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Abstract: Is it possible to quantify the information content of accounting reports? If possible,
then how? This study examines accounting as a classical communication system with the purpose
of providing a framework with which to approach these fundamentally important questions.
Information theory was established in the early-mid 20th century to describe the properties of
classical communication systems. Applying concepts from this theory to an accounting context
provides insight into the questions asked above. Specifically, a measure of the information content of
financial statement numbers is developed from these information theory concepts. The measure is also
applied to several large companies’ earnings numbers and aids in predicting their price movements.
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1. Introduction

Does the financial accounting and reporting process provide non-redundant information to
market participants? The over-arching goal of capital markets accounting research is to speak, in
some way, to this question. The word “information”, and more pertinently, “accounting information”,
appears repeatedly in the literature. However, we do not capture “information”, as defined according
to classical information theory, with our stock price-based measure of the information content of
accounting numbers.

The first half of the 20th century brought about a revolution in how humans think
about information. Claude Shannon (the father of modern information theory) was at the forefront of
this revolution. His landmark 1948 paper, A Mathematical Theory of Communication [1], was the first
paper to formally describe a communication system in which information plays a central role. Concepts
such as the capacity of an information channel, the uncertainty of a source and the optimal rate of
information transmission in a noisy environment revolutionized how we think about information.
These concepts laid the groundwork for much of the technology we appreciate today (e.g., the computer,
cryptography, telecommunications, television, etc.). In the first paragraph of his landmark paper,
Shannon describes the principal problem of communication; ironically, a problem not too distant from
the purpose of financial accounting and reporting: The fundamental problem of communication is that of
reproducing at one point, either exactly or approximately, a message selected at another point.

The purpose of this paper is to show why the long-standing criteria for deciding whether
accounting numbers contain information does not logically reconcile with Shannon’s description
of information in the context of a classical communication system. The financial accounting process
can really be formalized as a classical communication system where information is determined
to have been transmitted only when uncertainty regarding a future state-probability distribution
has reduced. Consequently, I develop a measure of the information content of accounting reports
based on Shannon’s entropy (uncertainty) measure introduced in 1948. The measure captures the
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information in an observed earnings realization (for example) as the percentage change uncertainty
(relative to maximum) regarding which state earnings will be in the next period.

2. Related Research

A search of three of the top accounting journals over each of their respective lives found 341
articles in The Accounting Review, 210 in the Journal of Accounting Research and 99 in the Journal of
Accounting and Economics in which the word “information” appeared in the title. Clearly, accounting
researchers are interested in the concept of information and how to measure it.

These articles represent two streams of literature (one stream currently remains) that examine the
information content of accounting numbers. Both streams borrow from information theory concepts
originating with [1] and define information as the change in the state-probability distribution regarding
a specific event (variable) upon transmission of a message from a source to a user (the extant stream
hardly conceptualizes information explicitly this way anymore; rather, this idea is lurking implicitly
in the background). What has differentiated these two streams is how each operationalizes the
information content of an accounting message.

Theoretically, since accounting information falls under the realm of “information”, the definition
given above is generalizable and maps well to an accounting context. The researcher quickly
faces an immediate obstacle, however, when attempting to directly operationalize the definition.
Specifically, how should the users’ ex ante (before the message is received) and ex post probability
distributions be determined for a particular event or state of the world? These, of course, are not
directly observable and, therefore, must be proxied.

The work in [2] was one of the first papers to examine the information content of accounting
information; specifically, earnings. He states: The information content of earnings is an issue of obvious
importance and is a focal point for measurement controversies in accounting. He looks at investors reaction
to earnings announcements, as reflected in the volume and price movements of common stocks in
the weeks surrounding the announcement date. He defines the information content of earnings as
the degree of change in investors’ assessments of the probability distribution of future returns (or prices), where
this change is proxied for by the degree of change in the equilibrium value of a company’s stock upon their
announcement of earnings. This study laid the groundwork for a flurry of research (for example, see [3–7],
to name a few), which uses the stock price reaction to a firm announcement as a proxy for the degree
of change in investors’ assessments of the probability distribution of future returns and, hence, as a
proxy for the information content of that particular announcement.

An important distinction is in order. The definition given above does not mention the
word “uncertainty”. The definition is rather vague and does not tell us exactly what these investors’
“assessments of the probability distribution of future returns” are. In order for the above definition to
reconcile with “information” as defined according to classical information theory, one must introduce
the notion of uncertainty. Information is uncertainty reduction. Thus, the information content of
earnings is the reduction in uncertainty regarding future earnings. Defined this way, however, the
long-standing assumption that price equals discounted expected future earnings does not reconcile
with this definition. Assuming price equals discounted expected future earnings implies that changes
in price (returns) are equal to changes in discounted expected future earnings. As I discuss later,
expected earnings do capture the various states that future earnings could take on, as well as the
probabilities of those respective states, but do not capture changes in uncertainty regarding in which
state that future earnings will be. Thus returns, viewed purely as a function of the change in discounted
expected future earnings, do not capture changes in uncertainty and, hence, do not capture information.
I show later that uncertainty regarding future earnings and that regarding expected future earnings
are two different concepts. The first depends only on the state probabilities and the number of states
and is independent of value. The second depends on the probabilities, the number of states and
the value of earnings in each state. Given that information is uncertainty reduction, returns only
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capture information if one views price as a function of both uncertainty regarding future earnings and
discounted expected future earnings.

Concurrent with Beaver’s idea regarding the information content of accounting numbers, a
small stream of research surfaced whose intent was to try and capture investors state-probability
distributions more directly. The work in [8] initiated interest in a communication theory approach to
accounting information; pointing out that communication theory had been introduced in various other
sciences, such as experimental psychology, linguistics and biophysics, but had not yet found its way
into accounting. They state:

It seems reasonable to assume, however, that viewing accountancy as a communication
process may provide a clearer picture of the nature and scope of the accounting function
in an economic system. The opportunity exists because the underlying structure of
communication theory may be used to describe the accounting process .

—Norton M. Bedford and Vahe Baladouni [8] (p. 650)

University of Chicago economist Henry Theil was the first to formally apply concepts borrowed
from communication theory, specifically entropy, to an accounting context. The work in [9,10] applied
Shannon’s information theory concept of entropy (uncertainty) (the functional form for entropy was
originally proposed in physics by J. Willard Gibbs ([11]) to measure the amount of uncertainty in a
particular set of particles (classical system)) to analyze the information content of financial statement
items. He realized that every financial statement item can be expressed as some fraction of a total.
For example, any particular type of asset can be expressed as a fraction of total assets. These fractions
summed over all of the assets equal one by construction similar to an individuals’ state probability
distribution. He then allowed these fractions, observed in period t, to proxy for an individuals’ ex
ante t + 1 state probabilities (i.e., prior probabilities) for assets in period t + 1. Once assets in period
t + 1 were realized, he then allowed the observed t + 1 fractions to proxy for the individual posterior
probabilities. He then could calculate the entropy attributed to the t + 1 asset realizations (message)
and called this the information content of t + 1 assets.

Subsequent to this initial application of information theory concepts to accounting reports, [12,13]
examined the information loss due to different levels of aggregation in the financial statements.
He devised a measure of information loss as the change in entropy induced by varying the level
of aggregation. As with Theil, the probabilities used in the entropy calculation were simply ratios of
the various respective categories of assets (liabilities) to total assets (liabilities).

The idea of applying information theory in an accounting context is very appealing due to the
theoretical similarity that an accounting system has with a communication system (see Figure 1 in the
next section), and the above studies provide a reasonable approach along these lines.

This paper purposes to follow Shannon’s concepts as closely as possible to ensure that a
theoretically correct application of communication theory to an accounting context is maintained.
Along the way, a few, seemingly limiting, assumptions must be made to make things tractable.
However, one should judge the measure developed in regards to its predictive ability; some evidence
of which is provided in the empirical analysis.

3. Accounting as a Communication System

The general purpose of accounting is to communicate to interested users events that occurred
in the past. We judge this communication to have been successful if these users are able, ex post, to
“see” those events that transpired ex ante. To this end, we account for these events through time and at
some point summarize this accounting by providing the user a set of summary reports.

As described above, accounting is simply a modified classical communication system.
Such a system was the focus of Claude Shannon’s influential research and is depicted in Figure 1.



Information 2016, 7, 48 4 of 23

Figure 1. Accounting as a communication system. This figure displays how accounting fits into the
classical framework of a communication system.

A communication system must begin with an information source that produces a message or
sequence of messages to be communicated to an interested user. Economic events (I define economic
events as transactions that are accounted for within the double-entry system. Of course, the accounting
cannot capture the information in macro-level events, which are not felt at the firm level. To the
extent that the firm-specific economic events are a function of the macro-level effects, this framework
holds.) are the information source in an accounting context. These events transpire and give rise to
the information that interested users demand. Next, a transmitter, or encoder, must be present to
operate on the message in some way to produce a suitable signal for transmission. The double-entry
system fulfills this purpose. This linear operator ensures that a record is maintained in at least two
accounts for every economic event that transpires. There is some noise in this process, however, as
Generally Accepted Accounting Principles (GAAP) are inherently subjective in their prescriptions.
Furthermore, people are subject to error, as well. Thus, the double-entry system operates on the
message in a noisy way; this noise being a function of managerial error, bias and/or subjective
interpretation of GAAP. The output from the transmitter is the signal; an encoded version of the
message. The financial statements (the statements themselves absent the footnotes) are the signal
produced by the double-entry accounting system transmitter. The receiver, an auditor, receives the
signal and decodes it. The goal of the decoding process is to try and recover the original message
sent from the information source. The auditor performs a series of tests and procedures on the signal
to ensure that it is as pure as possible. In a classical communication system, the receiver decodes
the signal, recovers the original message with an arbitrarily small level of error and passes it on to
its destination. In an accounting context, an auditor attempts to try and understand the original
message from the signal, but cannot recover it fully. The auditor simply helps to make the signal a
better depiction of the underlying message than it was previously. They act as a sort of filter on the
signal. The filtering process intends to remove as much of the error and bias in the signal as possible.
The auditor then passes the filtered signal on to its destination. The destination is the intended recipient
of the original message sent from the information source through the transmitter. The destination in
an accounting context would be investors, creditors, regulators and any other interested user of the
financial statements. The analogy between a classical communication system and accounting breaks
down at this last step as the destination does not receive the original message; rather, they receive a
filtered signal that they must decode (audited financials).

Visualizing accounting with the framework described is a useful exercise as it helps us to realize
that accounting is an example of a classical communication system. Of course, there are aspects of
accounting that do not map well to the above framework, as pointed out above. Despite this fact,
visualizing accounting with this framework enables us to more easily identify important questions
regarding the accounting process. For example, we see that the transmitter fulfills an important role
in the process, as it is the first stop the message makes towards the destination. The ability of the
destination user to extract the original message depends first on certain properties of the transmitter.
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What are the important properties of a transmitter? It seems reasonable to require that it encode
the message in such a way that accurate decoding is possible. That is, the function that encodes the
message should have an inverse. If we perform the inverse operation of the transmitter, we should be
able to recover the original message. Furthermore, it seems reasonable to require that the transmitter
be self-correcting; self-correcting in the sense that, once a signal is observed, we can immediately tell
if there is an error, absent any noise in the encoding process. Double-entry accounting does satisfy
this property, as it ensures that the accounting equation is always in balance, unless an error has
been made.

Another important question that arises from thinking about accounting as a communication
system relates to the message itself. Is there a way to quantify the information content of the message
that the destination user receives? Information theory was established as a way to analyze information
content and other properties of classical communication systems. This seemed a natural progression,
as telegraph, telephony, radio and television had all been invented prior to this time period.

Claude Shannon’s influential work in the 1940s described certain properties of classical
communication systems mathematically and derived ways in which to ensure that these properties
hold. He analyzed both noiseless and noisy communication systems and proved many results relating
to the optimal encoding of messages in noisy environments. He proved for example that it is impossible
to encode a message in such a way (data compression) that the probability of information loss is
arbitrarily small (noise-less coding theorem). He also proved that, given a level of noise, it was possible
to encode a message in such a way as to make the error in the resulting signal arbitrarily small (noisy
coding theorem).

Arguably, Shannon’s most influential contribution, however, was his formulation of the
uncertainty in a given message. His measure of uncertainty, information entropy, was the basis for
much of his later work with communication systems (including the theorems above). Ironically, entropy
as a measure of uncertainty already existed in physics at the time of his work; he just applied it in
a classical communication system setting. He did not only apply it though. He proved his measure
of uncertainty was the only function satisfying certain conditions one would intuitively expect such
a measure to satisfy. This measure of uncertainty is the basis of the present paper, and in this measure
lies one possible answer to the question boldedearlier. I expound on this in the next section.

4. Information Defined and Measured

Information is a rather elusive concept. As [14] point out, the concept of information is too broad
to be captured completely by a single definition.

In this paper, I approach information from a probabilistic viewpoint and define information
as follows (this definition is consistent with treatment of the term in [15]). Information—Knowledge,
after which one receives and processes, that changes, in an uncertainty changing way, their ex ante probability
distribution regarding a set of propositions or states. That is, information is a subset of knowledge and
is defined in probabilistic terms. Knowledge that is “informative” will change the user’s probability
distribution regarding a set of propositions or states in an uncertainty changing way. For example, if
an individual received a forecast of tomorrow’s weather and the forecast reduced their uncertainty
regarding which state the weather would be in (e.g., rainy or sunny), then the forecast was informative.
This view of information being a change in uncertainty where uncertainty is a function of probabilities
was most clearly first expressed in [1]. Given a probability distribution, P, for a set of possible states
a particular variable could be in, Shannon showed that the following measure, U(P), was the only
measure of uncertainty that satisfied three intuitive criteria. (1) U(P) should be continuous in the state
probabilities P. That is, small changes in P should produce small changes in U(P). (2) U(P) should be
maximized when all states are equally likely. (3) The uncertainty of a compound set of states S should
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be equal to a weighted average of the uncertainties of any particular mutually exclusive partitioning of
S where the uncertainties of the partitions are weighted by their respective probabilities of occurrence.

U(P) = −C
n

∑
i=1

pi ∗ log(pi) (1)

where the constant C > 0 simply amounts to a choice of a unit of measure (for simplicity, and without
loss of generality, I set C = 1 throughout the rest of this paper) and log(pi) is the base 2 logarithm of
the i’-th state probability.

4.1. Information and Financial Accounting

The purpose of accounting is to record, and communicate to interested users, the effect of economic
events or transactions on an entity. The details of these events are passed through the double-entry
system and summarized in a signal commonly known as the financial statements. This signal is then
operated on by a third, independent (supposedly “independent” in the case of the auditing firms)
party, who filters out noise and error and then passes the signal on to the recipient (market participants)
(see Figure 1). These recipients are assumed to be economically linked, in some way, to the entity
and, therefore, have already formed ex ante probability distributions regarding the future states of
the entity. Information therefore plays a central role in the financial accounting and reporting process.
If the message (e.g., financial statements) does not change these users’ ex ante probability distributions
regarding the future states of the entity, such that uncertainty changes, then the users are no better off
after receiving and processing the message than they were before receiving the message. In this case,
the user should be indifferent between these reports and a set of blank reports. Thus, information plays
a critical role in helping one assess if the “accounting” that an entity does fulfilled its purpose. If it
did not, then we are hard-pressed to find an economic benefit to offset the costs of doing the accounting.

Up to this point, I have introduced a framework that hopefully has persuaded the reader that
a direct measure of the information content of a message would be greatly valued; particularly in
an accounting context. From the definition, it seems logical to think in terms of measuring the change
in uncertainty of the state-probability distribution. I formalize this concept in the next section.

4.2. A Measure of Information Content

Suppose an individual, which we will label a “user”, has a state-space in mind regarding some
variable of interest (e.g., the “weather” in the example I gave previously), j, that may or may not
affect a future decision. Denote the state-space as Sj = {S; P(S|KI)} where S = {s1, s2, . . . , sn}
is a discrete set of n states that the variable j can take on. P(S|KI) = PI = {α1I , α2I , . . . , αnI} is
a set of probabilities for each of these states assessed from knowledge possessed initially (that is,
P(S|KI) is the ex ante, state-probability distribution for variable j) by the user. We assume S is

exhaustive from the users’ standpoint, so that
n

∑
i=1

αi = 1. That is, from the users’ standpoint,

j must be in one of the states of S. Now, theoretically, j could be continuous and take on
infinitely many states. The user, however, due to limited cognitive processing ability, does not
view j as thus. She or he partitions the continuous variable j into a set of n states and attaches
probabilities to those states. Furthermore, j cannot be in more than one state at a time, and I
also assume that each of these n states is distinct (non-overlapping) (that is, si ∩ sk = ∅ for all i, k).
Next, a message, M, is sent to the user from a source. Upon receipt of the message, the user
processes the knowledge contained therein and updates his or her probability distribution to
P(S|KA) = PA = {α1A, α2A, . . . , αnA}. Based on the discussion in Section 4.1, let the information
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content of M, IC(M), be defined as the scaled percentage change in the users’ uncertainty regarding
the state-probability distribution P(S|K) as shown in Equation (2):

IC(M) =


|U(PI)−U(PA)|

U(PI)
if U(PI) > U(PA)

|U(PI)−U(PA)|
log(n)−U(PI)

if U(PI) < U(PA)

0 if U(PI) = U(PA)

(2)

where U(PI) and U(PA) are defined as in Equation (1). The function in Equation (2) measures the
information content of a message in general. Now, IC(M) ∈ [0, 1] and can be stated in percentage terms.

This is possible due to the fact that U(P) =
n

∑
i=1

pi ∗ log(pi) is bounded above by log(n).

To visualize the measure IC(M), consider the following. If we think of a continuum of uncertainty
with zero at one end and log(n) at the other end, then both U(PI) and U(PA) lie on this continuum.
If U(PI) > U(PA), then uncertainty decreased upon receipt of the message. The information content
of the message could be thought of as the percentage decrease relative to the maximum decrease that
could be obtained. Conversely, if U(PI) < U(PA), then uncertainty increased, and the information
content of the message could be thought of as the percentage increase relative to the maximum increase
that could be obtained. These scenarios are illustrated in Figures 2 and 3.

Figure 2. Uncertainty increasing message. This figure illustrates how uncertainty increases relative to
the maximum amount by which it could have increased.

Figure 3. Uncertainty decreasing message. This figure illustrates how uncertainty decreases relative to
the maximum amount by which it could have decreased.

In Figure 2, U(PI) < U(PA); thus, uncertainty increases by |a− b|, and the maximum increase is
log(n)− a, where n is the number of states in the perceived state-space. Therefore, the information
content of the message is |a−b|

log(n)−a = |U(PI)−U(PA)|
log(n)−U(PI)

. In Figure 3, U(PI) > U(PA); thus, uncertainty
decreases by |a − b|, and the maximum decrease is a. Therefore, the information content of the
message is |a−b|

a = |U(PI)−U(PA)|
U(PI)

. Of course, when U(PI) = U(PA), uncertainty does not change,
and I assume that the information content of the message is zero (I discuss this assumption in more
detail in the “Limitations” section). In the next section, I apply IC(M), as given in Equation (2), to
the quantitative financial statement information. Note that the measure introduced in Section 4.2 can
measure the information content of any time series variable; not just those variables typically found in
the financial statements.
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5. Applying the Measure to Financial Statements

5.1. Mapping the Quantitative Financial Information to States

Consider a set of financial statements (i.e., a balance sheet, income statement, statement of cash
flows and statement of retained earnings). These financial statements are each made up of a finite set
of k variables, V = {1, 2, · · · , j, · · · , k}, that are reported on each period. Without loss of generality,
consider one of these variables, say j = earnings. Finally, consider a representative individual. That is,
consider an individual whose beliefs represent those of the market of interested users as a whole.
I wish to apply IC(M) to determine the information content of the number that is reported for j
each period to this representative user. Any discussion of information must begin with a state set;
a set of states that the user feels that variable of interest j could possibly take on. In the context of
the financial statements, j is continuous and does not admit a discrete state-probability distribution
by itself. Rather, a function must be developed to map the variable of interest j to a discrete state-set
(unless we are privy to the users’ true, perceived, continuous state-probability distribution for j; if we
know this, then the uncertainty measure in Equation (3) can easily be modified to the continuous case).
This immediately gives rise to the problem of which function to choose and how many states of the
world does one consider that variable j could take on. Suppose I choose a function, f (jt), which
assigns each realization of j to one of four possible states where jt is the value of j reported for period t.
The function I have in mind takes the following form:

f (jt) =


H for jt > µjt +

√
2σjt

HM for µjt ≤ jt ≤ µjt +
√

2σjt

LM for µjt −
√

2σjt ≤ jt < µjt

L for jt < µjt −
√

2σjt

(3)

where H, HM, LM and L represent that jt is in a high, high-medium, low-medium or low
state, respectively. Notice that f (jt) is not defined for t = 1. The idea is that I observe the reporting of
jt and then map jt to one, and only one, state in my perceived state-space S = {H, HM, LM, L} based
on the mean, µjt , and standard deviation, σjt , of the values of j that have been realized through time
period t (I assume µj and σj both exist and are finite for t ≥ 2). Of course, this is not feasible initially
for j1. Instead, I wait until j2 is realized and then map j1 to one of the four states in S using the function
in Equation (3). The function f (jt) maps each earnings realization jt to one of four possible states in the
state set S = {H, HM, LM, L}. Let the set XT = { f (j1) , f (j2) , · · · , f (jT)} be the set of all values f (ji),
where T is the total number of realizations of j (for example, if five earnings realizations have occurred,
a possible scenario could be XT = {HM, LM, LM, H, HM}). Figure 4 illustrates f (jt). At this point,
one may feel that f (jt), as specified in Equation (3), has been picked out of thin air and is rather
arbitrary. Two sources of arbitrariness are perceived to be present. The first is: why choose four states?
I admit that there is some arbitrariness in choosing four states. Mathematically, U(P), and hence,
IC (M), depends on the number of states. Given equally probable states, the more states we add, the
more uncertainty. Although the magnitude of IC (M) depends on the number of states, the interval and
ratio properties of IC (M) do not. We will often want to compare the information contents of earnings
releases within-firm across time and across firms. These comparisons do not depend on the number
of states chosen, as long as we remain consistent in our choice. Finally, four states seem reasonably
intuitive, as well. An individual may view a variable as being high, medium or low, but then wonder
on which side of medium the variable is: closer to low or closer to high? Therefore, I model the
individual as thinking of the continuous variable j as being in a high, high-medium, low-medium or
low state.
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Figure 4. Earnings state mapping function. This figure depicts the earnings state mapping function,
f (jt) from Equation (3).

The second source of arbitrariness lies in the specific choice of f (jt). It turns out that the choice of
f (jt) in Equation (3) is the only unbiased choice (unbiased in the sense that f (jt) is the only function
depending on µjt and σjt that creates a mutually exclusive partition of S, which allows the possibility
of assigning an equal proportion of j values to each half of the state set) of the function, given that the
function depends on the mean and standard deviation of the variable j. Here, I appeal to Chebyshev’s
theorem. Precisely stated, let c be any number greater than one. Then, for any sample of data, the
proportion of observations lying fewer than c standard deviations from the sample mean is at least
1− 1

c2 . If c =
√

2, then Chebyshev implies that at least 50% of the observations of j lie within
√

2
standard deviations of µ (to see this, simply set 1− 1

c2 = 0.5 and solve for c). As defined in Equation (3),
these values of j are mapped to two of the four states (HM and LM), respectively. Thus, no more
than 50% of the values of j will be mapped to H and L. Note that Chebyshev does not say anything
about the proportion of observations between µ and µ + cσ; for example, the underlying distribution
of j will determine this. The theorem only provides bounds (rather loose ones admittedly) on the
proportion of observations that lie in the interval [µ− cσ, µ + cσ]. Thus, Chebyshev directly implies
the four-state mapping function as specified in Equation (3) if we want to partition the state-set S in
such a way to make it possible for an equal proportion of j values to be mapped to each half of the
state set. This ensures, as much as possible, that a particular value of j will not, mechanically, be more
likely to be assigned to one of the states (As will be seen later, the function chosen in Equation (3) does
not remove all determinism. There still remains the mechanical assigning of early observations of j to
the states. This determinism, however, decreases rapidly over time, as will be seen with the example
in Section 5.3.).

5.2. Forming the State-Probability Distributions PI and PA

With each value of jt now mapped to a particular state, I now can define the probability-state
distributions, PIt and PAt, she or he perceives for jt at the beginning and end of period t, respectively,
as follows (We will never be able to know the individuals’ true probability assignments, assuming
they consciously form them. To apply an information theory approach, the best we can do is to proxy
for these assignments in an intuitive way. f (jt), PI and PA intend to do this.):

PI1 =

{
1
4

,
1
4

,
1
4

,
1
4

}
= PI2 = PA1 (4)

PAt = PIt+1 =

{
a
T

,
b
T

,
c
T

,
d
T

}
t ≥ 2 (5)

where:
a = count(XT = L), b = count(XT = LM)

c = count(XT = HM), d = count(XT = H)
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Equation (4) reflects the assumption that, initially, she or he is completely uncertain as to which state j1
will be in (intuitive with the notion that uncertainty is at its highest surrounding a firm’s first couple of
earnings announcements due to the fact that we have little-to-no, prior, firm-specific history to utilize
in forming an expectation), and therefore, she or he perceives the four states of S as being equiprobable.
Upon receipt of the second message, j2 (e.g., earnings in period two), she or he revises PI2 accordingly
to PA2. This probability distribution is also her or his initial probability distribution regarding the state
that j3 will be in and so forth. Thus, PAt = PIt+1 for all t ≥ 2. In forming PAt, I apply f (jt) to each of
the prior realizations of j. This produces the set, XT = { f (j1) , f (j2) , · · · , f (jT)} , T ≥ 2, described
in the previous section. I simply count the number of observations that were mapped to each state
respectively and divide this frequency by the number of periods that have passed. This produces a
frequency of occurrence for each state through time period T. I use this frequency to proxy for the ex
ante probabilities that she or he forms for the states of S. An investor likely looks to past earnings in
forming a state-probability distribution for future earnings. For example, suppose three out of the first
five earnings announcements have been “high” relative to the mean. I model the user as thinking that
the earnings in the sixth year will be “high” with 60% probability.

5.3. The Information Content, IC(j), of Financial Statement Variable j

Following Equation (2), the information content, IC (jt), of financial statement variable j at time t
is as follows:

IC (jt) =


|Uj(PIt)−Uj(PAt)|

Uj(PIt)
if Uj(PIt) > Uj(PAt)

|Uj(PIt)−Uj(PAt)|
log(4)−Uj(PIt)

if Uj(PIt) < Uj(PAt)

0 if Uj(PIt) = Uj(PAt)

(6)

where PIt and PAt are as defined in Equations (4) and (5).
To illustrate, consider the annual earnings, j, of Apple Inc. from the date it went public through

the present time (1981–2012) (earnings is the number reported annually for Compustat variable NI).
Table 1 reports the results from applying Equations (3)–(6) to calculate IC (jt) for each of these
thirty-three earnings realizations. The information content values, IC(jt), are superscripted with
“−” if jt led to an uncertainty decrease or “+” if jt led to an uncertainty increase regarding future
earnings realizations. To interpret IC (jt) from Table 1, observe the information content of earnings
in 1981 (0.5−). This means that the earnings “message” for 1981 decreased our uncertainty (our
uncertainty regarding future realizations of earnings upon receiving the earnings “message” for 1981)
by 50% of the maximum by which it could have decreased it. One important point illustrated in
Table 1 is that IC (j1) and IC (j2) are mechanical realizations. Since PI1 = PA1 by construction, the
information content of first-period earnings will always be zero, independent of the company analyzed.
Furthermore, the information content of second-period earnings will always be 0.5− independent of
the company analyzed. This is due to the mathematical fact that, given any two real numbers a > b,
the largest of the numbers a = µ +

√
2

2 σ and b = µ−
√

2
2 σ, where µ and σ are the mean and standard

deviation of the two numbers, respectively. This, along with Equations (3) and (5), immediately implies
that the LM state and HM state will be assigned 1

2 probability. Once three earnings realizations have
been realized, however, Equations (3) and (5) allow for a little more variation in uncertainty and, hence,
variation in IC (jt). As the number of earnings “messages” released by the company increases, IC (jt)
becomes less and less mechanical. In essence, jt begins to determine IC (jt) rather than the mechanical
construction set up in Equations (3) and (5). Thus, over time, IC (jt) better reflects the information
content of jt (that is, as time increases, IC (jt) better reflects the intuitive definition of information
offered in Section 4.1).
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Table 1. Information content of Apple Inc. earnings (1980–2012). This table reports the information
content of each of Apple’s thirty-three earnings releases from its inception as a company through 2012
using the information content measure from Equation (A1).

t jt ($millions) PIt PAt IC(jt)

1980 $11.70 {1/4, 1/4, 1/4/1/4} {1/4, 1/4, 1/4/1/4} 0
1981 $39.42 {1/4, 1/4, 1/4/1/4} {0, 1/2, 1/2, 0} 0.5−

1982 $61.306 {0, 1/2, 1/2, 0} {0, 1/3, 2/3, 0} 0.0817−

1983 $76.714 {0, 1/3, 2/3, 0} {0, 1/2, 1/2, 0} 0.0755+

1984 $64.055 {0, 1/2, 1/2, 0} {1/5, 1/5, 3/5, 0} 0.3710+

1985 $61.223 {1/5, 1/5, 3/5, 0} {1/6, 1/6, 2/3, 0} 0.0870−

1986 $153.963 {1/6, 1/6, 2/3, 0} {0, 5/7, 1/7, 1/7} 0.0821−

1987 $217.496 {0, 5/7, 1/7, 1/7} {0, 3/4, 1/8, 1/8} 0.0762−

1988 $400.258 {0, 3/4, 1/8, 1/8} {0, 2/3, 2/9, 1/9} 0.1738+

1989 $454.033 {0, 2/3, 2/9, 1/9} {0, 7/10, 1/10, 1/5} 0.0552−

1990 $474.895 {0, 7/10, 1/10, 1/5} {0, 7/11, 2/11, 2/11} 0.1809+

1991 $309.841 {0, 7/11, 2/11, 2/11} {0, 7/12, 1/4, 1/6} 0.1088+

1992 $530.373 {0, 7/12, 1/4, 1/6} {0, 8/13, 4/13, 1/13} 0.1051−

1993 $86.589 {0, 8/13, 4/13, 1/13} {0, 4/7, 2/7, 1/7} 0.1838+

1994 $310.178 {0, 4/7, 2/7, 1/7} {0, 8/15, 1/3, 2/15} 0.0335+

1995 $424 {0, 8/15, 1/3, 2/15} {0, 9/16, 3/8, 1/16} 0.1086−

1996 $(816) {0, 9/16, 3/8, 1/16} {1/17, 8/17, 8/17, 0} 0.0218+

1997 $(1045) {1/17, 8/17, 8/17, 0} {1/9, 7/18, 1/2, 0} 0.1605+

1998 $309 {1/9, 7/18, 1/2, 0} {2/19, 7/19, 10/19, 0} 0.0160−

1999 $601 {2/19, 7/19, 10/19, 0} {1/10, 7/20, 11/20, 0} 0.0172−

2000 $786 {1/10, 7/20, 11/20, 0} {2/21, 8/21, 10/21, 1/21} 0.3553+

2001 $(25) {2/21, 8/21, 10/21, 1/21} {1/11, 9/22, 5/11, 1/22} 0.0067−

2002 $65 {1/11, 9/22, 5/11, 1/22} {2/23, 10/23, 10/23, 1/23} 0.0088−

2003 $69 {2/23, 10/23, 10/23, 1/23} {1/12, 5/12, 11/24, 1/24} 0.0104−

2004 $276 {1/12, 5/12, 11/24, 1/24} {2/25, 11/25, 11/25, 1/25} 0.0081−

2005 $1335 {2/25, 11/25, 11/25, 1/25} {1/13, 11/26, 6/13, 1/26} 0.0094−

2006 $1989 {1/13, 11/26, 6/13, 1/26} {2/27, 4/9, 11/27, 2/27} 0.1995+

2007 $3496 {2/27, 4/9, 11/27, 2/27} {1/14, 4/7, 2/7, 1/14} 0.0514−

2008 $4834 {1/14, 4/7, 2/7, 1/14} {0, 23/29, 4/29, 2/29} 0.3918−
2009 $8235 {0, 23/29, 4/29, 2/29} {0, 5/6, 1/15, 1/10} 0.1228−

2010 $14,013 {0, 5/6, 1/15, 1/10} {0, 25/31, 4/31, 2/31} 0.0629+

2011 $25,922 {0, 25/31, 4/31, 2/31} {0, 27/32, 3/32, 1/16} 0.1236−

2012 $41,733 {0, 27/32, 3/32, 1/16} {0, 9/11, 4/33, 2/33} 0.0605+

Keeping in mind Equations (3)–(6), Table 1 illustrates the idea that the earnings realizations, jt,
or “messages” if you will, help us to update our priors. IC (jt) captures this updating and hence, the
information contained in each earnings release. In essence, IC (jt) is a mathematical way to extract
as much information as possible out of the earnings realizations. Of course, IC (jt), as constructed, is
only a function of the earnings realizations themselves and does not take into account any qualitative
information surrounding an earnings release (such as contained in the footnotes or a press release,
for example). Therefore, one could view IC (jt) as forming a lower bound on the information content
of a given earnings release. I discuss this limitation in more detail later.

Appendix A illustrates how to use the measure developed in Equations (3)–(6) to assess the
information content of the financial statements as a whole rather than one particular variable within
those statements. This simply becomes an exercise in aggregation; however, one must pay attention to
the fact that part of (if not all of) the information content of one variable may already be subsumed by
another variable due to inter-variable dependencies within the financial statements.
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6. An Empirical Application

Theoretically, IC
(
vjt
)

is a perfectly valid measure of the information content of a given financial
statement variable j at time period t. The question however becomes, does the framework adhered
to in this paper hold in the real world? I acknowledge that it is unlikely that investors form
state-probability distributions exactly the way specified in this paper. In fact, investors likely do
not even consciously form state-probability distributions. Investors also likely do not consciously
develop utility functions and seek to maximize them. Many economic studies, however, provide
evidence consistent with the utility maximization assumption. The primary purpose of this paper is
not to test the validity of the measures contained therein; I leave that to a future paper. That being said,
there is one, interesting, potential application of IC

(
vjt
)

that I will offer (although there may be many
applications once the measure is subjected to various empirical tests). You will notice from Table 1 that
there have been 13 uncertainty-increasing annual earnings’ releases and 19 uncertainty-decreasing
earnings’ releases over Apples’ thirty-three year history through 2012 (the average information
content of the uncertainty-increasing releases is 0.1529, and the average information content of the
uncertainty-decreasing releases is 0.0980). Ceteris paribus, this should be interpreted as a good thing,
given one has a predisposition to favoring an uncertainty-decreasing information release over the
opposite alternative. Over time, Apples’ earnings messages themselves are not neutral regarding
uncertainty. That is, they tend to release earnings that decrease shareholders’ uncertainty regarding
future earnings. Maybe insight could be obtained by examining the pattern of uncertainty-decreasing
and uncertainty-increasing earnings’ releases over time within a firm and across firms. These patterns
could provide insight into a given firms’ information environment relative to itself over time and
relative to other companies. The patterns might also speak to the relative quality of earnings within a
firm across time or across firms. I have the following idea in mind. Consider the function:

q(t) =
γ(t)
θ(t)

(7)

where:

γ(t) = # of uncertainty-increasing earnings’ realizations through time period t

θ(t) = # of uncertainty-decreasing earnings’ realizations through time period t

An interesting question is how this function behaves over time for a given firm and across
firms. If we plot this function for Apple and Microsoft, the interesting picture in Figure 5 emerges.
Analyzing Apple, we see that q(t) spikes initially and then fluctuates upwardly through year seventeen
(1997) of their history. From year eighteen onward, q(t) follows a generally declining trend. As of
now, the proportion of uncertainty-increasing earnings releases relative to uncertainty-decreasing
ones is qA(2012) = 13

19 ≈ 0.684. Since 2000, q(t) < 1 for all t, and thus, Apple has been announcing
fewer uncertainty-increasing earnings’ “messages”(see Table 1). Microsoft, on the other hand, has
experienced a faster increase in q(t) as time has passed.

One interpretation of these observed patterns could be that Microsoft had a better information
environment and higher quality earnings from 1985–2002 ceteris paribus. At some time t∗ between
2002 and 2003 (the time axis of Figure 5 is not depicted at a fine enough level of granularity to enable
the user to easily see this), the two firms had identical proportions and qA(t∗) = qM(t∗) ≈ 0.8. After
this “critical” point, the information environment and earnings quality for Microsoft and Apple
respectively have diverged. From the looks of the graph, I would have preferred Microsoft stock to
Apple stock until sometime in 2002, when Apples’ stock looks more attractive. This prediction fits the
risk-averse profile of the typical investor. Investors likely prefer companies with a better information
environment (less information asymmetry). Thus, given a choice between a company announcing a
higher (and generally increasing) ratio of uncertainty-increasing to uncertainty-decreasing earnings’
“messages” and a company whose same ratio is lower (and generally decreasing), they prefer the more
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transparent, less risky company. Based on the previous discussion and assuming q(t) adequately
captures the strength of the information environment surrounding each company, Figure 5 implies
that investors would prefer Microsoft over Apple from 1985–2002 and Apple over Microsoft from
2002–2012. Given earnings’ “messages” that increase uncertainty regarding future earnings, potential
investors shy away from the Apple stock in the former time period in favor of the Microsoft stock.
The risk-averse Apple shareholders would also react to the increased uncertainty and seek to sell their
shares. They, however, would have difficulty finding a buyer due to reduced demand. Therefore, the
price of Apple shares would fall, and the value of each shareholders’ investment would diminish.
The opposite phenomenon would happen with the Microsoft shareholders during the early time
period. These dynamics however would reverse after 2002.

Figure 5. Uncertainty ratio for Apple and Microsoft. This figure plots the earnings uncertainty ratio in
Equation (7) for Apple and Microsoft from their inceptions as companies through 2012.

Figure 6 plots the annual return from 1986–2012 for both Microsoft and Apple. Notice how the
return of Microsoft is generally greater than Apple from 1986–2002, and then, consistent with the
Figure 5 implications, the return drops below Apple and remains there (a graph of the annual closing
share price for both companies reveals this even more clearly).

Figure 6 does not validate the measure of information content introduced in this paper.
However, Figure 6 does offer some interesting insights into the potential usefulness of the measures
introduced. The consistency of Figure 6 with the predictions implied from Figure 5 provides some
evidence in favor of the measure (neither earnings, earnings per share nor return on assets tell the
same story when graphed for both firms. There seems to be “hidden” information in earnings that
IC
(
vjt
)

and, hence, q(t) capture).
As a simple test, I also regressed the annual returns of ten, large companies (over their respective

lives to-date) on q with the following OLS, simple linear regression model:

Rit = α0 + α1qit + εit (8)

where Rit is the annual return for firm i earned over time period t and qit is the uncertainty ratio
given in Equation (21) for firm i, respectively, as of the end of time period t (regressing returns on
earnings, earnings per share, return on assets or their lagged values respectively for this sample does
not produce a significant coefficient, and the average R2 from these regressions is zero). Table 2 gives
the companies used along with the number of observations for each company.
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Figure 6. Annual return for Apple and Microsoft. This figure plots the annual share price return for
Apple and Microsoft from their inceptions as companies through 2012.

Table 2. Annual returns as a function of the uncertainty ratio. This table reports the companies used in
the Equation (A3) test relating annual returns to the annual uncertainty ratio, qit, given in Equation (A2).
The companies were chosen from the S&P 100 arranged in alphabetical order by company name. If a
particular company did not have the required data to calculate the variables of interest (over its
respective life from inception through 2012), the next company in the alphabetically-arranged S&P 100
was chosen.

COMPANY # of Observations

Amazon 15
Amgen 28
Apple 31
Dell 24

Fed Ex 33
Home Depot 31

Microsoft 26
Nike 31

Starbucks 20
Walmart 39

Total Firm – Year Observations 278

The coefficient on qit was −0.9 (t-stat: −5.31), and the R2 was 9.28% (I also regressed returns on
lagged qit to see how well the information measure can predict future returns. The coefficient was
−0.39 (t-stat: −3.01), and the R2 was 3.42%. Furthermore, the correlation between earnings level and
qit was −0.06.). This is consistent with the reasoning earlier. An increase in q from t to t + 1 implies
that the t + 1 earnings announcement increased our uncertainty regarding future earnings for firm i.
Risk-averse shareholders do not like increases in uncertainty and, thus, seek to sell their shares ceteris
paribus. The reduced demand prevents the price from rising much (if at all), and therefore, returns
fall. Interestingly, the explanatory power of Equation (8) for returns is 9.28%. One should notice at
this point that the example given above (i.e., q(t)) does not use, in any way, the magnitude of IC

(
vjt
)
.

Instead, I simply counted the number of times the measure indicated an increase and decrease in
uncertainty, respectively. A more direct attempt to validate IC

(
vjt
)

could be undertaken (I hope to
test this idea and some others in a future paper) as follows. Suppose a set of analysts are forecasting
earnings, Et+ 1, for period t + 1 for a given firm. These analysts observe earnings in period t and use
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this “message” to form their forecasts accordingly. It seems reasonable to assume that if Et increased
their uncertainty regarding Et+ 1, then their subsequent forecasts will be more dispersed than if Et

decreased their uncertainty regarding Et+ 1. This actually is assumed when analyst forecast dispersion
is used as a proxy for uncertainty. One could test this assumption with IC

(
vjt
)

to see if, in fact, the
assumption holds.

7. Broader Applications

Although the application chosen in this paper is a narrow (but important) financial accounting one,
the measure introduced can be applied in a more general sense and is similar in thrust to [16]. The firm,
or information consumer if you will, receives a vector of knowledge regarding the realization of
any possible number of variables. Casting aside measurement issues for the moment (i.e., assuming
the knowledge received by the information consumer is reliable and has been measured correctly),
they only need a perceived state space for each variable in order to apply the measure and arrive at
an estimate of the information content contained in the knowledge they received. Appendix A shows
how this can be done if the vector consists only of knowledge regarding n financial statement variables.
The theory applies to any vector of knowledge the information consumer receives, however, not just
one particular type (e.g., financial knowledge). For example, the vector could provide knowledge
regarding financial statement numbers (say current earnings and total assets) and the current level
of information technology security within the firm. As long as these variables can be quantitatively
summarized, the measure can use their realizations (along with past realizations) to estimate the change
in uncertainty and, hence, information content of any particular realization using Equations (3)–(6).

8. Limitations

One limitation surrounding IC (M) as a measure of information content (I revert back
to the original notation, without loss of generality, in the interest of simplicity. M is any
message at a given point in time. PI is the individuals’ prior state-probability distribution, and
PA is the individuals’ posterior state-probability distribution.) is the fact that I have defined
IC(M) = 0 when U(PI) = U(PA). To illustrate, consider the weather example from Section 4.1.
Suppose initially PI = {rainy, sunny} = {0.9, 0.1}. Next, the individual receives a weather forecast
= M. Upon receiving and processing the knowledge contained in M, she or he updates her or his
prior state-probabilities regarding the weather tomorrow to PA = {0.1, 0.9}. It is trivial to check
that U (PI) = U (PA), and hence, as defined, IC (M) = 0. Her or his overall level of uncertainty
regarding which state will be realized has not changed upon receipt of M. She or he is more
certain, after M, that it will rain tomorrow than she or he was before M. However she or he is
less certain that it will be sunny tomorrow. The increase in certainty regarding the rainy state is
exactly offset by the decrease in certainty regarding the sunny state. Thus, quantitatively, her or his
overall uncertainty remains the same. Qualitatively though, one would argue that M does contain
information. M informs her or him that she or he should probably bring an umbrella to the beach and
leave her or his sunscreen at home! The limitation highlighted above is that IC(M) captures only the
quantitative information content of M ([17] points out that the Shannon entropy function is a measure
of uncertainty, “but it is uncertainty when all the information we have consists of just these numbers ”).
There often will be qualitative information contained in M. In this case, IC(M) does not capture this.
This limitation is particularly important in an accounting context if we use IC(M) to measure the
information content of the financial statements. I have been careful to say that IC(M) captures the
information content of the quantitative portions of the financial statements. Other “messages” within
the financial statements are the footnotes. It is interesting to think about the problem of quantifying
the information content of the qualitative footnotes. Recent advances in textual analysis, including
readability measures and positive/negative tone measures for example, have helped researchers deal
with this problem. One could think of IC(M) as forming a lower bound on the information content of
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the financial statements. Combining IC(M) with some of these other measures of footnote information
content would provide a more robust measure.

Another limitation lies in the reliability of the accounting numbers themselves. Since the measure
is a function of accounting variables, which are subjective estimates of the firm, it is subject to at
least as much underlying noise already contained in the underlying variables. Earnings, for example,
is an accrual number that captures cash flows in expectation. To the extent companies engage in
earnings management, the measure noisily captures the true information. For example, I applied
the measure to Enron’s earnings numbers over 1962–2000 (The Northern Natural Gas company was
formed in 1932 and later reorganized into a holding company and renamed InterNorth. Enron was
organized as the main subsidiary of InterNorth in 1979. I used data on Northern Natural Gas going
back as far as Compustat allows (1962).). Figure 7 plots the information content ratio, q(t), from
Equation (7) and was highest in 1984, the year prior to Kenneth Lay being hired as CEO. From then on,
the ratio of uncertainty increasing earnings announcements relative to uncertainty decreasing earnings
announcements declined. Thus, over the 16-year period from 1985–2000, the measure suggests that
Enron’s earnings contained less and less uncertainty regarding the state of future earnings, yet we
know (ex post) that Enron filed for bankruptcy in 2001.

Figure 7. Uncertainty ratio for Enron (1962–2012). This figure plots the earnings uncertainty ratio in
Equation (7) for Enron over the period 1962–2000. The Northern Natural Gas company was formed in
1932 and later reorganized into a holding company and renamed InterNorth. Enron was organized as
the main subsidiary of InterNorth in 1979. I used earnings data on Northern Natural Gas going back as
far as Compustat allows (1962).

9. Conclusions

This paper defines information as that subset of knowledge that changes a users’ uncertainty
regarding the state a particular variable of interest will assume in the future. This definition is firmly
grounded in an information theory framework. From this definition, I then develop a measure of the
information content of a message in general. Shannon entropy, as a measure of uncertainty, is applied
to form this measure. Several examples, along the way, illustrate how the measure can be applied.

I also argue that accounting fits within a classical communication system framework. I apply
the measure developed to the problem of measuring the information content of “messages” that are
transmitted from the accounting and reporting process to interested users. The messages are of interest
to users because they contain information regarding future variables of interest (e.g., earnings, cash
flows, etc.). I modify the general measure to form a specific measure of the information content of
accounting “messages” (e.g., earnings, assets, financial statements). I then provide a firm-specific
example where the “message” is period t earnings and the variable of interest is period t + 1 earnings.
This example provides some evidence validating the measures’ construct validity.
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When applied to an accounting context, the underlying idea is that the quantitative financial
statements, in aggregate and at the variable level, contain information that, at first glance, cannot
be observed from the numbers themselves. The measure IC

(
vjt
)
, however, is able to extract this

information in a way that is both interesting and insightful.

10. Future Research

This paper only scratches the surface regarding how information theory can be applied to
an accounting context. If one accepts the particular way in which I apply information theory, then
there are a host of questions surrounding the measures introduced. For example, can the measures
predict bankruptcies, earnings restatements or other firm-level calamities? Are the measures consistent
with the more traditional earnings-response coefficient information content measure? Do the measures
proxy for firm-level risk (both creditor and shareholder risk; evidence of a higher cost of capital for
those firms with lower information content financial statements, ceteris paribus, may provide evidence
that the measures can capture risk)?

The measures introduced may also provide an avenue by which to approach deeper, more
fundamental questions. For example, what is the optimal reporting period from an investors’
standpoint for a given firm or across firms? In fact, applying the measures introduced to Apple
and Microsoft quarterly earnings instead of annual earnings provides earlier evidence that Apple
would have been a better investment than Microsoft. This is consistent with the notion that investors
would want both companies to report quarterly instead of annually if they had to choose between
the two. Of course, Microsoft would choose annually over quarterly reporting given the same choice
ceteris paribus. This is consistent with a favorable view of the Securities and Exchange Commission
fulfilling its duty of protecting investors.

Another fundamental question the measure could render attainable is at what level of aggregation
should the financial statements be presented? If all of the information contained in a particular variable
j is already subsumed by some combination of the other variables, then maybe j should not be reported
within the statements. The costs of processing the redundant information in j outweigh the benefits.

These questions, particularly the more theoretical ones, are fundamental to understanding
accounting as a communication system. Hopefully, this paper has made the prospect of providing
answers to these questions seem a little more attainable.
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Appendix A. The Information Content, IC(F), of the Financial Statements

Up to this point, I have focused on the information content, IC (jt), of variable j in time period t.
Suppose a set of financial statements, Ft, is released at time period t. Let this set be described as follows
(I change notation here, by allowing vjt to represent “variable jt”. Note also that n now refers to the
number of variables instead of the number of states. The number of states is fixed, by assumption, at
four, while the number of variables in the financial statements is n.):

Ft = {v1t, v2t, · · · , vnt} (A1)

That is, at time period t, we have a set of financial statements comprised of n variables. Now, I wish to

assess IC (Ft). Simply calculating the sum
n

∑
j=1

IC
(
vjt
)

does not quite work, however, since some of

the information in any one of the n variables will already be contained in one, or more, of the other
variables. Summing in this way will lead to double counting this information.

Figure 7 illustrates what I would like to do when n = 4, for example. The shaded regions
in Figure A1 begin by shading in the information provided by v1t with blue. Next, I move
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counterclockwise and shade in (red) the portion of v2t not shaded blue. I then shade in (green)
the portion of v3t not already shaded blue or red. Finally, I shade in (purple) the portion of v4t not
already shaded blue, red or green. The information content of the financial statements is then equal to
the sum of the information contents of each of the colored regions. This process of “sweeping” out
the information contents of each financial statement variable one at a time (without double counting)
can be accomplished by using the principle of inclusion-exclusion from mathematical set theory.
Equation (A1) captures the idea for n = 3:

IC (Ft) =

(
3

∑
j=1

IC
(
vjt
))
− IC (v1t) ∩ IC (v2t)− IC (v1t) ∩ IC (v3t)−

IC (v2t) ∩ IC (v3t) + IC (v1t) ∩ IC (v2t) ∩ IC (v3t) (A2)

As given in Equation (A1), Ft is a set consisting of n variables. We can measure the size of the
information contained in Ft by considering the size of the information (information contents) contained
in each of these variables. The problem is, when summing over these sets, we over-estimate by
counting intersections more than once. Equation (A2) excludes these “over-included” intersections.
In the process, we exclude too much and, thus, need to add back a final term (one can readily check,
with a Venn diagram, that the above formula is correct). The formula above is a special case of the
general formula, attributed to Abraham De Moivre, an 18th century French mathematician. The general
formula for evaluating the size of a given set by considering the sizes of the different, non-mutually
exclusive subsets of which it is comprised is given in Equation (A3). I express the formula in the context
of the present discussion, and therefore, information content (IC) is the “size of the information”.

IC (Ft) =
n

∑
i=1

IC (vit)− ∑
i,j:1≤i<j≤n

IC (vit) ∩ IC
(
vjt
)
+

∑
i,j,k:1≤i<j<k≤n

IC (vit) ∩ IC
(
vjt
)
∩ IC (vkt)− · · ·+ (−1)n−1 IC (v1t) ∩ · · · ∩ IC (vnt) (A3)

I admit that Equation (A3) is cumbersome to follow. It is the classic example of condensing
something rather complicated into one precise formula. Nevertheless, one can check their
understanding at this point by plugging n = 3 into Equation (A3); you should recover Equation (A2).
Notice the alternating signs. This helps to ensure that anything we over-include in summing over the
information contents of all of the variables we make sure to exclude. Applying Equation (A3), when
n = 4, will precisely give the intuitive result in Figure A1.

What is the point of all of the math you ask? The idea is that aggregating is a delicate task
that requires caution. We need to ensure that we only “sweep” out information content once, as in
Figure A1. Furthermore, Equation (A3) highlights the importance of defining the intersections. I turn
next to this problem.

I will define the intersection of information content as follows:

IC (vit) ∩ · · · ∩ IC
(
vjt
)
=

1

(ξ
2)

IC (vk∗t)
n−1

∑
i=I∗

n

∑
j=i+1

∣∣∣ρt
ij

∣∣∣ (A4)

where:
vk∗t = the variable with the smallest information content, i ≤ k∗ ≤ j
I∗ = the starting variable index
n = the ending variable index
ρt

ij = the Pearson correlation between i and j through time t ≥ 2
ξ = the # of variables intersected
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Figure A1. Information content of four-variable financial statements. This figure illustrates the
non-overlapping information content of the financial statements reporting on four variables only.

Equation (A4) is a general expression for the intersection of information contents between any
combination of variables beginning with variable i through variable j. Equation (A4) calculates the
information content of variable i that is already subsumed in the other variables up through variable j.
Everything needed in Equation (A3) to calculate IC (Ft), given the financial statement variables, is
provided by Equation (A4). Precisely, given variables vit, . . . , vjt, Equation (A4) is the average of
all possible pair-wise Pearson correlations multiplied by the smallest information content. This is
consistent with the notion that the information content of the intersection can be no greater than the
smallest information content. For example, suppose you are given IC (v1t) = 0.2, IC (v2t) = 0.3,
IC (v3t) = 0.1 and ρ12 = 0.6, ρ13 = 0.9 and ρ23 = 0.95. The information content common to all three
variables is 0.1 ∗ 1

(3
2)
∗ (0.6 + 0.9 + 0.95) ≈ 0.08167. Although this is likely an estimate, it is intuitive

with the notion that the information content common to all three variables is an increasing function
of the correlation between the variables. The absolute value sign prevents the meaningless case of
negative joint information. Although any two variables could be negatively correlated, knowing this
is just as informative as knowing that they are positively correlated with each other! In other words,
I do not lose anything by disregarding the sign of the correlation between the two variables.

One will recall from the Apple Inc. example that IC
(
vjt
)

can be signed (superscripted) to
indicate whether uncertainty increased or decreased. When aggregating the information contents,
however, I disregard whether vjt increases or decreases the individuals’ uncertainty. I assume that
a realization of vjt, which increases our uncertainty regarding future realizations of vj, is equally as
informative as a realization of vjt, which decreases our uncertainty regarding future realizations of vj.
Therefore, theoretically, 0 ≤ IC (Ft) ≤ n (recall that 0 ≤ IC

(
vjt
)
≤ 1 for all j). Calculating IC (Ft) = 4,

for example, where Ft consists of ten variables, implies that the information content of Ft is 40% of the
maximum amount it could have theoretically been (60% shy of “perfect” information; perfect in the
sense that all of the information contained in each variable j is unique to j and is equal to one;I call
this percentage IC∗∗ (Ft) in Appendix B). A different way to express the information content of the
financial statements, which may be more meaningful, is to divide IC (Ft) by the sum of the individual
variable information contents. If there is no information common to any of the variables, then IC (Ft)

would equal this sum, and we could say that the financial statements contained maximum information
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relative to the information contents of each of the variables therein. Thus, a more meaningful measure
of financial statement information content is given below:

IC∗ (Ft) =
IC (Ft)

n

∑
i=1

IC (vit)

(A5)

The above discussion implies that IC (Ft) is maximized, theoretically, when each of the financial
statement variables is independent of the others. If this is the case, the numerator and denominator
of Equation (A5) are equal, and IC∗ (Ft) = 1. The equivalent of this pictorially is where the
circles in Figure A1 do not intersect each other. The converse of this occurs when each of the n
variables is perfectly correlated with each of the others. If this is the case, IC (Ft) = IC (vk∗t) and

IC∗ (Ft) = IC (vk∗t)

/ n

∑
i=1

IC (vit). Pictorially, this implies that the circles in Figure A1 are perfectly

superimposed over each other, such that the information in the smallest information content variable
is the most the user can obtain from the statements.

Next, I provide an empirical example to help illustrate some of the potential applications
of IC

(
vjt
)
. In Appendix B, I continue with the Apple Inc. example to illustrate IC∗ (Ft) and IC∗∗ (Ft)

( in Appendix B, I deal with the problem of signing IC (Ft); see Equations (B1) and(B2)).

Appendix B. The Information Content of Apple’s Financial Statements

To illustrate the calculation of IC (Ft) for a given company, consider Apple Inc. over the time
period 1980–1990. Without loss of generality, suppose Apple’s financial statements, for each of
these years, consisted of only four variables: earnings, total revenue, total assets and total liabilities
(variables NI, REVT, TA and TL, respectively, from Compustat). Thus, we consider the following set:

Ft = {earningst, total revenuet, assetst, liabilitiest}
= {v1t, v2t, v3t, v4t}

First, calculate the correlations ρt
ij between each pair of variables through each time period t ≥ 2.

Thus, for each time period, a vector of six correlations is produced. For example, through t = 5,
the correlation between earnings and total revenue is ρ5

12 = 0.7726. These correlations are listed in
Table B1.

Table B1. Correlations among Apple’s financial statement variables. This table reports the correlations
of Apple’s financial statement variables (earnings, total revenue, total assets and total liabilities) in the
Appendix B example.

Year t |ρt
12| |ρt

13| |ρt
14| |ρt

23| |ρt
24| |ρt

34|
1981 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1982 3 0.9944 0.9949 0.9975 0.9786 0.9845 0.9995
1983 4 0.9632 0.9834 0.9358 0.9891 0.9922 0.9822
1984 5 0.7726 0.8250 0.6654 0.9933 0.9867 0.9702
1985 6 0.6688 0.7332 0.5973 0.9942 0.9932 0.9823
1986 7 0.7222 0.8335 0.7804 0.9825 0.9827 0.9895
1987 8 0.8447 0.9024 0.8911 0.9896 0.9880 0.9931
1988 9 0.9296 0.9376 0.9612 0.9941 0.9917 0.9885
1989 10 0.9623 0.9665 0.9786 0.9970 0.9943 0.9928
1990 11 0.9737 0.9762 0.9810 0.9978 0.9935 0.9940
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Next, calculate the information contents of each of the four variables over the 1980–1990 time frame.
These are displayed in Table B2. Now, apply Equations (B1) and (B2) to calculate the information
content of the financial statements. For example, to illustrate IC (F8), you get the following:

IC (F8) = IC (v18) + IC (v28) + IC (v38) + IC (v48)

− IC (v18) ∩ IC (v28)− IC (v18) ∩ IC (v38)− IC (v18) ∩ IC (v48)

− IC (v28) ∩ IC (v38)− IC (v28) ∩ IC (v48)− IC (v38) ∩ IC (v48)

+ IC (v18) ∩ IC (v28) ∩ IC (v38) + IC (v18) ∩ IC (v28) ∩ IC (v48)

+ IC (v18) ∩ IC (v38) ∩ IC (v48) + IC (v28) ∩ IC (v38) ∩ IC (v48)

− IC (v18) ∩ IC (v28) ∩ IC (v38) ∩ IC (v48)

= 0.0762 + 0.4142 + 0.0432 + 0.0432

− (0.0762 ∗ 0.8447)− (0.0432 ∗ 0.9024)− (0.0432 ∗ 0.8911)

− (0.0432 ∗ 0.9896)− (0.0432 ∗ 0.9880)− (0.0432 ∗ 0.9931)

− 0.0432
3
∗ (0.8447 + 0.9024 + 0.9896)

− 0.0432
3
∗ (0.8447 + 0.8911 + 0.9880)

− 0.0432
3
∗ (0.9024 + 0.8911 + 0.9931)

− 0.0432
6
∗ (0.8447 + 0.9024 + 0.8911 + 0.9896 + 0.9880 + 0.9931)

≈ 0.4278

Now, use Equation (A5) to express IC (F8) in percentage terms and derive IC∗ (F8):

IC∗ (F8) =
0.4278

(0.0762 + 0.4142 + 0.0432 + 0.0432)

≈ 0.7417 or 74%

Thus, the information content of Apples’ 1987 financial statements was 74% of the maximum it could
have been, given the information contained in the variables of which the statements were comprised.
That is, given the information contents of each of the variables, if the variables were all independent,
the maximum information content would have been ∑4

i=1 IC (vit) = 0.5768. However, given the
additional constraint that the variables not only be independent, but also have maximal information
themselves (i.e., IC (vit) = 1 for all i), the information content of the 1987 financial statements was
IC∗∗ (Ft) = IC (Ft) /n = 0.4278/4 ≈ 0.1070. Thus, the 1987 statements changed our uncertainty
regarding future financial statements 10.7% of the maximum amount it possibly could have. Note in
Table B2 that this was an uncertainty-increasing change. Notice that I have not signed IC (Ft).
To accomplish this, consider the proportion of variables that increased uncertainty to those that
decreased uncertainty. Call this function p(t):

p(t) =
φ(t)
ψ(t)

where:

φ(t) = the # of uncertainty-increasing variables at time t

ψ(t) = the # of uncertainty-decreasing variables at time t



Information 2016, 7, 48 22 of 23

Table B2. Information content of Apple’s financial statement variables. This table reports the
information content of Apple’s financial statement variables (earnings, total revenue, total assets
and total liabilities) in the Appendix B example using Equation (B2).

Year t IC (v1t) IC (v2t) IC (v3t) IC (v4t)

1980 1 0.0000 0 0 0
1981 2 0.5000− 0.5000− 0.5000− 0.5000−

1982 3 0.0817− 0.0817− 0.0817− 0.0817−

1983 4 0.0755+ 0.0755+ 0.0755+ 0.0755+

1984 5 0.3709+ 0.3709+ 0.0290− 0.3709+

1985 6 0.0870− 0.1402+ 0.0282+ 0.0870−

1986 7 0.0821− 0.3247− 0.3787+ 0.1699+

1987 8 0.0762− 0.4142+ 0.0432+ 0.0432+

1988 9 0.1737+ 0.0384− 0.0384− 0.0384−

1989 10 0.0552− 0.1441− 0.0415− 0.0297+

1990 11 0.1808+ 0.1808+ 0.0196+ 0.0950−

Thus, the information content of the financial statements at time t can be signed as follows:

IC (Ft) =

{
IC (Ft)

+ if p(t) > 1

IC (Ft)
− if p(t) < 1

(B1)

Now, if p(t) = 1, then half of the variables increased our uncertainty regarding future
realizations of those variables, and half of the variables decreased our uncertainty. In this
case, we consider the magnitude of the information contents of the uncertainty-increasing and
uncertainty-decreasing variables. Define a new function as follows:

z(t) = ω(t)− ζ(t)

where:

ω(t) = the mean information content of uncertainty-increasingvariables at time t

ζ(t) = the mean information content of uncertainty-decreasingvariables at time t

The information content of the financial statements in this case is defined as follows:

IC (Ft) =

{
IC (Ft)

+ if z(t) > 0

IC (Ft)
− if z(t) ≤ 0

if p(t) = 1 (B2)

Table B3 reports IC (Ft), IC∗ (Ft) and IC∗∗ (Ft) for Apple from 1980–1990.
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Table B3. Information content of Apple’s financial statements (1980–1990). This table reports the
information content of Apple’s financial statements using each the measures from Equations (A5)
and (B2), respectively.

Year t IC (Ft) IC∗ (Ft) IC∗∗ (Ft)

1980 1 0 0 0
1981 2 0.5000− 0.2500− 0.1250−

1982 3 0.0837− 0.2563− 0.0209−

1983 4 0.0813+ 0.2692+ 0.0203+

1984 5 0.5135+ 0.4497+ 0.1283+

1985 6 0.1837− 0.5367− 0.0459−

1986 7 0.4132+ 0.4324+ 0.1033+

1987 8 0.4278+ 0.7416+ 0.1069+

1988 9 0.1775− 0.6144− 0.0443−

1989 10 0.1469− 0.5425− 0.0367−

1990 11 0.1865+ 0.3916+ 0.0466+
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