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Abstract: The Teaching-Learning-Based Optimization (TLBO) algorithm has been proposed in recent
years. It is a new swarm intelligence optimization algorithm simulating the teaching-learning
phenomenon of a classroom. In this paper, a novel global path planning method for mobile robots
is presented, which is based on an improved TLBO algorithm called Nonlinear Inertia Weighted
Teaching-Learning-Based Optimization (NIWTLBO) algorithm in our previous work. Firstly, the
NIWTLBO algorithm is introduced. Then, a new map model of the path between start-point and
goal-point is built by coordinate system transformation. Lastly, utilizing the NIWTLBO algorithm,
the objective function of the path is optimized; thus, a global optimal path is obtained. The simulation
experiment results show that the proposed method has a faster convergence rate and higher accuracy
in searching for the path than the basic TLBO and some other algorithms as well, and it can effectively
solve the optimization problem for mobile robot global path planning.

Keywords: mobile robot; path planning; optimization methods; teaching-learning-based
optimization (TLBO)

1. Introduction

Path planning is to find the optimal path from the start to the goal in the workspace according
to the optimization criterion (such as the lowest cost, the minimum time, the shortest length, etc.).
The mobile robot path planning technology is an important branch in the field of intelligent mobile
robot research. So far, there have been a large number of research results in this field. According
to the robot’s knowledge about the environment, path planning can be divided into global path
planning, in which the environmental information is completely known, and local path planning, in
which the environmental information is completely unknown or partially unknown. At present, path
planning methods commonly include: grid method [1], ant colony algorithm [2], artificial potential
field method [3], neural network method [4], genetic algorithm(GA) [5], Artificial Bee Colony (ABC)
algorithm [6,7], Differential Evolution(DE) algorithm [8], and particle swarm optimization (PSO) [9,10],
etc. These methods may have their own advantages, but there also exist some weaknesses [11], such as
poor adaptability for path map, high computational complexity, long search time, low convergence
accuracy and easily trapping in the local optimum. So, to some extent, it makes the ability of path
planning for mobile robots limited.

In recent years, the teaching-learning-based optimization (TLBO) algorithm has been proposed
by Rao et al. [12,13]. This algorithm is very suitable to solve the path optimization problem due to
its fast convergence speed and high precision. Therefore, it provides a new solution for the mobile
robot’s global path planning. The TLBO requires only the common control parameters like population
size and number of generations and does not require any algorithm-specific control parameters. It is
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an algorithm-specific parameter-less algorithm [14]. So, in the TLBO algorithm, there is no burden
of tuning control parameters. Hence, the TLBO algorithm is simpler, more effective and involves
relatively less computational cost. Therefore, the TLBO has been successfully applied in diverse
optimization fields such as task scheduling, production planning and control, mechanical engineering,
vehicle-routing problems in transportation, etc. Recently, several variants of the TLBO have been
proposed to improve the performance. Rao et al. presented an elitist TLBO (ETLBO) algorithm [14] to
solve complex constrained optimization problems, and used a modified version of TLBO algorithm [15]
to solve the multi-objective optimization problem of heat exchangers. Furthermore, some modified
TLBO algorithms have been proposed to solve the global function optimization problem [16–19] and
the multi-objective optimization problem [15,20,21]. However, so far, applying the TLBO algorithm
to solve the optimization problem for the mobile robot’s global path planning has not been reported
in the literature. In our recent work, we have proposed a novel improved TLBO, which is called
Nonlinear Inertia Weighted TLBO (NIWTLBO) [22]. In this paper, we apply this NIWTLBO algorithm
to solve the optimization problem for the mobile robot’s global path planning.

The rest of this paper is organized as follows. In Section 2, the NIWTLBO algorithm is introduced.
Section 3 describes the modeling method of the mobile robot’s path in static environment. In Section 4,
the global path planning for the mobile robot is implemented by utilizing NIWTLBO algorithm.
And Section 5 provides experimental results and performance analysis. Finally, our conclusions are
mentioned in Section 6.

2. NIWTLBO Algorithm

In our recent work, we proposed a novel improved TLBO according to the learning and memory
mechanism, which is called the NIWTLBO algorithm. This algorithm introduces a nonlinear inertia
weighted factor into the basic TLBO to control the memory rate of learners, and used a dynamic inertia
weighted factor to replace the original random number in the teacher phase and learner phase. We
call the nonlinear inertia weighted factor as learning memory rate. As this is done, the NIWTLBO has
not only faster convergence speed but also higher calculation accuracy for most of these optimization
problems compared to the basic TLBO. The details of this algorithm can be referenced in our previous
work [22].

2.1. Initialization

In this paper, NP denotes the number of learners in a class, D denotes number of subjects offered
to the learners (i.e., dimensions of design variables), and MAXITER denotes maximum number of
allowable iterations. The learners are randomly initialized randomly by a search space bounded by
NP ˆ D matrix using the equation as follows

X0,k,j “ Lj ` randˆ
`

Uj ´ Lj
˘

, k “ 1, 2, ¨ ¨ ¨ , NP, j “ 1, 2, ¨ ¨ ¨ , D (1)

where Uj and Lj represent the upper bound and lower bound of design variable, respectively.

2.2. Teacher and Learner Phase

We let Mi,j “
1

NP p
NP
ř

k“1
Xi,k,jq be the mean result of the learners on a particular subject “j”, Xi,k,j be

the result of the jth subject offered to the kth learner at the ith iterator, and Xi,teacher be the teacher at
any iteration i.

In the teacher phase, the new set of improved learners can be expressed by using equation

Xnew
i,k,j “ wXold

i,k,j ` r1ipXi,teacher,j ´ TF Mi,jq (2)

TF “ round r1` rand p0, 1q t1´ 2us (3)
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w “ 1´ exp

˜

´iter2

2ˆ pMAXITER{8q2

¸

ˆ p1´wminq (4)

r1i “ 0.5`
randp0, 1q

2
(5)

where w is the nonlinear inertia weighted factor; iter is the current iteration number; wmin is the
minimum value of the w, whose value should be in the range [0.5, 1] (Here it is selected 0.6); r1i is the
dynamic inertia weighted factor whose value is in the range [0.5, 1].

In the learner phase, the new set of improved learners can be expressed by using equation

Xnew
i,k,j “

$

&

%

wXold
i,k,j ` r1i

´

Xi,k,j ´ Xi,q,j

¯

if f
`

Xi,total_k
˘

ă f
´

Xi,total_q

¯

,

wXold
i,k,j ` r1i

´

Xi,q,j ´ Xi,k,j

¯

otherwise
(6)

where Xi,total_k and Xi,total_q represent the total result of the kth student and the qth student at the
iteration i, respectively.

In every iteration, Xnew
i,k,j is the updated value of Xold

i,k,j. If the new value gives a better function
value, then the old value is updated with the new value. The updated formula is given as

Xold
i,k,j “ Xnew

i,k,j , if f
´

Xnew
i,total_k

¯

ă f
´

Xold
i,total_k

¯

(7)

where Xnew
i,total_k and Xold

i,total_k represent the new and old total result of the kth student at the iteration i

for all subjects, respectively. Here, Xold
i,total_k “

D
ř

j“1
Xold

i,k,j.

In this modified TLBO, the individuals try to sample diverse zones of the search space during
the early stages of the search. During the later stages, the individuals adjust the movements of trial
solutions finely so that they can explore the interior of a relative small space. The NIWTLBO increases
the probability of stochastic variations and enlarges the difference value added to the existing learners,
so as to improve population diversity, avoid prematurity in the search process and increase the ability
of the basic TLBO to escape from the local optima.

3. Mobile Robot Path Modeling

As the design model of TLBO algorithm is very suitable to solve the continuous space optimization
problems, therefore, the NIWTLBO algorithm can effectively solve the robot global path planning
problems similarly. Here, we use the 2D coordinate in continuous space to express the environment
of robot movement. In the simulation environment model, the obstacles can be described as the
approximate geometric shapes, such as the circular objects and convex polygon objects in Figure 1 (the
approximate concave polygon object can be divided into multiple convex polygons).

In order to describe the robot global path planning problem, it is necessary to design the movement
environment of the robot firstly. We assume the environment as the following: (1) robot movement
is limited in 2D space; (2) the space exists several known static obstacles, which are distributed in
different position. The obstacles are expressed by the convex polygon and circle whose position
and size are known; (3) considering the size of the robot itself, the radius of obstacles is expanded
according to the size of the robot, so the robot may be considered as a mass point. The purpose of
this paper is using the proposed algorithm to find a shortest path from a starting point to goal point
without colliding with collision obstacles in the known static environment. As shown in Figure 2,
in the coordinate system XOY of motion environment map, gray solid objects represent obstacles.
Spxs, ysq is the starting point, and Gpxg, ygq is the goal point. The path planning goal is to find a point
set P “ tS, P1, ¨ ¨ ¨ , Pi, ¨ ¨ ¨ , Pd, Gu in global search space so that we can obtain the shortest path from
the starting point to the goal point, on the premise that the line between any two adjacent points does
not pass through the obstacles.
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Figure 2. The new path map after coordinate transformation.

In order to simplify the computational complexity of the proposed algorithm, it is necessary
to transform the original environment’s coordinate system into a new one. The starting point is
considered as the origin, and the line segment SG between the starting point and the goal point is
considered as Y axis in a new environment coordinate X1O1Y1 showing in Figure 2. θ is the angle
between SG and X axis in the original coordinate XOY. The original coordinate XOY is translated
to pxs, ysq and then rotated π

2 ´ θ degrees clockwise, thus a new coordinate X1O1Y1 is obtained. The
formula of the coordinate transformation is as follows:

«

x1

y1

ff

“

«

cos
`

π
2 ´ θ

˘

sin
`

π
2 ´ θ

˘

´sin
`

π
2 ´ θ

˘

cos
`

π
2 ´ θ

˘

ff

¨

˜

x
y

¸

`

«

xs

ys

ff

(8)

In Figure 2, the line segment SG from the starting point to goal point is equally divided into d +1
segments (such as d = 9 in the Figure 2). Drawing lines perpendicular to the Y1 axis through each
division point, we pick any one of the points on each line from the starting point to the goal point to
form a set of path points in order. Due to the path points on the vertical coordinate being equidistant,
the vector X “

 

xs, x1, x2, ¨ ¨ ¨ , xd, xg
(

formed by the horizontal ordinate of the path points (i.e., Pi) can
express one workable path. Because the coordinates of starting point and goal point are known, the
above path can be simplified as X “ tx1, x2, ¨ ¨ ¨ , xdu. Therefore, the path planning problem can be
converted into searching the horizontal ordinate xi of a path point on each equidistant line, which
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ensures that the path connecting the points X “
 

xs, x1, x2, ¨ ¨ ¨ , xd, xg
(

in sequence is shortest with
avoiding obstacles.

4. Implementation of Path Planning Based on NIWTLBO Algorithm

The path planning problem in static environment with obstacles is actually a constrained
optimization problem without collision. In this section, we apply the NIWTLBO algorithm to solve the
constrained optimization problem for the mobile robot’s path planning.

4.1. Initialization

First, we need to define the number of students (i.e., population size), the number of subjects for
learners (i.e., number of decision variables, here is the number of the path points Pi), and the maximum
generations. Then, the decision variables of the population are initialized by a set of random values
(i.e., the x-coordinate of the path points Pi) within the boundary of the path map, which are equivalent
to the marks of the subjects for students. Meanwhile, in order to ensure all path points in the area
where the obstacles do not exist, it is necessary to deal with the obstacle constraints for a workable
path in initial population. The obstacle constraints are discussed in Section 4.3.

4.2. Individual Fitness Function

Path planning of the mobile robot in a static environment should be satisfied with the shortest
length of the path and avoid static obstacles. The main issue of this section is to solve the shortest
path problem under obstacle constraints. Under the conditions of an existing collision-free path, it is
important that the path length as short as possible. Therefore, we choose the path length function as
an individual fitness function to evaluate the merits of the path. We assume that the starting point of
the mobile robot is Spx0, y0q and the goal point is Gpxd`1, yd`1q. Due to the equal distance between
the vertical lines across Y axis, the path is represented as x “ tx0, x1, ¨ ¨ ¨ , xi, ¨ ¨ ¨ , xd, xd`1u, xi is the
horizontal ordinate of the path point Pi as shown in Figure 2. Therefore, the length of the path can be
defined as

f “
d
ÿ

i“0

b

pxi`1 ´ xiq
2
` pyi`1 ´ yiq

2
“

d
ÿ

i“0

d

pxi`1 ´ xiq
2
`

ˆ

yd`1 ´ y0

d` 1

˙2
(9)

Thus, the optimization problem of this paper is solving the shortest length of the workable path
under obstacle constraints, i.e., solving the value of min(f(x)).

4.3. Obstacle Constraints

In the path planning problem, obstacle constraints mainly have two aspects: one is the boundary
of the path map; the other is the obstacle avoidance. The x-coordinate (i.e., xi) of the path point Pi
cannot exceed the specified upper and lower bounds, meanwhile the position of these points cannot
be in the obstacle region. If the xi is beyond the boundary, a new xi value is selected randomly again.
If the position of a path point is in an obstacle region, it must be re-located in the bound range in
the positive or negative direction of xi until a new position is found that is not in the obstacle region.
Thus, the x-coordinate of the path point can be limited between the upper and lower bounds, and be
excluded from the obstacle region.

Aside from ensuring the path point position does not exceed the effective boundary range, we
should also consider whether the obstacles are on the line between two adjacent path points. If there is
one obstacle on the line, the path would be invalid. It is necessary to repeat the search for a new path
point. Therefore, we must detect the availability of a path between two adjacent path points in each
generation of the population. For any one path x “ tx1, x2, ¨ ¨ ¨ , xi, xi`1, ¨ ¨ ¨ , xdu, if the line between xi
and xi+1 is intersect with obstacles, it is necessary to re-select xi+1. If the valid xi+1 is still not found
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after trying a certain number of times, the xi should be re-selected until a path point is found according
to the constraint condition.

4.4. The Step of NIWTLBO Algorithm

The steps for solving the problem of the mobile robot path planning are as follows:

Step1: Initialize NP (number of learners), D (number of subject dimensions) and MAXITER (number
of generations).

Step2: Initialize the learners X according to Equation (1) and ensure the marks of learners are limited
in the range of the x-coordinate of the map, then according to Equation (9), calculate the
initial value of the fitness function f (x) (i.e., the length of a path) to evaluate all learners X.

Step3: Calculate the nonlinear inertia weighted parameter w and the dynamic inertia weighted
factor r1i according to Equations (4) and (5), respectively.

Step4: Choose the best learner to be the teacher of the current generation, and calculate the mean
result of each subject.

Step5: Learners are learning from the teacher. Calculate the new marks of learners according to
Equation (2) and ensure the marks are limited in the range of the x-coordinate of the map,
evaluate all learners by calculating the fitness value of individuals (i.e., the length of a path).
During the teacher phase, update all individuals according to Equation (7), and pass all
accepted individuals to the learner phase.

Step6: Execute the learner phase. Re-calculate the new marks of learners according to Equation (6)
and the fitness value of individuals (i.e., the length of a path), update all individuals according
to Equation (7) in the same way. The accepted individuals are passed to the next iteration.

Step7: Check the repeated solutions. If there are repeated solutions, generate new individuals for
the repeated solutions by the mutation operator.

Step8: If the stopping condition is satisfied, terminate the algorithm and output the best solution.
Otherwise, go to Step 3.

5. Experimental Results and Analysis

5.1. NIWTLBO vs. PSO, ABC, DE and TLBO

In this experiment, the size of the movement environment map of the mobile robot is
180 ˆ 180 pixels, the coordinates of start point and goal point are (20, 20) and (147, 147), respectively.
To be fair, the standard particle swarm optimization (PSO) algorithm, artificial bee colony (ABC)
algorithm, differential evolution (DE) algorithm, the basic TLBO algorithm, and the proposed
NIWTLBO algorithm are simulated in the same environment. That is, in all algorithms, the number
of learners (i.e., NP) is set to 20, the number of subject dimensions (i.e., D) is set to 14, and the max
number of iterations (i.e., MAXITER) is set to 200. In the PSO, C1 = C2 = 2.0, Inertia weight w = 0.9;
for the ABC there are no such other specific parameters to set; in the DE, F is a real constant which
affects the differential variation between two Solutions and R is crossover rate. Set F = 0.5, R = 0.4;
for the TLBO and NIWTLBO, there are no parameters to set either. The results of all algorithms, in
the form of mean solution and standard deviation, are obtained in 30 independent runs on the path
fitness function. The comparative results of the path length are recorded in Table 1. The optimal path
maps of each algorithm are shown as Figure 3. The Figure 4 shows the optimal convergence graph for
all algorithms.
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Table 1. Comparative results of path length.

Algorithm Min. Value Max. Value Mean Std

PSO 219.022 240.573 228.434 8.0535
ABC 190.083 211.559 192.654 7.9538
DE 189.811 210.876 191.326 7.8426

TLBO 187.484 199.641 188.043 5.1192
NIWTLBO 186.988 190.648 187.621 1.6746
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It is observed from the results in Table 1 and Figure 3 that the path of PSO is the worst, and the
paths of TLBO and NIWTLBO are better. The convergence rate of the PSO, TLBO and NIWTLBO is
faster. At the same time, the NIWTLBO can improve the search accuracy and achieve the optimal path
ideally. The PSO has a poor local search ability because it could not find the better path after some
certain generations. The particles so easily veer from the feasible region to the infeasible region in the
search process in the PSO algorithm, which leads to large number particles changing their optimal
search direction after the constraint processing. So the final result is unsatisfactory. The convergence
rate of the ABC is slower, and it easily becomes trapped in a local optimal solution due to its poor
ability of exploration. The DE algorithm is similar to the ABC. The ABC and the DE algorithms may
achieve ideal path after over 2000 generations, which need more run time. However, the NIWTLBO
algorithm can obtain the better optimal path after fewer generations. From Figure 4, we can see clearly
that the NIWTLBO algorithm had the fastest convergence rate and performs better than the basic
TLBO, PSO, ABC and DE algorithms.

5.2. NIWTLBO vs. TLBO in Different Scenarios of the Path Planning with No Coordinate Transformation

In order to gain more insight about the usefulness of the proposed method, the different scenarios
of the path planning are used in our experiments. We use several scenarios in the path planning
dataset [23] which is the repository at the Czech Technical University to prove the ability of path
planning. The motion planning maps are resized to 180ˆ 180 pixels. In order to simplify the processing,
we do not rotate the coordinate of the maps in these experiments. For the start point Spxs, ysq and the
goal point Gpxg, ygq, the difference ∆y “ pyg ´ ysq is equally divided into D + 1 segments. Drawing
the lines paralleling to the x-axis through each division point, we can get the yi coordinate of each path
point, which is a constant value. Thereby, the optimization method is the same as the original. We only
need to select the xi on each parallel line for optimization. This method is more suitable for the motion
planning maps expressed by the images. In the experiments, the number of learners (i.e., NP) is set
to 25, and the max number of iterations (i.e., MAXITER) is set to 300. The NIWTLBO and the basic
TLBO algorithms are executed 10 times in each motion planning map, respectively. The best results of
every scenario for the algorithms are shown in Figures 5–8.

After 10 experiments for each motion planning map, we have achieved the optimal path. From
Figure 5 to Figure 8, we can observe that the NIWTLBO method performs better than the basic TLBO
on the path planning. Due to the weak ability of exploration and escaping from the local optima, the
path obtained by the basic TLBO is not the shortest. The NIWTLBO method improves the population
diversity with higher probability of stochastic variations, and it is not easy to trap into the local optima.
Therefore, it can achieve the better results.
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However, the proposed path planning model has some limitations. When the motion planning
map only contains the “N” type path, or when the motion planning map is the scenario of rooms, the
path planning may fail to find the valid path. We will improve this path planning model and the code
of the proposed algorithm to solve such problems in future work.

6. Conclusions

TLBO is a new swarm intelligence optimization algorithm that can better solve the continuous
space optimization problem. The algorithm is simple and parameter-less with fast convergence
speed and high search accuracy. In our recent work, an improved TLBO algorithm called NIWTLBO
algorithm is proposed. We apply this algorithm to the global path planning problem of mobile robots
in this paper. The simulation experiments show that the algorithm has obvious advantages for the
optimization problem of the robot’s global path planning, compared with PSO, ABC, DE and the basic
TLBO algorithm. It can obtain the optimal path with fewer generations and shorter path length than
the other algorithms. During the early stages of the search in the NIWTLBO, the individuals try to
sample diverse zones of the search space. They adjust the movements of trial solutions finely so that
they can explore the interior of a relative small space during the later stages. Therefore, it has stronger
ability in terms of exploration and escaping from the local optima. Thereby, the NIWTLBO can achieve
the acceptable performance for mobile robot global path planning.

In future work, the proposed algorithm will be improved and used to solve the dynamic local
path planning problem of mobile robots combined with the rolling window method, and it will be
extended to solve more complex functions and multi-objective optimization problems.

Acknowledgments: The present study was partially supported by the National Natural Science Foundation of
China (10872160), the Tibet Natural Fund Project (2015ZR-13-24) and the Key Laboratory Research Project of
Education Department of Shaanxi (13JS070).

Author Contributions: Zongsheng Wu and Weiping Fu conceived and designed the experiments; Zongsheng Wu
and Ru Xue performed the experiments; Ru Xue and Wen Wang analyzed the data; Zongsheng Wu wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Châari, I.; Koubâa, A.; Bennaceur, H.; Ammar, A.; Trigui, S.; Tounsi, M.; Shakshuki, E.; Youssef, H. On the
Adequacy of Tabu Search for Global Robot Path Planning Problem in Grid Environments. Proced. Comput.
Sci. 2014, 32, 604–613. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2014.05.466


Information 2016, 7, 39 11 of 11

2. Garcia, M.A.P.; Montiel, O.; Castillo, O.; Sepúlveda, R.; Melin, P. Path planning for autonomous mobile robot
navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 2009, 9,
1102–1110. [CrossRef]

3. Yin, L.; Yin, Y.X. Simulation Research on Path Planning Based on Dynamic Artificial Potential Field. J. Syst.
Simul. 2009, 21, 3325–3320.

4. Kumar, M.P.S.; Rajasekaran, S. A neural network based path planning algorithm for extinguishing forest
fires. Int. J. Comput. Sci. Issues 2012, 9, 563–568.

5. Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm.
Comput. Electr. Eng. 2012, 38, 1564–1572. [CrossRef]

6. Liang, J.-H.; Lee, C.-H. Efficient collision-free path-planning of multiple mobile robots system using efficient
artificial bee colony algorithm. Adv. Eng. Softw. 2015, 79, 47–56. [CrossRef]

7. Contreras-Cruz, M.A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U.H. Mobile robot path planning using
artificial bee colony and evolutionary programming. Appl. Soft Comput. 2015, 30, 319–328. [CrossRef]

8. Das, S.; Abraham, A.; Chakraborty, U.K.; Konar, A. Differential Evolution Using a Neighborhood-Based
Mutation Operator. IEEE Trans. Evolut. Comput. 2009, 13, 526–553. [CrossRef]

9. Beheshti, Z.; Shamsuddin, S.M. Non-parametric particle swarm optimization for global optimization.
Appl. Soft Comput. 2015, 28, 345–359. [CrossRef]

10. Bo, S.; Dong, C.W.; Geng, X.Y. Particle Swarm Optimization Based Global Path Planning for Mobile Robots.
Control Decis. 2005, 20, 1052–1054.

11. Henrich, D. Fast Motion Planning by Parallel Processing—A Review. Intell. Robot. Syst. 1997, 20, 45–69.
[CrossRef]

12. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained
mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]

13. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: An optimization method for
continuous non-linear large scale problems. Inf. Sci. 2012, 183, 1–15. [CrossRef]

14. Rao, R.V.; Patel, V. An elitist teaching-learning-based optimization algorithm for solving complex constrained
optimization problems. Int. J. Ind. Eng. Comput. 2012, 3, 535–560. [CrossRef]

15. Rao, R.V.; Patel, V. Multi-objective optimization of heat exchangers using a modified teaching-learning-based
optimization algorithm. Appl. Math. Model. 2013, 37, 1147–1162. [CrossRef]

16. Satapathy, S.C. Weighted Teaching-Learning-Based Optimization for Global Function Optimization.
Appl. Math. 2013, 4, 429–439. [CrossRef]

17. Chen, D.; Zou, F.; Li, Z.; Wang, J.; Li, S. An improved teaching-learning-based optimization algorithm for
solving global optimization problem. Inf. Sci. 2015, 297, 171–190. [CrossRef]

18. Satapathy, S.C. Improved teaching learning based optimization for global function optimization. Decis. Sci.
Lett. 2013, 2, 23–34. [CrossRef]

19. Rao, R.V.; Patel, V. An improved teaching-learning-based optimization algorithm for solving unconstrained
optimization problems. Sci. Iran. 2013, 20, 710–720. [CrossRef]

20. Sultana, S.; Roy, P.K. Multi-objective quasi-oppositional teaching learning based optimization for optimal
location of distributed generator in radial distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63,
534–545. [CrossRef]

21. Rao, R.V.; Patel, V. A multi-objective improved teaching-learning based optimization algorithm for
unconstrained and constrained optimization problems. Int. J. Ind. Eng. Comput. 2014, 5, 1–22.

22. Wu, Z.S.; Fu, W.P.; Xue, R. Nonlinear Inertia Weighted Teaching-Learning-Based Optimization for Solving
Global Optimization Problem. Comput. Intell. Neurosci. 2015, 2015, 1–15. [CrossRef] [PubMed]

23. Motion Planning Maps. Available online: http://imr.ciirc.cvut.cz/planning/maps.xml (accessed on
4 July 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1016/j.compeleceng.2012.06.016
http://dx.doi.org/10.1016/j.advengsoft.2014.09.006
http://dx.doi.org/10.1016/j.asoc.2015.01.067
http://dx.doi.org/10.1109/TEVC.2008.2009457
http://dx.doi.org/10.1016/j.asoc.2014.12.015
http://dx.doi.org/10.1023/A:1007948727999
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.ins.2011.08.006
http://dx.doi.org/10.5267/j.ijiec.2012.03.007
http://dx.doi.org/10.1016/j.apm.2012.03.043
http://dx.doi.org/10.4236/am.2013.43064
http://dx.doi.org/10.1016/j.ins.2014.11.001
http://dx.doi.org/10.5267/j.dsl.2012.10.005
http://dx.doi.org/10.1016/j.scient.2012.12.005
http://dx.doi.org/10.1016/j.ijepes.2014.06.031
http://dx.doi.org/10.1155/2015/292576
http://www.ncbi.nlm.nih.gov/pubmed/26421005
http://imr.ciirc.cvut.cz/planning/maps.xml
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	NIWTLBO Algorithm 
	Initialization 
	Teacher and Learner Phase 

	Mobile Robot Path Modeling 
	Implementation of Path Planning Based on NIWTLBO Algorithm 
	Initialization 
	Individual Fitness Function 
	Obstacle Constraints 
	The Step of NIWTLBO Algorithm 

	Experimental Results and Analysis 
	NIWTLBO vs. PSO, ABC, DE and TLBO 
	NIWTLBO vs. TLBO in Different Scenarios of the Path Planning with No Coordinate Transformation 

	Conclusions 

