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Abstract: With the advent of the big data era, cloud data storage and retrieval have become
popular for efficient data management in large companies and organizations, thus they can enjoy the
on-demand high-quality cloud storage service. Meanwhile, for security reasons, those companies
and organizations would like to verify the integrity of their data once storing it in the cloud.
To address this issue, they need a proper cloud storage auditing scheme which matches their actual
demands. Current research often focuses on the situation where the data manager owns the data;
however, the data belongs to the company, rather than the data managers in the real situation which
has been overlooked. For example, the current data manager is no longer suitable to manage the data
stored in the cloud after a period and will be replaced by another one. The successor needs to verify
the integrity of the former managed data; this problem is obviously inevitable in reality. In this
paper, we fill this gap by giving a practical efficient revocable privacy-preserving public auditing
scheme for cloud storage meeting the auditing requirement of large companies and organization’s
data transfer. The scheme is conceptually simple and is proven to be secure even when the cloud
service provider conspires with revoked users.
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1. Introduction

Nowadays, a large amount of data has been gathered and produced by individuals, companies
and organizations. Moore’s law is broken by the rapid growth of the data scale. The growth of
the data scale is far more than the growth of the processing and storage capacity of computer.
For companies and organizations, the volumes of those data are often so tremendous that they cannot
process and manage it effectively by themselves. In fact, some of them even don’t have sufficient disk
space to store their data because it’s an enormous burden to purchase such a large number of disks.
Facing this reality, companies and organizations have to turn to cloud service provider (CSP) for help,
e.g., Dropbox, Google Drive and skyDrive.

As one of the dominate services in cloud computing, cloud storage allows users to store data on
clouds instead of their local computing systems. By data outsourcing, this kind of new storage service
has many advantages such as relieving users’ burden in terms of data management and maintenance,
universal data access with independent geographical locations and avoiding capital cost on hardware
and software. However, at the meantime, cloud storage also brings a number of challenging security
problems [1–3] despite its appealing features. Security concerns still deter potential consumers from
using the service. One of the major security concerns [1] on the cloud storage service is whether
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the cloud could ensure the integrity of the stored data. Integrity challenges of data corruption are
inevitable [4–6], but cloud service providers may not be fully trusted from the view of the interests.
Cloud Security Alliance (CSA) conducted a systematic investigation into reported vulnerabilities in
cloud computing such as outages, downtimes, and data loss. CSA also released a white paper [7]
in 2013 which revealed that the top three threats were “Insecure Interfaces & APIs”, “Data Loss
& Leakage” and “Hardware Failure”. These three threats accounted for 64% of all cloud outage
incidents while “Data Loss & Leakage” accounted for 25%. Consequently, guaranteeing the integrity
of the data, or data auditing, in cloud is a highly desirable security demand for secure cloud storage.
Many researches have been done on checking the integrity for outsourcing data in the cloud. Despite a
number of cloud data auditing schemes [8–15] have been proposed with different requirements so far,
they are all designed for traditional cloud storage environment without considering the applications
for user revocable.

We notice that almost all of the previous public auditing systems are fixed by the user who
computes the block tags. In other words, those auditing schemes require that the user of the cloud
storage service is always the same one during the entire data period. However, it is impractical.
On one hand, the verification information of an auditing system such as the user’s public key may
expire after a period of time. On the other hand, the user may be a data manager of a company
for a time and may leave for some reasons. For example, the data manager may go to work in
another company for a higher salary. Therefore, for practical considerations, an auditing scheme
should support efficient user revocation.

Recently, a few public auditing schemes for cloud storage systems with user revocation have
been presented, e.g., [16–18]. However those schemes are designed for auditing shared cloud data
rather than for revoking inappropriate users when auditing owned cloud data. Moreover, we note
that the existing users revocable public cloud storage auditing schemes are either involved or less
secure. Specifically, the revocable public cloud storage auditing schemes in [17] and [18] employ
the unwieldy dynamic broadcast encryption [19] and group signature [20] techniques respectively.
Although the scheme in [16] is more efficient, it can’t resist collusion attacks between the cloud
and a revoked user. That is, the collusion of the cloud and a revoked user could always deceive
an incumbent user into belief that the data in the cloud remains intact even if it’s actually not.
Thus collusion attack resistance is indispensable in a revocable public cloud storage auditing
schemes. As a result, it’s crucial to design efficient and collusion-resistant user revocable public
auditing schemes.

1.1. Related Work

Juels et al. proposed an auditing scheme called Proofs Of Retrievability (POR) while the auditing
scheme proposed by Ateniese et al. is called Provable Data Possession (PDP). Shacham-Waters
used BLS signature constructed an efficient public verifiable POR scheme [13]. Based on their
research, many cloud storage auditing schemes have been proposed to verify the data integrity
without needing to retrieve entire data [8–13]. However, the privacy protection of user’s data has
not yet been considered in most of these schemes [11,13]. This shortcoming can greatly affect the
safety of these schemes. Therefore, the auditing process should not leak the knowledge of the
challenged files to the third-party auditor. In 2013, Wang et al. [9] presented a privacy-preserving
public auditing scheme for cloud storage; it resorts to the homomorphic authenticator technique and
random masking technique to realize privacy-preserving public auditing and take advantage of the
technique of bilinear aggregate signature to realize batch auditing.

All the auditing schemes mentioned above do not consider the user revocation problem, thus
those schemes can only be applied to static users. However, user revocation is an obviously inevitable
problem. Recently, a few auditing schemes supporting user revocation are published for realizing
multi-user shared cloud storage audit. In 2012 Wang et al. [21] first introduced the shared cloud
storage auditing issue and proposed a private auditing scheme with user revocation based on group
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signature [20]. In 2013, Wang et al. [17] presented a public auditing scheme with user revocation for
shared cloud storage, based on the dynamic broadcast encryption scheme of [19] and the bidirectional
proxy re-signature scheme of [21]. Later, using a group signature like technique, Yuan and Yu
proposed a public version of the scheme in [18]. As group signature and dynamic broadcast
encryption techniques are both involved, the above revocable auditing schemes are all less efficient in
practice. To address this problem, in 2015 Wang et al. presented an efficient revocable public auditing
scheme in [16] by just using the bidirectional proxy re-signature scheme of [22]. However, we note
that the bidirectional proxy re-signature scheme cannot resist the collusion attack of the cloud and a
revoked user since an incumbent user’s secret key can be recovered from the cloud’s update key and
a revoked user’s secret key.

We also notice that all the previous papers focus on the data integrity and security are under
the shared cloud storage model [23,24]. Although these schemes involve user revocation problem,
the main research is still cloud data sharing, where security problems cannot be ignored. Therefore,
we analyze the revocation need of companies and organizations cloud storage data users, propose
the model of user revocable auditing schemes and design an efficient dynamic integrity verification
scheme for big data supporting user revocability. This is the major work we are doing in this paper.

1.2. Our Contributions

Motivated by above, in this paper, an efficient dynamic integrity verification for big data
supporting users revocability and third-party privacy-preserving auditing scheme be proposed.
To achieve this, we make the following contributions: we analyze the revocation need of companies
and organizations cloud storage data users. Based on technique of bilinear aggregate signature, a
specific revocable public cloud storage third-party auditing scheme be presented. It can help the
current user audit the data which was sent to the cloud by all the previous users, and can satisfy the
user transfer demand of large companies and organizations. Meanwhile cloud users can delegate
a third party (TPA) to perform security auditing tasks as it is not economically feasible for them
to handle it by themselves. By given a precise definition of security that collusion resistance is
mandatory. At last by analyzing the performance of scheme and the results, we demonstrate that
our scheme is efficient.

1.3. Paper Organization

The remainder of this paper is organized as follows. Preliminaries is described in Section 2.
Section 3 formalizes the concept of revocable third-party privacy-preserving auditing scheme for
cloud storage and also presents our design goals. The revocable third-party privacy-preserving
auditing scheme for cloud storage is given in Section 4. Section 5 analyzes the scheme security.
Section 6 analyzes the performance of it. Finally, Section 7 concludes this paper.

2. Preliminaries

2.1. The User Data Stored in the Cloud

As illustrated in Figure 1, a basic cloud storage auditing system involves two main entities:
a user and the CSP. The user would be a company or an organization (more precisely, it is usually a
data manager of them who uses the cloud storage service to store its superabundant data. The CSP
is cloud service provider who has ample storage space, and could offer economical and professional
storage services to users. Specifically, a cloud storage auditing scheme works as follows. A user first
splits the data M into n blocks such that each block is mi in Zp, i.e., M = (m1, . . . , mn) ∈

(
Zp
)n,

M ∈ {0, 1}∗, i ∈ {1, · · · , n}, and computes the signatures of all blocks using its secret key like
σ =

(
σ1, . . . , σn

)
. Here the signatures are known as block tags. Then the user sends the data and all

tags to the cloud, and deletes them locally. When their outsourced data needs to be checked, the user
picks a random set of data blocks and sends a corresponding Q = {(i, vi)} to the cloud, where i and vi
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indicate the identity and random coefficient of a selected data block respectively. After receiving Q ,
the cloud calculates and returns a proof by using those data blocks as well as the corresponding tags.
Finally, the user verifies the validity of the proof. If the proof is invalid then the user can confirm
that its data has been damaged. Otherwise, it may be intact; the user could repeat the challenge
verification procedure until getting a confirmation. It obviously shows that the cloud only stored the
user data block and the corresponding blocks tags.

Figure 1. The user data stored in the cloud.

2.2. Multi-User Data Stored in the Cloud with the Revocable System

As shown in Figure 2, cloud storage system supporting revocable user is quite different from the
basic cloud storage auditing system, as there are many users who are able to manage the same piece
of data. In reality, the data stored in the cloud belongs to the company, not to the data manager. In a
specific period, there is usually one data manger that is responsible for managing the data, but in a
longer time period, there might be many users who are able to managing the data. That is, after some
time, a data manager who is responsible for managing the data is no longer suitable to manage the
data, e.g., the data manager leaves the company and work for another company, thus, a successor of
the data manager is needed.

Figure 2. Multi-user data stored in the cloud.

We assume that there is an initial user who uploads the company’s data to the cloud on behalf
of the company, we regard this initial user as U0, then the company recruit a data manger to manage
those data stored on the cloud. Clearly the data manager is not tenure. Before leaving, a data manger
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needs to transfer all data he managed to his successor. The successor also needs to verify these data
to make sure all the data stored on the cloud is intact. Assume that a company or organization only
needs one data manager to manage the data in a specific period. Then we have U1, U2, · · · , Um users
in the company or organization where m is a positive integer. So the data management period is
divided into T1, T2, · · · , Tm accordingly. And the user has to transfer the data to the successor at the
end of the period. ( Note: In the paper the initial user U0 can’t do anything except uploads the data
to the cloud. Only U1, U2, · · · , Um can management the data.)

The initial user U0 first divides all the files into n blocks, and calculates its corresponding tag σ

using his secret key, then uploads the data and tag to the cloud. U1 manages the data during the
period of T1, then U1 will be replaced by its successor U2 at the end of T1, U2 will also be replaced
by U3 some time later, and so on till the Uj replaces Uj−1,where j ∈ { 0, · · · , m} and Uj is the current user.

As the tag is signed by the user, if a user has been revoked, the tags computed by the user should
be modified. An obvious approach to update those tags is re-computing the tags of data blocks using
the current user’s secret key. However, this is not a cloud storage auditing scheme supporting user
revocation, as this method introduces large communication and computation overhead. All the data
manager can add, modify and delete the data which is stored on the cloud. For the current user Uj
all these operations can only happen during the Tj period. For the add operation, Uj divides the data
into blocks, computes the tags of each block and sends all the blocks and tags to the cloud. For the
modify operation, Uj first retrieves the data which needs to be modified and its corresponding tags.
Uj verifies the correctness of the data, and discards the tags. If the data is intact, then Uj modifies
the data and computes the tags for the data using his secret key and uploads the data and tags to
the cloud. For simplicity, we assume that the cloud server can handle the delete operation effectively.
(e.g., if some deleted data are selected by a challenge, all the data are set to 0, this will not affect the
alter verification process of the data. In fact, those deleted data will no longer take any space on the
cloud server.) Thus for serial number of blocks, its value will never decrease.

The value of the i − th of blocks C is related to the period T and the operation P.
Assume that C1, · · · , Cm are the i − th of blocks at the end of period T1, T2, · · · , Tm, and
c1, · · · , cm are the increment of the data block at the end of period T1, T2, · · · , Tm, and
pj,1, pj,2, · · · , pj,θ are the increment of the data block by the operation Pj,1, Pj,2, · · · , Pj,θ
during the period Tj. Then we get Cj = n + ∑`∈[1,j] c` = Cj−1 + cj, where ` ∈
{1, · · · j}, and ∑k∈[1,θ] pj,k = cj, where pj,k is a positive integer and k ∈ {1, · · · θ}.
So at the auditing time the value of the i− th of blocks is Cj,k = Cj−1 + p, where p = pj,1 + pj,2 + · · ·+ pj,k.

For a more realistic cloud storage system supporting user revocation, all the data stored on the
cloud included the data m1, . . . , mCm and its corresponding tags σ1, . . . , σCm , and its corresponding
period T1, T2, · · · , Tm. They are uploaded by the initial users U0 and all the other data managers
U1, U2, · · · , Um. So as shown in Figure 3, the integrity verification of mi will be verified by σi , C, T.

Figure 3. Each block is attached with a signature, a block id and a current period.

As mentioned above, Uj can only add and modify data at the time period of Tj, and compete the

tags of data blocks using his own secret key. In order to distinguish those tags, we use σ
(j)
i to represent

the tags computed by the user Uj for data block mi. For the current user, he has to not only manage the
data blocks mC( j−1)+1, . . . , mC

j ,k
and their corresponding tags, but also manage all the data blocks

and tags which were uploaded to the cloud by all of his predecessors. Some of the tags might be



Information 2016, 7, 31 6 of 16

signed by different users. For example, in time period T1, user U1 did modify operation which gets
data block m2 and tag σ

(1)
2 ; at the current period, user Uj modifies data block mi and computes its tag σ

(j)
i .

2.3. The Revocable Scheme Supported Third-Party Privacy-Preserving Auditing

Due to reason of the online burden which potentially brought by the periodic storage correctness
verification, cloud users tend to delegate a third-party auditor (TPA) to execute security auditing
tasks. Through the TPA automatic execution periodic auditing tasks can save communication
resources effectively. Therefore, the third-party auditing schemes are more desirable in the real world.
As illustrated in Figure 4, a revocable cloud storage third-party auditing scheme works as follows.
When the user wants to check its outsourced data, it sends a verify request to the TPA. When the TPA
receives the request, it picks a random set of data blocks and sends a corresponding Q = {(i, vi)}
to the cloud, where i and vi indicate the identity and random coefficient of a selected data block
respectively. After receiving Q, the cloud calculates and returns a proof using those data blocks as
well as the corresponding tags. Then, the user verifies the validity of the proof. If the proof is invalid
then the TPA can confirm that its data has been damaged. Otherwise, it may be intact; the TPA could
repeat the challenge verification procedure until getting a confirmation. Finally, the TPA sends the
result to the user. It is obvious that the cloud only stored the user’s data block and the corresponding
blocks tags.

Figure 4. An efficient and security revocable third-party privacy-preserving auditing scheme for
cloud storage.

3. Formalization and Definitions

Without loss of generality , a revocable third-party privacy-preserving auditing scheme for cloud
is assumed as shown in Figure 4, which involves in m + 1 authorized users for some m ∈ Z > 0 and
their sequence is U0, U1, U2, · · · , Um, corresponding the manager period T1, T2, · · · , Tm. (Notice
that unauthorized users can be easily recognized and additionally they cannot impair the integrity
of the outsourced data. Thus it can be assumed that there is no unapproved user in our auditing
schemes.) Then such an auditing scheme can be defined as below.

3.1. Definition 1: Revocable Third-Party Privacy-Preserving Auditing Scheme for Cloud Storage

A revocable third-party privacy-preserving auditing scheme for cloud storage consists of
six probabilistic polynomial time (PPT) algorithms (Setup, SigGen, Update, Challeng, Proo f Gen,
Proo f Veri f y), where:
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Setup: This algorithm is to generate each user’s public/secret keys and run by each user Uj,
where j ∈ {0, · · · , m}. For the j− th user Uj, the algorithm takes as input a security parameter λ

and outputs Uj
′s public-secret key pair

(
pk j, sk j

)
.

SigGen: This algorithm is to generate the tags of the stored data. It consists of three child
probabilistic polynomial time algorithms(SigGen (U0), SigGen

(
Uj
)
, SigGen

(
U` → Uj

)
).

SigGen (U0): This algorithm is to generate the initial block tags of the stored data in the initial
time and thus will be run by the initial user U0 The algorithm takes as input U0

′s secret key sk0 and
block data (m1, . . . , mn), mi ∈ {0, 1}∗, i ∈ {1, · · · , n}, and outputs the verification metadata V of
(m1, . . . , mn) associated with the user U0. After that, U0 sends V and (m1, . . . , mn) to the cloud and
deletes them locally.

SigGen
(
Uj
)
: This algorithm is to generate the block tags of the stored data in the period Tj on

the operation pj,k′ , k ∈ {1, · · · , θ}, k′ ∈ {1, . . . , k} and thus will be run by the current user Uj.

The algorithm takes as input Uj
′s secret key sk j and block data

(
mCj,(k′−1)+1, . . . , mCj,k′

)
,

mi ∈ {0, 1}∗, where Cj,k′ is a positive integer. And the output of verification metadata

V of
(

mCj,(k′−1)+1, . . . , mCj,k′

)
is associated with the user Uj. After that, Uj sends V and(

mCj,(k′−1)+1, . . . , mCj,k′

)
to the cloud and then deletes them locally.

SigGen
(
U` → Uj

)
: This algorithm is to generate the block tags of the stored data in the period

Tj when Uj wants to update the data which the previous user U` uploaded to the cloud. So it will
be run by the current user Uj. The algorithm first retrieving the data block miand it corresponding
tags, then verified it if invalid turn out, if valid Uj replaced the mi by m∗i (For simple reason we also
record it as mi too). Later the algorithm takes Uj’s secret key sk j and block data mi as input and the
outputs of verification metadata V of mi associated with the user Uj. After that, Uj sends V and mi to
the cloud and then deletes them locally.

Update: This is an interactive algorithm for updating users. Suppose the user Uj needs to be
replaced by the user Uj+1, then Uj+1 will initiate the algorithm. After the algorithm ends, Uj+1 would
obtain an update uk j→ j+1 for the cloud, and finally sends it to the cloud.

Challeng: This is an interactive algorithm for users send checking order. Assume Uj is the current
user and wants to check its outsourced data, it sends a verify request to the TPA. When TPA received
the request, it picks a random set of data blocks and sends a corresponding Q = {(i, vi)} to the cloud,
where i and vi indicate the identity and random coefficient of a selected data block respectively.

Proo f Gen: After receiving Challeng, the cloud would run the algorithm to return a response.
To do this, the algorithm takes as input the Challeng, the block data mi, i ∈ Q and the verification
metadata V of {mi}i∈Q, and outputs a verification proo f .

Proo f Veri f y: This algorithm is run by the TPA to verify the correctness of the proo f .
The algorithm takes as input Uj

′s public key pk j, the Challeng and the corresponding proo f , and
outputs VALID if proo f is valid; INVALID otherwise. Finally, the TPA sends the result to the Uj.

For easier understanding, the revocable third-party privacy-preserving auditing scheme for
cloud storage intuition behind the definition is given here. The basic idea of our security definition
is: if the data in the cloud is indeed damaged but the cloud cannot admit, even by colluding with
the revoked users, fool the current user into believing that the data remains intact. Let the cloud be
an adversary A. To model the collusion between the cloud and revoked users, we permit to query
a Corrupt oracle which takes a revoked user’s identity as input and outputs the user’s secret key.
However, according to the aforementioned reasons we prohibit A from querying the Corrupt oracle
on the user’s identity. Additionally, like other security models, our security model also allows A to
query SigGen oracle, Update oracle as well as the Proo f Gen oracle for obtaining the initial block tags,
all update keys and valid proofs of any challenges.
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3.2. Definition 2: Security Model

Now we describe the security definition of revocable third-party privacy-preserving auditing
scheme for cloud storage. A revocable third-party privacy-preserving auditing scheme for cloud
storage is secure if for any polynomial time adversary A the probability wins the following game
played between a challenger C and the adversary A is negligible.

Setup: The challenger C first runs the algorithm KeyGen(λ) to generate Uj
′s public-secret key

pair
(

pk j, sk j
)

for all j ∈ {0, · · · , m}, and then sends all public
{

pk j
}m

0 to the adversary A.
Query: The adversary A could query the following oracles adaptively.
SigGen-Oracle: For any data block m ∈ {0, 1}∗, if A wants to get the initial block tags of m,

it will query the oracle on m. After receiving the query, the challenger C first runs the algorithm
SigGen(sk0, m) to produce a result V0 and then returnsV0 as response.

Update-Oracle: When A believes some user is not suitable for auditing, A will query the oracle
on the user’s identity to replace the user with its successor. Assume the user to be replaced is Uj+1 for
j ∈ {1, · · · , m− 1}. The challenger C first runs the algorithm Update

(
Uj+1

)
to produce a update key

uk j→ j+1 and then sends it to A. After receiving uk j→ j+1, A could generate the verification metadata
Vj+1 of a data block m associated with the user Uj+1 using the update key uk j→ j+1, the data block m
and the verification metadata Vj of m associated withUj.

Corrupt-Oracle: Suppose all revoked users at present are U0, U1, · · · , Ud for some d ∈ {0, . . . , m− 1},
then the adversary A could query the oracle on any of them, with the exception of only U0. When
receiving such a query on the user U` for ` ∈ {1, . . . , d}, the challenger C returns U`

′s secret key sk`
as response.

Proof. In order to verify whether the data block m stored in the cloud is the same as before, the
challenger C generates a random challenge Chal and requests the adversary A to return a proof of m
associated with user Uj where j ∈ {0, . . . , m}. On input the challenge Chal, the data block m and the
verification metadata Uj of M associated with Uj, the adversary A outputs a proof as response.

Forgery. When the above process ends, the adversary A finally outputs a proof of some challenge
Chal on file M with respect to user Uj, where j ∈ {0, . . . , m}. We say A wins the game if the following
conditions hold:

1. Veri f ication (pk`, chal, proo f )→ Valid;
2. The data block m is not the original one.

3.3. Design Goals

To support secure and efficient user revocable and data privacy preserving in a public cloud data
auditing scheme, we have the following design goals:

(i) TPA is allowed to verify the correctness of the cloud data. It executes data auditing without
retrieving entire data and introduces none additional online burden to the user.

(ii) Storage correctness: If the cloud indeed stores entire data, then it would always output
valid proofs.

(iii) Privacy-preserving: TPA learns no information of the stored data from information collected
during the auditing process.

(iv) Revocability: If a user is revoked, then its successor could establish a new auditing
procedure efficiently.

(v) Collusion resistance: If the data stored in the cloud is changed, then the auditing scheme should
be able to detect it with high probability even though the cloud colludes with revoked users.

(vi) Efficiency: the computation, communication and storage overhead should be as small
as possible.
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4. The Revocable Third-Party Privacy-Preserving Auditing Scheme for Cloud Storage

This section gives some preliminaries to be used in this work, including bilinear map and
hardness assumptions.

4.1. Bilinear Map

Let G1, G2 and GT be cyclic groups with the same prime order p. A map e: G1 × G2 → GT is
called a bilinear map if it satisfies the following three properties.

1. Bilinearity: For all a, b ∈ Zp, and u ∈ G1, v ∈ G2, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g1, g2) 6= 1.
3. Computability: There exists an efficient algorithm to compute the map e.
4. Exchangeability: e(u1 · u2, v) = e (u1, v) · e (u2, v)

4.2. Hardness Assumptions

The security of our constructions will rest on the Computational Diffie-Hellman (CDH)
assumption and the Discrete Logarithm (DL) assumption.

Definition 3 (CDH Assumption). The CDH assumption is given a group of prime order p, a generator g,
and two random element ga, gb ∈ G it’s hard to output gab.

Definition 4 (DL Assumption). The DL assumption is given a group G of prime order p, a generator g, and
a random element gc ∈ G it’s hard to output c.

4.3. Specification

In this section, the revocable third-party privacy-preserving auditing scheme for cloud storage
is proposed. The auditing scheme is illustrated in Figure 4. Here, a semi-trusted TPA is needed to
define, which is only responsible for auditing the integrity of data blocks honestly. However, it is
curious and may try to reveal the user’ primitive data blocks based on verification information. In
this paper, the scheme includes of the following six algorithms: Setup, SigGen, Update, Challeng,
Proo f Gen, Proo f Veri f y.

Let G and GT be two cyclic groups with the same prime order p, and g be a generator of G.t.
Let e : G× G → GT be a bilinear map and H : {0, 1}∗ → G, h : {0, 1}∗ → G, fk3 : {0, 1}∗ → Zp

be a hash function. The auditing scheme is specified as follows.
Setup. On input a security parameter λ, each user Uj where j ∈ {0, · · · , m} does the

following steps:

1. Select a random xj ∈ Zp.
2. Compute its public key gxj .
3. Output pk j = gxj and sk j = xj.

SigGen. This algorithm is to generate the tags of the stored data. It consists of three child
algorithms (SigGen (U0), SigGen

(
Uj
)
, SigGen

(
U` → Uj

)
).

SigGen (U0). When the companies and organizations delegate a trust user U0 upload the initial
data at the initial time period.

1. The initial user U0 encodes all the files and then splits them into n block such that each block is
in Zp, i.e., (m1, . . . , mn) ∈

(
Zp
)n.

2. For all {mi}, i ∈ {1, · · · , n} compute the tag of i − th data block mi as σi = (H (Wi) umi )x0 ,
ti = Wi||Sigssk (Wi), where u is a public parameter chosen randomly from G, Wi = i||Tj and
j ∈ {1, · · · , m}.

3. Send the initial verification metadata V = {σi, ti}1≤i≤n and the data blocks {mi}1≤i≤n to the
cloud and then deletes them locally.
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SigGen
(
Uj
)
. This algorithm is to generate the block tags of the stored data in the period Tj on

the operation pj,k′ , k ∈ {1, · · · , θ}, k′ ∈ {1, . . . , k}.

1. The data blocks is processed as {mi}Cj,(k′−1)≤i≤Cj,k′
by current user Uj, where Cj,k′ is a positive

integer. The increment of the data block by the operations denoted by pj,k′ , which user Uj will
add these data to the cloud in the period Tj.

2. For all {mi}Cj,(k′−1)+1≤i≤Cj,k′
, Uj compute the tag of i − th data block mi as σi = (H (Wi) umi )xj ,

ti = Wi||Sigssk (Wi), where u is a public parameter chosen randomly from G, Wi = i||Tj and
j ∈ {1, · · · , m}. Send the verification metadata V = {σi, ti}Cj,(k′−1)+1≤i≤Cj,k′

and data blocks

{mi}Cj,(k′−1)+1≤i≤Cj,k′
to the cloud and then deletes them locally.

SigGen
(
U` → Uj

)
. This algorithm is to generate the block tags of the stored data in the period

Tj. If the current user Uj wants to update the data of previous user U` do.

1. When the current user Uj wants to update the data mi in the previous T` period for some reason,
the mi and V = {σi, ti, C`} should be retrieved firstly.

2. Then the user Uj verified the ti = Wi||Sigssk (Wi) with the previous user public key. If wrong
the auditing scheme ends, if right the user Uj deals with the data block as mi and replaced the

tag σ
(`)
i = (H (Wi) umi )x` by σ

(j)
i = (H (Wi) umi )xj At the same time the user Uj replaced the

ti = (i||T`) ||Sigssk(U`)
(i||T`) by ti =

(
i||Tj

)
||Sigssk(Uj)

(
i||Tj

)
.

3. At last the user Uj sends verification metadata V = {σi, ti} and the block mi to the cloud and
then deletes them locally.

Update. If the user Uj+1 would take the place of the user Uj, then Uj+1 computes the update key

uk j→j+1 as uk j→j+1 = (gxj)
1

xj+1 = g

xj
xj+1 , and sends it to the cloud.

The cloud does the following steps:

1. Set αj = pk j, β j+1 = uk j→j+1.
2. For any j ∈ {0, · · · , m− 1}, let the verification metadata of block data mi associated with user

Uj be Vi =
(
σi, ti, α1, . . . , αj, β1, . . . , β j

)
.

For the sake of clarity, we list some used signals in Table 1. The protocol is illustrated in Figure 5.

Table 1. Signal and its explanation.

Sig. Repression

n the number of the initial data block;

T1, T2, · · · , Tm the period of data manager’s management;

Tj the current period is correspondence the current user Uj;

C
the number of the total data blocks at the auditing time:

Cj,k = Cj−1 + p where p = pj,1 + pj,2 + · · ·+ pj,k ;

C1, · · · , Cm the i− th of blocks at the end of period T1, T2, · · · , Tm ;

c1, · · · , cm the increment of the data block at the end of period T1, T2, · · · , Tm ;

pj,1, pj,2, · · · , pj,θ the increment of the data block by the operation Pj,1, Pj,2, · · · , Pj,θ during the period Tj ;

σ
(j)
i the tag is generated by the Uj and data block mi ;

Q the set of index-coefficient pairs, i.e., Q = {(i, vi)} ;

t it used to verify if the block i-th match the data block;

V the response for the challenge Q;
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TPA The cloud server
(1) Retrieve file tag, verify its signature,
and quit if fail;
(2) Generate a challenge message
challenge:
Q = {(i, vi)}, i ∈

{
1, . . . , Cj,k

}
;

−−−−−−−−→
Q = {(i, vi)} (3) Spilt this Q to{

QT0 , . . . , QT` , . . . , QTj

}
;

(4) Compute µ′ = ∑i∈Q vimi, σ =

∏ i∈Qσ
vi
i ∈ G1;

(5) compute r = fk3(challenge) ∈ Zp,
R = ur ∈ G1, µ = µ′ + rh(R) ∈ Zp,
and t = {ti}i∈Q;

←−−−−−−−
(µ, σ, t, α, β)

(6) Compute:
r = fk3(challenge) ∈ Zp;
verify PK(U`)

(
Sigssk(U`)

(Wi)
)

=

(i||T`), then verify (µ, σ, t, α, β) via the
verification equation.

Figure 5. Revocable third-party privacy-preserving auditing protocol.

Challeng. When the Uj wants to verify the integrity of the data block stored in the cloud in the
period of Tj ( Uj’s period), it would send a verity request to the TPA.

Proo f Gen. When the TPA receives the request of user, it would issue a random set Q = {(i, vi)}
and a communication key k3 to the cloud as a Challeng, where i ∈

{
1, · · · , Cj,k

}
and vi ∈ Zp.

After receiving Challeng, the cloud can spilt this Q to
{

QT0 , . . . , QT` , . . . , QTj

}
then computes and

returns (µ, σ, t, α, β) as a proo f , where r = fk3(challenge) ∈ Zp, R = ur ∈ G1, µ′ = ∑i∈Q vimi,
µ = µ′ + rh(R) ∈ Zp, σ = ∏ i∈Qσ

vi
i ∈ G1, and t = {ti}i∈Q.

Proo f Veri f y. When the TPA receives the proo f , input the public key pk` of user U`, the Challeng,
Q = {(i, vi)}, k3 and the proo f , (µ, σ, t, α, β), the algorithm outputs VALID to the Uj as the Result if
the following equalities simultaneously hold.

First for each ti verifies PK(U`)

(
Sigssk(U`)

(Wi)
)
= (i||T`).

Second verifies the data block and tags e (σ, g) = ∏`∈[0,j] e
(

α`, uµ · R−h(R) ·∏i∈QT`
H(Wi)

vi
)

.

Third verifies the user e
(
αj−1, g

)
= e

(
pk j, β j

)
e (α`, g) = e (α`+1, β`) f or` ∈ {0, . . . , j− 2}.

Remark 1. The update process of the revocable third-party privacy-preserving auditing scheme is simple and
is also efficient in terms of both computation and communication costs because it only needs to compute and
send one update key ukl→l+1.

Remark 2. There is only one public key, i.e., the current user’s public key, in the revocable third-party
privacy-preserving auditing scheme for any period of time. All public keys of revoked users are not certified
any more, and thus a malicious cloud could modify them discretionarily.
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5. Analysis of the Proposed Auditing Scheme

5.1. Correctness

Now we prove the correctness and security of our revocable third-party privacy-preserving
auditing scheme.

Theorem 1. The auditing scheme satisfies correctness.

Proof. According to the above construction, that for any challenge Q = {(i, ui)}, this challenge can
be spilt to Q =

{
QT0 , . . . , QT` , . . . , QTj

}
, ` ∈ {0, . . . , j}, have

e (σ, g) = e
(
∏i∈Q σ

vi
i , g

)
= ∏`∈[0,j] e

(
∏i∈QT`

σ
vi
i , g

)
= ∏`∈[0,j] e

(
∏i∈QT`

(H (Wi) umi )vi , gx`
)

= ∏`∈[0,j] e
(

α`, uµ−rh(R) ·∏i∈QT`
H(Wi)

vi
)

= ∏`∈[0,j] e
(

α`, uµ · R−h(R) ·∏i∈QT`
H(Wi)

vi
)

Also, for any user Uj where j ∈ {1, · · · , m}, we know that

e
(
αj−1, g

)
= e (gxj−1 , g) = e

(
gxj , g

xj−1
xj

)
= e

(
pk j, β j

)
and for all ` ∈ {0, · · · , j− 2} have

e (α`, g) = e (gx` , g) = e
(

gx`+1 , g
x`

x`+1

)
= e (α`+1, β`)

Therefore, the auditing scheme is correct.

5.2. Security Analysis

Theorem 2. The auditing scheme is secure in the random oracle model under the CDH assumption.

Proof. According to Definition 2, if there exists a polynomial time adversary A who breaks the
scheme with non-negligible probability ε, we construct an algorithm B that uses the adversary A as a
subroutine to solve a hard CDH problem with probability ε too. Algorithm B does so by interacting
with A as follows.

Setup. Given a security parameter λ , the algorithm B first randomly picks a generator g of G,
gα ∈ G and a hash function H : {0, 1}∗ → G that will be modeled as a random oracle in the proof.
B also chooses random gx0 from G for an unknown x0 as U0’s public key and computes Uj’s public
key gxj for all j ∈ {0, · · · , m}, where xj is picked from Zq. Then B sets u = gα and sends the system
parameters g, u and all users’ public keys {gxj}m

0 to the adversary A.
Query. The adversary A can query the following types of oracles adaptively. It is assumed that

for any data block mi, A will first make a H-Oracle query on the block before others.
H-Oracle. When A queries the oracle on a data block mi, B looks up mi in H-list, an initial

empty list with the tuples (mi, si, H (Wi)). If B finds a matched tuple, it outputs H (Wi) as response.
Otherwise B first picks a random value si ∈ Zp and then computes H (Wi) = gsi /umi , stores
(mi, si, H (Wi)) in H-list and finally outputs H (Wi) as response.

SignGen-Oracle. To get the tags of data blocks {mi}i∈[1,Cj,k]
, A queries the oracle on the file.

Upon receiving the query, for all i ∈
{

1, · · · , Cj,k

}
, j ∈ {1, · · · , m}, ` ∈ {0, · · · , j}, B looks up
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mi in H-list, finds a matched tuple (mi, si, H (Wi)), computes σi = (gx`)si and finally outputs the
set V =

(
σ1, . . . , σCj,k

)
as response. Since σi = (H(Wi)umi )xl , plugging H (Wi) = gsi /umi into the

equality, we can see that σi = (gx`)si for all i ∈
{

1, · · · , Cj,k

}
.

Update-Oracle. If A wants to replace the user Uj with its successor Uj+1 for some j ∈
{1, · · · , m− 1}, A will query the oracle on Uj. Upon receiving the query, B first computes

the update key uk j→j+1 = g
xj/xj+1 using Uj+1’s secret key xj+1 and sends the result to A.

Then A sets αj = gxj and β j+1 = uk j→j+1, and adds them into Uj
,s verification metadata.

Let Vj =
(
µ, σ, t, α1, . . . , αj−1, β1, . . . , β j

)
be Uj

,s verification metadata, then we know that Uj+1’s
verification metadata is Vj+1 =

(
µ, σ, t, α1, . . . , αj, β1, . . . , β j+1

)
.

Corrupt-Oracle. Let all revoked users at present be U1, . . . , Ud for some d ∈ {1, · · · , m− 1}.
If the adversary A queries the oracle on the user Uj where j ∈ {1, · · · , d}, then B returns Uj

,s secret
key xj as response.

Proof. If B wants to verify whether the data block m stored in the cloud remains intact or not, it
will issue a random challenge Challeng (Q, k3), Q = {(i, vi)} to A, where i ∈

{
1, · · · , Cj,k

}
and

vi ∈ Zp. Let
(

m1, . . . , mCj,k

)
∈
(
Zp
)n and the current user be Uj. Upon receiving Challeng(Q, k3), A

computes r = fk3(challenge) ∈ Zp, R = ur ∈ G1, µ′ = ∑i∈Q vimi, µ = µ′ + rh(R) ∈ Zp, σ = ∏i∈Q σ
vi
i ,

t = {ti}i∈Q, and returns a valid proof Vj =
(
µ, σ, t, α1, . . . , αj−1, β1, . . . , β j

)
to B.

Forgery. A with non-negligible probability ε outputs a valid proof
(
µ∗, σ∗, t, α1, . . . , αj−1, β1, . . . , β j

)
of a Challeng (Q, k3) on a damaged file {mi}i∈[1,Cj,k]

with respect to user Uj, where j ∈ {1, · · · , m}.
Let the proof of the Challeng (Q, k3) on the unbroken data blocks {mi}i∈[1,Cj,k]

with respect to user Uj

be (µ, σ), then we know µ 6= µ∗. Let ∆µ = µ∗ − µ Since e (σ, g) = ∏`∈[0,j] e
(

α`, uµ · R−h(R) ·∏i∈QT`
H(Wi)

vi
)

and e (σ∗, g) = ∏`∈[0,j] e
(

α0, uµ · R−h(R) ·∏i∈QT`
H(Wi)

vi
)

, (by Definition 2), we have

e(σ∗ · σ−1, g) = e
(

gx0 , u∆µ
)
. As a result, we know ux0 = gax0 =

(
σ∗ · σ−1) 1

∆µ . That is, B with
probability ε solves a CDH problem: given g, ga, gx` ∈ G,output gax0 .

6. Performance Analysis

In this section, we analyze the communication and computation complexities of revocable
third-party privacy-preserving auditing scheme for cloud storage. Particularly, we are only interested
in the communication and computation costs of its frequent activities, and ignore the costs of the
initial system setup that is the same as other conventional public auditing schemes.

NOTATION. Let Pair denote one pairing operation, Exp denote one exponentiation operation
in G, and MZ and MG respectively denote one multiplication operation in Zp and G. We denote the

bit size of the element in
{

1, · · · , Cj,k

}
, {1, · · · , n}, Zp and G by|C|, |n|, |p| and |G| respectively.

The number of the data blocks selected by a challenge user is assumed to be a constant c.

6.1. Communication Cost

We can see that the communication overhead of our scheme depends on the communication
complexity of algorithm Proof. According to the Proof algorithm, the user Uj in one auditing process
would first send a challenge Q = {(i, vi)} with size c (|C|+ |p|) to the cloud and then the cloud
would send a proof

(
µ, σ, t, α1, . . . , αj−1, β1, . . . , β j

)
with size |p|+ 2j|G|+ c|C|+ |G| to the user

Uj if it’s the user Uj
,s first auditing query; otherwise the cloud would just send (µ, σ, t) with size

|p|+ |G|+ c|C| to the user Uj. Therefore, the total communication cost of one audit process in our
scheme is |p|+ |G|+ c (2 |C|+ |p|) bits.
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6.2. Computation Cost

The computation cost includes update time and audit time. To update a user Uj, the Update
algorithm only needs to compute gxj−1/xj . Hence the update time of our scheme is Exp. To complete
one audit, the cloud should output a proof and the auditing user should verify its correctness.
We know that the audit time of our scheme for user Uj depends on the generation and verification
costs of (µ, σ, t). Therefore, the audit time for user Uj is (c + 2j) MZ + jMG + (2c + j) Exp +

(j + 1) Pair (here we ignore the simple addition and hash operations).
Additional Comparison. We also give a comparison between our scheme and the revised scheme

of [16] for auditing owned cloud storage. Table 2 shows the details of the comparison. We know that
the auditing scheme in [16] is insecure under collusion attacks but it’s the most efficient revocable
public cloud storage auditing scheme in the literature. When a user Uj executes the Proof algorithm
of [16], it would send a challenge Q = {(i, vi)}with size c (|n|+ |q|) to the cloud and the cloud would
send a proof

{
α, β, {idl , sl}l∈L

}
with size j · (|p|+ |G|) + c · |id| to the user Uj. Therefore, the total

communication cost of one audit process in that scheme is j · (|p|+ |G|) + c · (|id|+ |n|+ |p|) bits.
As the Update algorithm of [16] needs to recalculate all the tags of ndata blocks, we know the update
time of [16] is nExp. To complete one audit, the scheme in [16] first requests the cloud to output a
proof nExp and then instructs the auditing user to verify its correctness. Therefore, we know that
the audit time of [16] for any user is (c + 2j) MZ + jMG + (c + j) Exp + (j + 1) Pair (here the simple
addition and hash operations are also ignored). From Table 2, we can see that the communication cost
of our scheme will has superior efficiency than the [16] in some cases. And audit time of our scheme
is (almost) the same as those of [16], while the update time of [16] is larger than that of our scheme.
Therefore we know our scheme is more computationally efficient than the scheme in [16].

Table 2. The comparison of two revocable public cloud storage auditing schemes.

Scheme Communication Cost
Computation Cost Collusion

Update Time Audit Time Resistance

[16] j · (|p|+ |G|) + c · (|id|+ |n|+ |p|) nExp (c + 2j) MZ + jMG + (c + j) Exp + (j + 1) Pair NO

Our scheme |p|+ |G|+ c (2 |C|+ |p|) Exp (c + 2j) MZ + jMG + (2c + j) Exp + (j + 1) Pair YES

6.3. Experimental Results

As we know, the comparison of computation cost is obvious. Our Update time is Exp , it is
much lower than the update time of [16]: nExp. Our auditing time is approximately equal the
scheme in [16], it is only a difference of cExp. So we only need compare the communication cost
of our auditing scheme with the work of [16] in experiments. Our experiments are implemented
on a windows 7 system with an Intel Core 2 i5 CPU running at 2.53 GHz, 2 GB DDR 3 of RAM
(1.74 GB available). All algorithms are implemented by C language, and our code uses the MIRACL
library version 5.6.1. The elliptic curve we use is an MNT curve, the base field size is 159 bits and the
embedding degree is 6. The security level is chosen to be 80 bit, and |p| = |q| = 160. For simplicity,
we also set k = 20, c = 300. All the results of experiments are represented as the average of 30 trials.
As described in Figure 6, the experimental results show that, compared with the auditing scheme
in [16], the communication cost of our auditing scheme are much light-weight than the scheme in [16].
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Figure 6. Comparison on the communication cost between our scheme and the scheme in [16].

7. Conclusions

In this paper, we have investigated the efficient user revocation problem in public cloud storage
auditing systems and have proposed a dynamic revocable third-party privacy-preserving auditing
scheme for cloud storage. We have proved that our scheme is secure against collusion attacks and
have also demonstrated its effectiveness. In the light of the simplicity and extensibility of revocable
third-party privacy-preserving auditing scheme for cloud storage, we believe the scheme would be
much applicable in real-world cloud storage auditing systems.
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