:
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(1) We assume n static nodes uniformly and independently placed over an area
A = [0,

√
A]× [0,

√
A], where A = n/ζ.

(2) The node is classified by whether it will forward other transmission. As shown in Figure 1, if
a node will forward other transmission, we define the node as an altruistic node (AN, empty
points in Figure 1). Otherwise the node is a Selfish Node (SN, solid points in Figure 1). In this
work, we assume each node may be selfish, and define the probability that a node i will forward
other transmission as pi(n). For simplicity, we assume the probability that each node forwards
other transmission is p(n).

Figure 1. Network model of selfish wireless ad hoc networks (SWANETs). Solid points are selfish
nodes, and empty points denote altruistic nodes.

(3) Each node randomly chooses a destination node and each node is the destination of exactly
one node.

(4) The transmission model we adopted is General Physical Model [4], where the channel gain
ignores shadowing and fading, and only depends on the distance between the transmitter
and receiver. Let S denote the subset of nodes transmitting simultaneously. Based on the
point-to-point coding and decoding [4], the transmission rate Ri,j between node i to node j is:

Ri,j = log

(
1 +

Pi · d−α
ij

N0 + ∑k∈S\{i} Pk · d−α
kj

)
bit/s (1)

where Pi is the transmission power of node i. We assume each employs identical power P to
transmit. dij denotes the distance between an arbitrary pair of nodes i and j. N0 is the ambient
noise power at the receiver. α is the path loss exponent, and α > 2. The notations of this paper
are summarized in Table 1.

(5) We say that the throughput capacity of a network [4] is of the order O( f (n)) bits per second if
there is a deterministic constant c1 < +∞ such that

lim inf
n→+∞

Pro(T(n) = c1 f (n) is feasible) < 1

and is of order Θ( f (n)) bits per second if there are deterministic constants 0 < c2 < c3 < +∞
such that

lim inf
n→+∞

Pro(T(n) = c2 f (n) is feasible) = 1,

lim inf
n→+∞

Pro(T(n) = c3 f (n) is feasible) < 1
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Table 1. Notations.

Notation Definition

n Total number of nodes in the network.
ζ Node density.
A Network area; A = n/ζ.

p(n) Probability that a node will forward other transmission.
S Set of simultaneous nodes.

Ri,j Point to point rate.
P Power of transmission.
dij The distance between node i and j.
N0 Power of noise.
α Path loss exponent.

T(n) The achievable throughput.

3. Achievable Rate

In order to derive the per-node rate of the networks, we leverage the routing strategy illustrated
in [5] and show that there also exists a routing scheme in SWNETs.

Without loss of generality, the strategy of obtaining per-node achievable rate operates as follows:
Firstly, using percolation theory, we construct a backbone network which is composed of many
horizontal and vertical highways. Then, according to the density of AN, we partition the network
area dynamically to ensure each square contains an AN w.h.p., such that the transmission would not
be terminated by the selfish nodes. Since we begin with percolation theory in the SWNETs model, we
will take a brief look at it here.

Percolation theory [23,24] is a field of mathematics and statistical physics that provides models
of phase transition phenomena. For example, assume that water is poured on top of a porous
stone—will the water be able to make its way from hole to hole and reach the bottom? By modeling
the stone as a square grid, each edge can be open and traversed by water with probability p, or closed
with probability 1− p, and they are assumed to be independent. For a given p, what is the probability
that an open path exists from the top to the bottom? That is, is there a path of connected points of
infinite length through the network? In fact, there exists a critical pc below which the probability is
always 0 and above which the probability is always 1. In some cases pc may be calculated explicitly;
for example, in a two-dimensional square lattice Z2, when p > 1/2, water percolates through the
stone with a probability of one. One can then ask at what rate the water percolates and how it
depends on p. In other words, how rich in disjoint paths are the connected component of open edges?
To maximize the information flow, we want to operate the network at p > 1/2, above the percolation
threshold, so that we can guarantee the existence of many disjoint paths that traverse the network.

In this paper, we merely consider the case of 1
n ≤ p(n) ≤ 1. When p(n) < 1

n , following the
Chernoff Bound, we know that there are few ANs in the network, and each node transmits the packets
directly to the destination or via constant hops by increasing the power. In this case, the asymptotic
throughput is similar to the broadcast capacity [25], which is Θ

(
1
n

)
.

3.1. Construction of the Backbone Network

According to percolation theory, a square is said to be open if it contains at least one AN, and
closed otherwise. To construct the backbone of the network, we divide the network area into squares
of dimensions l(n)× l(n), where l(n) = c0

√
1

ζ p(n) . By appropriately choosing the constant c0, we can
adjust the probability that a square contains at least one AN:

P(a square contains at least one AN) = 1− e−c2
0 ≡ po (2)
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Note that squares are open (closed) with probability po, related to p(n) and ζ and independently
of each other. As Figure 2 shows, in each square we draw a horizontal edge (thick lines) across it,
and in the vertical direction as well. An edge is said to be open if there exists at least one AN in the
square and closed otherwise. On the basis of construction, we establish a bond percolation model [23].
Consequently, the probability that an edge is open is po. Since the number of nodes located in a given
square follows Poisson random process with parameter 1

ζ p(n) , we can get Lemma 1:

2
(
)

l
n

A

A

Figure 2. A new square system. We partition the network with side length l(n), and the thick line
represents that there is at least one altruistic node in the square.

Lemma 1. Let Ni denote the number of node contained in a given square si. Let Ei be the event
1

8p(n) ≤ Ni ≤ 2
p(n) , ∀i. Then,

pa(n) ≡ P(Ei) > 1− 16 (2/e)1/4p(n) (3)

Proof. The lemma can be proven simply by applying the Chernoff bound and the Union bound.

According to the backbone construction, we use m(n) to denote the number of horizontal
(vertical) edges which compose the side length of the area A. Then,

m(n) =
√

A√
2l(n)

=
√

c1np(n) (4)

Notice that m(n)→ ∞ as n→ ∞, and c1 is a constant.
Next we divide the area A into horizontal rectangular slabs with dimensions√

A×
√

2l(n) (κ log m(n) + εn), where κ > 0, as shown in Figure 3. Let Ri
n denote the i-th

slab, where i ≤ m(n)
κ log m(n)+εn

. The parameter εn is the smallest nonnegative number, as the number of

rectangular slabs m(n)
κ log m(n)+εn

is an integer.
As proven in Theorem 1 of [5], many open paths from left to right exist inside each slab. Let

Ci
N be the maximal number of disjoint left-to-right crossing paths in rectangle Ri

n and Nn = mini Ci
n.

The following lemma shows that there exists a large number of crossing paths in each horizontal
rectangular slab of A.

Lemma 2. For all κ > 0, there exists a δ satisfying 0 < δ < κ such that

lim
n→∞

P (Nn ≤ δ log m(n)) = 0 (5)

Proof. According to Theorem 5 in [5], we note that when p > 5
6 for large n. Taking the limits as

n→ ∞, the inequality (16) in [5] derives the condition 0 < δ < κ.



Information 2016, 7, 16 6 of 12

Similarly, by dividing A into rectangular slabs of sides
√

2l(n) (κ log m(n) + εn) ×
√

A in the
vertical direction, we can show that there exists δ log m(n) top-to-bottom crossing paths in each
vertical slab. Therefore, by exploiting the union bound, we can get that there exists Ω (m(n))
left-to-right and top-to-bottom crossing paths (i.e., highways) in the area of A w.h.p.

log ( )m n

A

Figure 3. There are at least δ log m(n) disjoint highways in each slab. And the three phase routing
scheme is illustrated.

3.2. Routing Protocol

We now elaborate on the detailed operation in each phase of routing scheme. As shown in
Figure 3, the routing scheme involves three phases: Draining phase, Highway phase, and Delivery phase.

(1) Draining phase: In the draining phase, source node s drops packets to an entry point on the
nearest horizontal crossing highway.

(2) Highway phase: In the highway phase, packets are first moved along horizontal highway, and
then along the vertical highway until they arrive at an exit point that is close to the destination
node D.

(3) Delivery phase: In this phase, packets are delivered to the destination node D from the exit point
located on the highway.

3.3. The Rate for Transporting a Packet

To achieve the rate of transmit a packet, we use the Time Division Multiplex (TDM) strategy.
The idea of the TDM strategy is that when a node transmits along a path, other nodes which are far
away can simultaneously transmit without causing excessive interference, as shown in Figure 4.

The following Theorem introduces the fact that the rate can be obtained w.h.p. on the path
simultaneously. The theorem is stated in slightly more general terms considering nodes at distance d
in the edge percolation grid, where d is not the Euclidean distance but the number of d squares away.

Theorem 3. In each square, for any integer d > 0, the rate that source-destination pair can be obtained is

R(d) =

Ω

((
d√

ζ p(n)

)−α−2
)

if dl(n) = Ω(1)

Ω
(
d−2) if dl(n) = O(1)

(6)

Proof. As depicted in Figure 4, we partition the network into squares and divide the time frame
into k2 successive slots, where k = 2(d + 1). Then, the disjoint set of squares of si can
transmit simultaneously.
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i
s d

Figure 4. The time division multiplex (TDM) strategy and the case d = 3. Gray squares can transmit
simultaneously. Notice that around each grey square there is a “silent” region of squares that are not
allowed to transmit in the given time slot.

For a specific square si, a node in square si transmits toward a destination node located in a
square at distance d away. At the same time slot, there are four closest squares located at Euclidean
distance at least l(n)(d + 1) from the receiver, the next eight closest squares are at least l(n)(3d + 3)
Euclidean distance, and so on. By extending the sum of the interference of the network area, we can
calculate the upper bound of the interference at the receiver as

I(d, n) ≤
∞

∑
j=1

4j · P(l(n)(2j− 1)(d + 1))−α ≤ P(l(n)(d + 1))−α ×
∞

∑
j=1

4j(2j− 1)−α (7)

where P is the transmission power, and we notice that this sum is converged if the path loss exponent
α > 2. Thus, we can get that I(d, n) = O

(
(dl(n))−α

)
.

Next we will give a lower bound of the signal received from the transmitter. According to
the interference mode, we notice that the distance between transmitter and receiver is at most√

2l(n)(d + 1). Hence, the lower bound of the signal S(d) at the receiver is

S(d, n) ≥ P
(√

2(d + 1)l(n)
)−α

(8)

Next, By General Physical Model [4], combining the interference and the receive signal, we can
achieve transmission rate at receiver located d squares away is

R(d) = lim
n→∞

log
(

1 +
S(d, n)

N0 + I(d, n)

)
=

Ω
(
(dl(n))−α

)
if dl(n) = Ω(1)

Ω (1) if dl(n) = O(1)
(9)

This means that there is a threshold on the rate, which is related to d and square length l(n).
In addition, based on the TDM strategy we adopted, there are k2 = 4(d + 1)2 time slots in our

TDM strategy. Thus, the actual rate available needs to be divided by k2. Correspondingly,

R(d) =

{
Ω
(
l−α(n)d−α−2) if dl(n) = Ω(1)

Ω
(
d−2) if dl(n) = O(1)

(10)
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Equation (10) acts as the groundwork to compute the rate in this work. Since node in this paper
is distributed with general node density and nodes are possibly selfish, it makes it more complicated
than previous works. In particular, we partition the square dynamically to ensure there exists an AN
in each square w.h.p. The rate between transmitter and receiver is associated with the node density ζ

and probability of altruist p(n).
According to Theorem 3, we can derive the achievable rate in each phase. Comparing the

achievable rate of each phase, we get the rate bottleneck.
(1) Draining phase: Since the network is divided into squares with side length of l(n) = c0

√
1

ζ p(n) ,

we partition the network area into slices with dimension
√

A× l(n). Similar to Lemma 2 in [5], we
bound the number of nodes Ns in each slice uniformly, which bounds the number of nodes accessing
a crossing highway. Note that there are a total of

√
A√

2l(n)
slices, each node in the i-th slice transmits

directly to an entry point located on the i-th crossing highway, as shown in Figure 2.

Lemma 4. Let Ns denote the number of nodes in each slice. Then,

lim
n→∞

P
(

Ns ≤ 2
√

2n/p(n), ∀s
)
= 1 (11)

Proof. The proof follows from the Chernoff and Union bound.

The next lemma illustrates the achievable rate in the draining phase.

Lemma 5. The transmitter inside each square can achieve a rate to an entry node on the highway of

RDr =


Ω
(

p(n)
(

log2 np(n)√
ζ p(n)

)α)
if l(n) = Ω(log np(n))

Ω
(

p(n)
log2 np(n)

)
if l(n) = O(log np(n))

(12)

Proof. Similar to [5], the area A is divided into rectangular slabs of dimensions√
A ×

√
2l(n) (κ log m(n) + εn), where m(n) is defined in (4) and κ is chosen such that there

are at least dδ log m(n)e crossing paths in each slab. The crossing paths are denoted as 1, · · · , Nn. In
order to balance the load across the highways, we slice the each slab into δ log m(n) smaller strips,
each of dimensions

√
A ×

√
2ωl(n), where ω is a constant and chosen appropriately. Note that

each crossing highway may not be fully contained in its corresponding strip, but it may deviate
from it. Once the source nodes are mapped to crossing paths, we choose the entry points for each
source as follows: The entry point is chosen from only these open squares containing one AN. The
transmitter drains the information to the entry point directly, and each transmitter finds its highway
within the same slab. Hence, the distance between transmitter and entry point is never larger than
κl(n) log m(n) +

√
2l(n). To compute the rate that node can transport to the entry point on the

highway, let d = κl(n) log m(n) +
√

2l(n) and apply the Theorem 3. We can obtain that a node can
communicate to its entry point at rate

RDr = R
(

κl(n) log m(n) +
√

2l(n)
)
= R

(
κl(n) log

(√
np(n)

)
+
√

2l(n)
)

=

Ω
((

log2 np(n)√
ζ p(n)

)α)
if l(n) = Ω(log np(n))

Ω
(

1/ log2 np(n)
)

if l(n) = O(log np(n))

(13)

Next, we derive the achievable rate on the highway phase.
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Lemma 6. The information along the highways can achieve a per-node rate of RH w.h.p., where RH is

RH =

Ω
(

1√
n p

1
2 (n)(ζ p(n))α

)
if l(n) = Ω(1)

Ω
(

1√
n p

1
2 (n)

)
if l(n) = O(1)

(14)

Proof. The information transported on the highway is forwarded by multi-hop routing. Under the
pairwise coding and decoding, the transporting is performed along the horizontal highways first,
until it reaches the crossing with the target vertical highway. Then, the same is performed along the
vertical highways until it reaches the appropriate exit point for delivery.

According to Lemma 2, a node on the horizontal highway must relay for at most 2l(n)
√

A nodes,
and the maximal distance between two hops is

√
2l(n). Using Theorem 3, we can conclude that an

achievable rate along the horizontal highways is

RHh =


Ω
(

l−α(n)
(

p(n)
n

)1/2
)

if l(n) = Ω(1)

Ω
((

p(n)
n

)1/2
)

if l(n) = O(1)
(15)

Similarly, the rate on vertical highways is

RHv =


Ω
(

l−α(n)
(

p(n)
n

)1/2
)

if l(n) = Ω(1)

Ω
((

p(n)
n

)1/2
)

if l(n) = O(1)
(16)

Combining Equations (15) and (16), we finish the proof of Lemma 6.

The following lemma illustrates the achievable rate of the delivery phase.

Lemma 7. The receiver can attain a rate of RDl from an exit point on the highway, where RDl is

RDl =


Ω
(

p(n)
(

log2 np(n)√
ζ p(n)

)α)
if l(n) = Ω(log np(n))

Ω
(

p(n)
log2 np(n)

)
if l(n) = O(log np(n))

(17)

Proof. The delivery phase is an opposite process to the draining phase, while the transmission is
from highways to the destination.

Combining the Lemma 5, Lemma 6 and Lemma 7, we can derive the rate bottleneck of SWANETs

Theorem 8. Comparing the achievable rate of each phase, we get the rate of per-node in SWANETs with general
nodes density is

T(n) =

Ω
(

1√
n p

1
2 (n)(ζ p(n))α

)
if l(n) = Ω(1)

Ω
(

1√
n p

1
2 (n)

)
if l(n) = O(1)

(18)

4. Discussion

In this section, we will discuss the results we obtained. By comparing our results with previous
literature, we get the price of selfishness and the impact of node density on the throughput capacity
of WANETs.

Firstly, our results can unify previous works [4,5], when we set p(n) = 1 and ζ = 1 or ζ = n.
Secondly, As shown in Figure 5, Figure 5a depicts the relation of throughput capacity with the

probability p(n) and node density ζ. From Figure 5a, we find that selfish nodes can severely impact
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the achievable per-node rate. In particular, when the square length l(n) = Ω(1), a degradation factor
of p

1
2 (n)(ζ p(n))α emerged, while for the case of l(n) = O(1), the degradation factor is p

1
2 (n). In

addition, node density has a trivial impact on the throughput. If the node density ζ > 1
p(n) , there

is no impact on the throughput, while for the case of ζ > 1
p(n) , the throughput loss caused by node

density is ζα. The reason for the performance degradation is that, due to the selfish nodes, all
communications operate on partial nodes, and the selfish nodes cannot be utilized. Thus, it is hard
for a node to find a relay node. With the extent of selfish nodes increasing, a transmitter needs to
enlarge its transmission radius to find a relay node. From [4], we know that the network capacity
is decreased with increasing transmission radius, since the number of simultaneous transmissions
is decreased. We can enhance the transmission power to offset the impact of node density, which
also provides sufficient conditions to guarantee the connectivity of the network [20]. In addition, we
also give a comparison with previous works in Figure 5b. Figure 5b demonstrates that there exists a
throughput loss caused by selfish nodes and node density. This insightful result is quite important
because it provides valuable insight on the desirable operating point that balances selfish nodes and
node density with throughput. We need to increase p(n) in order to get more altruistic nodes, but as
a node itself, it is quite the opposite. Hence, for future work, we will use Game Theory to solve the
benefit between nodes and network performance.

( )T n

( )p n
 

1

n

1

1

n

1

n

1

n

(a)

1

n

1( )p n

( )T n

1

n

1

n

1

( )p n

1

( )p n

Throughput loss

by selfishness

Throughput loss

by density

(b)

Figure 5. (a) shows the asymptotic throughput capacity of WANETs under the impact of selfish nodes
and node density. (b) is a section of (a); We note that there exists a threshold for node density ζ.
Comparing with previous literature, we can notice the throughput loss caused by selfish nodes or
node density intuitively. The scales of the axes are in terms of the order in n.

5. Conclusions

This paper introduces a modeling framework for SWANETs under general node density. We
consider various scope of selfish behavior for each node. Moreover, different node density is
considered. A percolation model is adopted to construct a series of highway systems to connect the
transmission. The computation of throughput capacity is conducted under the model which gives
a more realistic description of SWANETs. The result reveals that, although a selfish node can save
resources for the node itself, it degrades the network performance significantly.
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