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Abstract: The Monster group, the biggest of the sporadic groups, is equipped with the highest
known number of dimensions and symmetries. Taking into account variants of the Borsuk–Ulam
theorem and a novel topological approach cast in a physical fashion that has the potential to be
operationalized, the universe can be conceived as a lower-dimensional manifold encompassed in
the Monster group. Our universe might arise from spontaneous dimension decrease and symmetry
breaking that occur inside the very structure of the Monster Module. We elucidate how the energetic
loss caused by projection from higher to lower dimensions and by the Monster group’s non-abelian
features is correlated with the present-day asymmetry in the thermodynamic arrow. By linking the
Monster Module to its theoretical physical counterparts, it is then possible to calculate its enthalpy
and Lie group trajectories. Our approach also reveals how a symmetry break might lead to a
universe based on multi-dimensional string theories and CFT/AdS (anti-de Sitter/conformal field
theory) correspondence.
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The Mode is an enclosed, detectable manifestation of the Substance. . . The Substance is
equipped with infinite attributes (Spinoza, Ethica, pars I)

1. Introduction

The Fischer–Griess Monster group, the largest among the twenty-six sporadic groups, is equipped
with 196,883 dimensions and an order of about 1054 elements [1]. It is noteworthy that the Monster
Module displays the highest known number of symmetries [2]. It has been recently proposed that
the symmetries, widespread invariances occurring at every level of organization in our universe,
may be regarded as the most general feature of physical systems, perhaps also more general than
thermodynamic constraints [3,4]. Therefore, giving insights into the Monster symmetries would
provide a very general approach to systems function, universe evolution and energetic dynamics.
Here we show how a novel symmetry-based, topological approach sheds new light on the Monster’s
features. We provide a foundation for the Monster’s physical counterparts, cast in a fashion that has
the potential to be operationalized, which can be used for the assessment of our universe’s evolution
and, in particular, pre-Big Bang scenarios.

This paper comprises six sections, including the introduction. In the second section, we describe a
generalized version of the Borsuk–Ulam theorem, in order to provide the topological machinery for
further evaluations of the Monster in the context of theoretical physics. The third section assesses the
relationships between the Monster and the modular j-function. Section four explains how the universe
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might originate from the Monster Module, due to a dimension loss, linking the Monster group to
theoretical physics counterparts. Furthermore, taking into account energetic arguments dictated by
topological dimensions decrease, the section explains why and how our universe is equipped with
the symmetry breaks, which give rise to the thermodynamic arrow. Section five elucidates various
physical features of the Monster. In the final sixth section, we raise a number of still open questions.

2. Topological Tools

2.1. The Standard Version of the Borsuk–Ulam Theorem (BUT)

The Borsuk–Ulam Theorem [5] is given in the following form by [6].

Borsuk–Ulam Theorem. Let f : Sn → Rn be a continuous map. Then there exists x ∈ Sn ⊆ Rn+1 such that
f (x) = f (−x).

Proof. A beautiful and concise proof of this theorem is given by [7], and not repeated here. �

This means that antipodal points on n-sphere Sn map to Rn, which is the n-dimensional Euclidean
space [8,9]. Points on an n-sphere Sn are antipodal, provided the points are diametrically opposite [10].
The original formulation of BUT displays versatile ingredients that can be modified, resulting in BUT
with different guises: proximally continuous mappings and antipodal (or non-antipodal) points with
matching description and bijection mappings from a higher to a lower dimension.

In the sequel, the notion antipodal point is extended antipodal regions. A region on the surface
of an n-sphere Sn is a part (subset) of Sn. A surface region ¬x is the antipode of x, provided x 6= ¬x
and x has the same feature values (characteristics) as ¬x. For more about this, see [11]. From a physics
perspective, a region is a relativistic mass in a slice of space swept out a moving particle. The particles
on a physical n-sphere are moving at the same velocity. For every physical region with mass x ∈ Sn,
we can always find ¬x (the analog of the antipode –x of a point on the surface of Sn) with the same
characteristics (velocity and mass). In effect, for the relativistic energy ex = mxc2, we can find its
antipodal energy e¬x for ¬x ∈ Sn. To be an antipodal energy e¬x, we weaken the original notion to
antipodes, with ¬x being a particle on Sn that has characteristics that match those of x ∈ Sn. This leads
to an energetic form of BUT (energy-BUT) for antipodal particlesx,¬x ∈ Sn:

Energy-Borsuk–Ulam Theorem. Let f : Sn → Rn be a continuous map. Then there exists x ∈ Sn ⊆ Rn+1

such that f (x) = f (¬x) and ex = e¬x.

Proof. f (x) = f (¬x) a feature vector in Rn+1. Since, for each x ∈ Sn there is ¬x ∈ Sn with the same
velocity and mass, the result follows, i.e., f (x) = f (¬x) and ex = e¬x. �

2.2. BUT Variants

We resume with some BUT variants described by Peters [12] and Tozzi and Peters [3]. The concept
of antipodal points can be generalized to countless types of signals. Two opposite points encompass not
just the description of simple topological points, but also of spatial and temporal patterns, vectors and
tensors, functions, signals, thermodynamic parameters, trajectories, symmetries [3]. The two antipodal
points standing for different systems features are assessed at one level of observation, while the single
point is assessed at a lower level. The antipodal points restriction from the classical BUT is no longer
needed, because the applications on an n-sphere can be generalized not just for the evaluation of
diametrically opposite points, but also of non-antipodal ones. We are allowed to take into account
homotopic regions on an n-sphere that are either adjacent or far apart. This means that the points
(or regions) [13] with the same feature value do not need necessarily to be antipodal, in order to be
described together [12]. The original formulation of BUT describes the presence of antipodal points on
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spatial manifolds in every dimension, provided the n-sphere is a convex, positive-curvature structure.
However, many physical functions occur on manifolds endowed with other types of geometry:
for example, the hyperbolic one [14,15]. Whether the manifold displays a concave, convex or flat
activity, this does not have an impact: we may always find the points with matching description
predicted by BUT. Although BUT has been originally described just in case of n being a natural number
that expresses a spatial dimension, its value in Sn can also stand for other types of numbers. The n
value can be also cast as an integer, a rational or an irrational number. This allows us to use the n
parameter as a versatile tool for the description of systems symmetries [3]. A BUT variant tells us that
we can find a pair of opposite points an n-dimensional sphere, that display the same encoding not just
on a Rn manifold, but also on an n−1 sphere. A symmetry break occurs when the symmetry is present
at one level of observation, but hidden at another level [4]. This means that symmetries can be found
when evaluating the system in a proper dimension, while they disappear (are hidden or broken) when
the same system is embedded in just one dimension lower.

Here we introduce recently developed, unpublished BUT variants. The first is a BUT corollary,
which states that a Sn manifold does not map just to a Rn−1 Euclidean space, but straight to a Sn−1

manifold. In other words, the Euclidean space is not mentioned in this formulation. Indeed, in many
applications, e.g., in fractal systems, we do not need a Euclidean manifold at all. A manifold, in this
case Sn, may exist in and on itself, by an internal point of view, and does not need to be embedded in
any dimensional space [13]. Therefore, we do not need an Sn manifold curving into a dimensional
space Rn: we may think that the manifold just does exist by itself. An important consequence of this
BUT version is that a n-sphere may map on itself. The mapping of two antipodal points to a single
point in a dimension lower can be a projection internal to the same n-sphere.

The second and foremost variant is the above mentioned termed energy-BUT.There exists a
physical link between the abstract concept of BUT and the real energetic features of systems formed
by two spheres Sn and Sn−1. An n-sphere Sn is equipped with two antipodal points, standing for
symmetries according to BUT.BUT is enriched by considering an n-sphere Sn as a manifold, which is a
Hausdorff space with a countable basis where each point has a neighbourhood that is homeomophic
to some Euclidean space. Briefly, a space is Hausdorff, provided distinct points belong to disjoint
neighbourhoods (distinct points live in separate houses [16]). A mapping f : X → Y is homeomorphic,
provided f on X is 1-1, onto Y and has a continuous inverse. For the sake of intuition, we illustrate the
notion of homeomorphic neighbourhoods in terms of planar homeomorphic energistic neighbourhoods.

Let p, x ∈ Sn, radius r > 0 and ‖ex − ep‖ =
√

ex2 + ep2 (norm of energies associated with the points
x, p) for an open neighbourhood N(p, r) defined by

N(p, r) =
{

x ∈ R2 : ‖ex − ep‖ < r
}

.

Then a homeomorphic mapping f : N(p, r)→ R2 is defined by

f (x) =
ex

∑
|N(p,r)|
i=1 ey

, x, y /∈ N(p, r).

For more about manifolds, see [12]. When these opposite points map to an n-dimensional
Euclidean manifold where Sn−1 lies, a symmetry break/dimensionality reduction occurs, and a single
point is achieved [11]. It is widely recognized that a decrease in symmetry goes together with a
reduction in entropy and free-energy (in a closed system). This means that the single mapping function
on Sn−1 displays energy parameters lower than the sum of the two corresponding antipodal functions
on Sn. Therefore, a decrease in dimensions gives rise to a decrease of energy and energy requirements.
BUT no longer depends on thermodynamic parameters, but rather on topological features such as affine
connections and homotopies. The energy-BUT concerns not just energy, but also information. Indeed,
two antipodal points contain more information than their single projection in a lower dimension.
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Dropping down a dimension means each point in the lower dimensional space is simpler, because
each point has one less coordinate. In sum, energy-BUT provides a way to evaluate the decrease of
energy in topological, other than thermodynamic, terms.

Another novel variant of BUT is the region-based BUT. This is a straightforward extension of
what is known as region-BUT (briefly, reBUT).

Region-Based Borsuk–Ulam Theorem (ReBUT). Let 2Sn
be a collection of nonempty surface regions of Sn

and let there be a continuous map. Then there exists x ∈ 2Sn ⊆ Rn+1 such that f (x) = f (¬x).

Proof. f (x), f (¬x) a feature vector in Rn+1. We can always find region ¬x ∈ 2Sn
that is antipodal to

x ∈ 2Sn
, i.e., ¬x ∩ x = ∅ and ¬x, x, have matching descriptions in Rn+1, minimally, equal velocity and

mass while moving along the path through space swept out by Sn (called a world canal during the
course of its history [17]). Hence,

f (x) = f (¬x).�

The usual continuous function required by reBUT (region-based BUT in [3]) is replaced by a
proximally continuous function, which guarantees that, whenever a pair of strings (regions that are
world lines) are close (near enough to have common elements), then we always know that their
mappings will be also be close. A string is a region of space with non-zero width and either bounded
or unbounded length. As a particle moves through space following a world line [18], interactions
occur at the junctions of world lines. Let τ the proper time of a particle, measured by clock travelling
with a particle and integration along the world line of the particle. The actionparticle of a freely moving
particle is defined by

actionparticle = −mc2
w

dτ.

As time evolves, a particle leaves a trace of its movements along a surface, which are
“remembered”. A string is then a remembered part of a hypersphere surface over which a particle
travels. In terms of quantum theory, a string is a path defined by a moving particle. Put another
way, a string is path-connected and its path is defined by a sequence of adjacent fat surface points.
The points are fat because they are physical as opposed to abstract geometric points. In other words,
a string A(briefly, strA) is a thin region of space that has describable features such as connectedness,
length, open-ended or closed-ended, and shape. Strings strA,¬strA are antipodal, provided strA and
¬strA are disjoint and yet have the same description. Strings strA,¬strA are examples of antipodal
sets [19]. The description of strA (briefly, Φ(strA)) is a feature vector in Rn, where each component of
Φ(strA) is a feature value of strA.

2.3. Quantum String Axioms

1. Every string has an action.
2. If strA,¬strA are antipodal, then actionstrA = action¬strA.
3. Separate strings with k features with the same description are antipodal.
4. There is a set {¬strA} of antipodal strings for every string strA.

Let X be a topological space equipped with descriptive proximityδΦ. strA δΦ ¬strA reads
strA, and ¬strA have the same description. Let 2Sn

denote the family of sets on the surface of
a hypersphere Sn and strA,¬strA ∈ 2Sn

are antipodal strings on Sn. A function f : 2Sn → Rn is
proximally continuous, provided strA δΦ ¬strA implies f (strA) δΦ f (¬strA). With these observations
about strings, we obtain the following results.

Lemma. [strBUT]. If f : 2Sn → Rn is proximally continuous, f (strA) = f (¬strA) for some strA in 2Sn
.
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Proof. Case n = 1. Let each strA have one feature, namely, action. Assume antipodal strings strA,¬strA
with n features are descriptively close, i.e., strA δΦ ¬strA. Since f is proximally continuous, we have
f (strA) δΦ f (¬strA). From Axiom 2, actionstrA = action¬strA. Hence, from the definition of the
descriptive proximity δΦ, f (strA) = f (¬strA).

Case n> 1. The proof is symmetric with case n = 1 and Axiom 3. �

Theorem 1. If f : 2Sn → Rk, k > 0 is proximally continuous, actionstrA = action¬strA for some strA in 2Sn
.

Proof. We consider only the case for k = 1, for strings whose only feature is action. The desired result
is immediate from the strBUT Lemma and Axiom 2. This result is easily extended to the case where
k > 1 for strings with k features. �

Theorem 2. If f : 2Sn → 2Rk
, k > 0 is proximally continuous, f (A) = f (¬A) for each ¬strA in the set of

antipodes {¬strA} ∈ 2Sn
.

Proof. Immediate from the Theorem 1. �

In order to map Sn to Sn−1, we need to work with lower dimensional spaces containing regions
where each point in Sn−1 has one less coordinate than a point in Sn.

Let X be a topological space equipped with Lodato proximity [12]. strA δ ¬strA reads strA and
¬strA are close. Dochviri and Peters [20] introduce a natural approach in the evaluation of the nearness
of sets in topological spaces. The objective is to classify levels of nearness of sets relative to each given
set. The main result is a proximity measure of nearness for disjoint sets in an extremely disconnected
topological space. Let int(strA) be the set of points in the interior of strA. Another result is that if
strings strA,¬strA are nonempty semi-open sets such that strA δ ¬strA, then int(strA) δ int(¬strA) .

An important feature is that the manifolds Md and Md−1 are topological spaces equipped with
a strong descriptive proximity relation. Recall that in a topological space M, every subset in M and
M itself are open sets. A set E in M is open, provided all points sufficiently near E belong to E [21].
The description-based functions in BUT are strongly proximally continuous and their domain can be
mathematical, physical or biological features of world line shapes. Let A, B be subsets in the family
of sets in M (denoted by 2M) and let f : 2M → Rn, A ∈ 2M, f (A) = a feature vector that describes A.
That is, f (A), f (B) are descriptions of A and B. Nonempty sets are strongly near, provided the sets of
have elements in common. The function f is strongly proximally continuous, provided A strongly near
B implies f (A) is strongly near f (B). This means that strongly near sets have nonempty intersection.
From a BUT perspective, multiple sets of objects in Md are mapped to f (A ∩ B), which is a description
of those objects common to A and B. In other words, the functions in BUT are set-based embedded in a
strong proximity space. In particular, each set is a set of contiguous points in a path traced by a moving
particle. The path is called a world line. Pairs of world lines have squiggly, twisted shapes opposite
each other on the surface of a manifold. Unlike the antipodes in a conventional hypersphere assumed
by the BUT, the antipodes are now sets of world lines that are discrete and extremely disconnected.
Sets are extremely disconnected, provided the closure of every set is an open set [20], is in the discrete
space and the intersection of the closure of the intersection of every pair of antipodes is empty.
The shapes of the antipodes are separated and belong to a computational geometry. That is, the shapes
of the antipodal world lines approximate the shapes in conventional homotopy theory [22]. The focus
here is on the descriptions (sets of features) of world line shapes. Mappings onsets with matching
description, or, in other words, mappings on descriptively strongly proximal sets, here means that
such mappings preserve the nearness of pairs of sets. The assumption made here is that antipodal sets
live in a descriptive Lodato proximity (DLP) space. Therefore, antipodal sets satisfy the requirements
for a DLP [12]. Let δ be a DLP and write A δ B to denote the descriptive nearness of antipodes A and B,
and let f be a DLP continuous function. This means A δ B implies f (A) δ f (B) = f (A) ∩ f (B) 6= ∅.
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Example. Assume that antipodes A and B have symmetries (shape, bipolar, color, overlap,
path-connectedness), and f is DLP strongly continuous function, then A δ B ⇒ f (A) δ f (B).

This means that whenever A and B are descriptively close, then A is mapped to f (A) and B is
mapped to f (B) and f (A) δ f (B). If we include in the description of A and B the location of the
discrete points in A and B, then the DLP mapping is invertible. That is, f (A) maps to A, f (B) maps to
B and f (A) δ f (B) implies A δ B.

Figure 1 provides an example of antipodal sets in case of a pair of closed regions, e.g., strings.
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Figure 1. Torus Antipodal Strings. World lines with matching description preserve the nearness of
pairs of sets. See text for further details.

2.4. Generalized BUT (genBUT)

We conclude this section by introducing a generalized version of BUT, which encompasses all the
previously described variants. This version allows the study of the Monster in the context of theoretical
physics. Gen-BUT states that: Multiple sets of objects with matching descriptions in a d-dimensional
manifold Md are mapped to a single set of objects in Md−1 and vice versa. The sets of objects, which can be
mathematical, physical or biological features, do not need to be antipodal and their mappings need
not to be continuous. The term matching description means the sets of objects display common feature
values or symmetries. M stands for a manifold with any kind of curvature, either concave, convex
or flat. Md−1 may also be a part of Md. The projection from S to R in not anymore required, just M
is required. The notation d stands for a natural, or rational, or irrational number. This means that
the need for spatial dimensions of the classical BUT is no longer required. The process is reversible,
depending on energetic constraints. Note that a force, or a group, an operator, an energetic source,
is required, in order to project from one dimension to another.

3. Embedding the Monster Group in Md−1

The Monstrous Moonshine conjecture suggests a puzzling relationship between the Fourier
coefficients of the normalized elliptic modular invariant, e.g., the hauptmodul J, the value of which
value is 19,884, and the simple sums of dimensions of irreducible representation of the Monster Group
M, which is 196,883 [23]. It would seem that a relationship between the symmetries in the plot (range)
of the j-function and symmetries in the Monster group products occurs. These symmetries can be
visualized as shown in Figure 2.
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Figure 2. (a) 3D plot of qreiqφ with nome q; (b) 2D plot of real part of an elliptic module function q = eiπτ .
Symmetries in (a) display a 3D plot and in (b) a 2D plot of an elliptic module function. The j-function
is an elliptic module function such as an elliptic theta function. A sample elliptic theta plot is shown in
this Figure. Such functions are expressed in terms of a nome q = eiπτ . Then, for a complex number z,

Jacobi theta functions are defined in terms the nome q, e.g., ϑ1(z, q) ≡
∞
∑

n=−∞
(−1)n− 1

2 q(
n+1

2 )
2

e(2n+1)iz.

We might speculate that, in physical terms, the j-function could stand for an activity occurring
in the Monster Module during the movements of the Lie Monster Group. In an infinite-dimensional
space, the action of the j-function is correlated with the Monster vertex operator Virasoro algebra, e.g.,
the Monster Module [24].

A topological approach helps to elucidate such an unusual relationship. In the BUT framework,
the j-function and the Monster Module are sets of objects with matching descriptions embedded in a
Md manifold, where d stands for their abstract dimension 196,884. Encompassing the two parameters
in a Md manifold allows us to provide a topological commensurability between the Monster Module
and the j-function. When we reduce the dimensions to S196,883, we achieve a single function, e.g.,
the Monster Lie group. It easy to see that if we map the two functions to a dimension lower, in this
case M196,883, we achieve a single function that retains the features of both. This single function stands
for the Monster Group, which is the automorphic Lie group acting on the Monster Module (Figure 3,
upper part). In topological terms, as always, two functions on a Sn sphere lead to a single function on
a Sn−1 sphere.
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lowest ones. The Figure also illustrates how every sporadic group might display a theoretical
physical counterpart.

4. Of Monsters and Universes

4.1. Dimensions Reduction

We propose a BUT model that describes our universe as located inside the Monster Module.
We argue, based on topological and energetic claims, that our universe might arise from a spontaneous
loss of dimensions, e.g., an automorphism, occurring in the very structure of the supersymmetric,
multidimensional Monster Module. If the Monster stood before the Big-Bang, we are in front of a
manifold with the highest possible energy, because it displays the highest number of symmetries:
indeed, according to energy-BUT, the more the symmetries, the more the energy. Therefore, every
decrease in the symmetries of the original structure (the Monster) halves the energy of the subsequent,
less symmetric level (occurring after the Big Bang). It is worthy of mention that the symmetries of the
hypothetical Md structure encompassing our universe do not need to be necessarily of the huge order
of 1054. Indeed, the Monster group includes several subgroups, classified into the sporadic groups
(e.g., Mathieu groups, Leech lattice groups, and so on) [25]: this means that the universe might arise
either from the Monster group, or one of its subgroups. In such a vein, one might think different
possible physical scenarios:
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(a) The Monster group is progressively formed starting from its subgroups, with a gradual building
from blocks.

(b) The Monster group is the original structure giving rise to our universe.
(c) The Monster group, the original structure, splits in its subgroups, then one of the subgroups

gives rise to our universe.

Because the entropy is increasing in the universe, the first hypothesis is less reasonable: since
our universe is moving towards lower free-energy levels, it would be better to start with a higher
energetic manifold before the Big Bang, and not vice versa. At the Big Bang, a loss of dimensions
and thermodynamic free-energy took place. Going from a higher dimension to a lower one, a sort of
quantum jump occurred, in guise of an electron orbit where electrons jump towards more internal levels.
Note that the BUT dictates provide a testable hypothesis: every jump towards a lower symmetrical
state must halve the previous energetic level. Because a loss of dimensions comes together with a loss
of symmetries, just the symmetries embedded in our low-dimensional universe’s dimensions are kept,
while the others are apparently lost. The lost symmetries could in theory be restored by inverting
the process from our universe’s lower dimensions to the Monster Module’s higher ones, but it would
require a source of energy able to perform the inverse projection, and this is not the case of our cosmos.

4.2. Topological Relationships between the Monster and String Theories

The Monster group has been already correlated with well-known scenarios in theoretical physics.
Moonshine can be regarded as a collection of related examples where algebraic structures have been
associated with automorphic functions or forms, because it is also displays relationships with the
Lie group E8(C) and a lattice vertex operator algebra equipped with a rank 24 Leech lattice [23,26].
Several features of the Monster, either its Module, or its group and subgroups, have been associated
with different physical theories. Some examples are depicted in Figure 3 (lower part). For example,
links between Monstrous Moonshine and string theories have been proposed: the Monster might
stand for the symmetry of a string theory for a Z2-orbifold of free bosons on a Leech lattice torus,
in the context of a conformal field theory equipped with partition function j. Recent papers link
other sporadic groups (e.g., Monster subgroups) with modular forms, suggesting a more central
role for the Umbral Moonshine conjecture [27]. On the other hand, Witten proposed that pure
gravity in AdS3 (anti deSitter) space with maximally negative cosmological constant is AdS/CFT
dual to a holomorphic CFT (conformal field theory), with the numbers of the Moonshine coming
into play [28]. CFT/AdS is dual to string theories and is involved in many theoretical models: CFT,
Chern-Simon-Matter, Super Jang–Mills, Superconformal algebras. The AdS/CFT correspondence
means that conformal field theory is like a lower-dimensional hologram, which captures information
about the higher-dimensional quantum gravity theory: this is one of the typical frameworks easily
describable by a BUT topological apparatus.

4.3. The Problem of Singularity

A problem now arises: how to explain the event, commonly called singularity [29], which,
according to our scenario, caused an apparent loss of dimensions in the Monster and gave rise to our
universe? In order to answer to this crucial question, it must be taken into account that a particle
trajectory on a hypersphere (or in general on every manifold), does not need to be closed: a particle not
necessarily goes right through the whole surface, but could also travel just for a short path [30]. In such
a vein, a hypothetical particle embedded into the Monster Module, which follows the movements
dictated by the Monster Lie group, cannot travel everywhere on the Monster surface, due to the huge
number of dimensions. In other words, ergodic pathways cannot be guaranteed when a particle travels
on the Monster Module, due to the countless possible trajectories. When a particle travels into the
huge Monster manifold’s phase space, it might simply take a random path towards just a few of the
countless dimensions. We provide an example from the 26D bosonic string theory. This well-studied
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model, although partially dismissed, provides a good illustration in order to elucidate such issue.
Furthermore, the 26D bosonic string theory takes place on the Leech lattice, e.g., a manifold that is
almost ubiquitous in the description of sporadic groups. Bosons’ trajectories in a 24D Leech lattice may
follow paths encompassing 196,884 dimensions. The random trajectories followed by moving particles
encompass just some of the total Monster’s dimensions. When bosons’ paths fall into lower dimensions,
bosons lose energy, according to the energy-BUT dictates. The sudden loss of energy might explain
the Big Bang, that arises when the particle moves towards preferential paths in lower dimensions,
e.g., when they move towards our universe. Therefore, the singularity might be simply explained by
random particles’ movements occurring on small sub-parts of the Monster Module. The Big Bang
might just have been occurred naturally, when a particle fell into a Monster’s dimension instead of
another. This also means that the chosen paths in low dimensions (our universe) are equipped with
just a few of the Monster symmetries. In our universe, the residual Monster symmetries are lost,
or, better, hidden, because they become visible when evaluated from a higher dimension. The loss
of the other primeval Monster dimensions gives rise to symmetry breaking and the thermodynamic
arrow. In order to elucidate why a decrease in symmetries and dimensions leads to our universe
equipped with symmetry breakings, it must be also taken into account that almost all the finite groups
are non-abelian. This explains why the cosmic rules in our universe are dictated by asymmetric laws:
indeed, the intrinsic non-abelian structure of the Monster itself ensures the non-reversibility of the
particle patterns. In sum, once taken a path, due to both non-abelian and energetic arguments, it is not
possible to reverse the process in our universe, unless other energy is supplied. Note that, because
random paths might occur everywhere on the Monster Module, this means that countless universe are
allowed, every one equipped with just some of the primeval Monster symmetries. The presence of
an ergodic, homogeneous Monster Module before the Big Bang solves the so-called horizon problem
too. A few Planck times after the Big Bang, the universe consisted of 1090 Planckian size, disconnected
regions [31]. Currently, those regions make up our observable universe and resemble one another.
The presence of the homogeneous Monster Module before the Big Bang explains, together with the
inflationary period, why all the initial disconnected regions displayed the same features.

4.4. The Monster and the Spacetime

The Monster is a manifold that, for the BUT variants, can be also described as a hypersphere.
Therefore, our universe is internal to the Monster. The loss of dimensions occurs in the Monster,
giving rise to the Big Bang. That is why the fossil background cosmic radiation comes from everywhere,
when we look at it [32]. Another problem arises: how can a string-like manifold give rise and
encompass the whole universe? A possible solution is that the Monster is not in the space, and the
space is bent together with the universe. Concerning the time, the things are more complicated. Indeed,
in touch with Veneziano’s pre Big Bang scenarios [31], the time could exist before the singularity,
and not arise together with the universe’s spatial dimensions. Indeed, the Monster group needs to
be embedded in the time, because it, acting as a Lie group, needs to perform symmetric movements,
which may just occur in a given time. It might however be speculated that the time is not required at
the Monster Module level, and the Wheeler–DeWitt equation might be valid at such level. This means
that, while the Monster Module, embedded in a S196,884 manifold, lies in infinite dimensions and
is atemporal, the lower level, embedded in an S196,883 manifold, requires the introduction of the
parameter time.

5. Quantifying Physical Monster’s Parameters

5.1. Towards the Monster’s Enthalpy

The energy-BUT can be used in order to calculate the energetic requirements of Monster Modules
in a physical context. Thermodynamics says that:

H = F + T × E
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where H is the Enthalpy, F the free-energy, T the temperature (trascurable) and E the entropy.
We assume that our universe is closed. We will evaluate the possible values at the Big Bang (H0, F0, T0,
E0) and at the present time (H1, F1, T1, E1). The current level E1 of entropy in the universe is estimated
in 2.6 ± 0.3 × 10122 K [33,34], while T1 is neglectable. If the universe displays four dimension as
currently believed, every dimension contains approximately an average entropy of: E1/4.

As shown in [33], the current universe displays almost the highest possible values of entropy.
Also in the future, the entropy will be just slightly larger than the current value E1, because a
monotonical increase already occurred. This means that E1 is, more or less, the maximum value
of entropy achievable in the whole life of the universe, and also means that the free-energy F1 is
currently very low. Therefore:

E1 = H1.

The current E1 almost equals the total enthalpy H1 of the universe. Vice versa, at the Big Bang,
F0 and T0 were very high and E0 close to zero. This means that, at the Big Bang:

F0 = H0 − T0.

If the Monster occurred before the Big-Bang, we are in front of a manifold with the highest
possible energy, because it displays the higher number of symmetries. If the Monster gave rise to our
universe, and the Monster displays 196,883 dimensions, the Entropy of the Monster EM is:

EM = E1/4 × 196,883.

Thus, the enthalpy of the Monster HM stands roughly for the same value:

HM = E1/4 × 196,883

The loss of dimensions in the Monster Module, due to the non-abelian movements of the Monster
Lie group and the energy-BUT, give rise to different universes with dimensions lower than the Monster,
and equipped with less energy and information.

Through the Conway atlas of finite groups, we know the dimensions and the order of every
group, including the sporadic ones. It is not difficult to calculate how many dimensions have been
lost. We know this number, e.g., 196,883 less 4 (here 4 stands for the four space-time dimensions of our
universe, we know how many symmetries are preserved, and we know, for energy-BUT, that every
decrease of a single symmetric level denotes the loss of half of the energy. If the pre-Big Bang manifold,
e.g., the Monster Module, is equipped with 196,884 dimensions and 1054 elements, and if our universe
has four dimensions, we have 1050 elements in our universe.

Summarizing, once hypothesized a high-energy Monster Module before the rise of our universe,
the next step is to reduce the symmetries from the Monster vertex operator to the Monster group,
which is the Lie group acting on it. A further step gives rise to a dimensions and symmetries reduction
until the emergence of our universe.

5.2. Information

The energy-BUT states that it is not possible to achieve higher information starting from a lower
dimensional level. This means that we need to start from the Monster Module, and not vice versa.
The process must be top-down, e.g., from the Monster to the universe, and not bottom-up. According
to the energy-BUT, a loss of information occurs together with a decrease in dimensions. Therefore,
from the Monster to our universe, it occurs a loss if information. You cannot move a particle in our
universe from lower to higher dimensions, unless you, for energy-BUT, do not inject novel free-energy
or enthalpy. You can just do it locally in the universe, for example when biological entities arise
in limited niches, but not everywhere, because the total entropy increases together with a decrease
in free-energy. Summarizing, from the highest to the lower levels there is a reduction, and not an
emergence of information.
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5.3. Watching the Monster: Vertex Algebra

In order to incorporate the j-function into a general context and to visualize the movements
of the Monster Group on the Monster Module, we built a simplified 3D model equipped with a
hypersphere and a vertex algebra operator. We achieved a low-dimensional model of j-function and its
group, embedded into a vertex algebra’s manifold. Briefly, a vertex algebra provides a mathematical
formulation of the chiral part of 2-dimensional conformal field theory. The axioms of a vertex algebra
are obtained from the properties of quantum field theories and operator product expansions (OPEs).
The main tactic flowing from OPEs is that a product of local operators defined at nearby locations can
be expanded in a series of local operations [35]. A graphical representation of an OPE is represented
in Figure 4A. Let ω1, ω2 be periods of a doubly periodic function with τ ≡ ω1

ω2
. Then Klein’s absolute

invariant is defined by

J(ω1, ω2) =
g3

2(ω1, ω2)

4(ω1, ω2)
,

where g2 is the invariant of the Weierstrass elliptic function. If H is the upper half plane andτ ∈ H, then

J(τ) ≡ J(1, τ) = J(ω1, ω2).

The function J(τ) is the j-function modulo a constant multiplicative factor [36,37]. A dynamical
system with a strange attractor and invariant tori [38] initialized with the j-function is illustrated in
Figure 4b.
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Starting from a vertex operator algebra (a very small portion is illustrated in (a)) we made use of the
attractors and the corresponding ordinary differential equations described by [38]. In (b), the j-function
on the attractor torus displays one coordinate initialized with a j-function value.

6. Questions and Conclusions

Starting from a Spinozian global system, shaped in the guise of a multidimensional and
multi-symmetric manifold equipped with a structural order of relationships, we were able to analyse,
through a loss of dimensions dictated by the algebraic features of the Monster Module and its Lie
group, the individual history of the universe. The universe can be thus conceived of as a manifold
at lower dimensions encompassed in higher ones. The Monster Module is a manifold equipped
with absolutely the highest dimensions—that is, a manifold consisting in the highest number of
symmetries. The Monster Moonshine manifold is prior to its modifications. This may mean that the
nature and the flow of events in the universe is a Monster’s self-projection towards less dimensions.
The universe stands for a local symmetry, e.g., modifications of the Monster manifold. The Monster
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Module cannot exist in, and cannot be conceived through, a higher manifold other than itself. Every
manifold in the universe exists either in itself or in some higher manifold else, e.g., the Monster
Module. The knowledge of a lower dimension manifold in the universe depends on and involves the
knowledge of higher dimensions mapping the lower manifold. In the meantime, the Monster Module,
which n-dimensions are untouched, is still there. If different trajectories on the Monster Module give
rise to different local losses of dimensions, this means that countless universes are possible, each one
equipped with different or overlapping symmetries.

We would like to bring to an end with a few unsolved problems.

(a) Where does the Monster take such a huge amount of enthalpy? It takes us in pre-, pre-Big Bang
scenarios. This is the same problem with inflationist models, that do not explain where the
energy of the required false vacuum comes from. A link between the Monster group and the false
vacuum might be speculated.

(b) What is the role of the j-function in the pre Big Bang period? Does it provide energy?
(c) How does the Monstrous Moonshine look like? We could either imagine a timeless, immutable

manifold where just the Monster Group movements take place, or as we did, a dynamical,
time-dependent structure.

(d) Does the curvature of the Monster Module change with the passage of time? This could be a
very useful information, in order to elucidate the hypothesized step from an ancient anti DeSitter
hyperbolic universe to the current, flat one.

(e) Our universe might not arise directly from the Monster, but by one of its subgroups, e.g., the Th
group (Figure 3), which is correlated with the successful superstring 10D theory. Is it possible to
split the Leech lattice in which the Monster group is embedded, in order to achieve the lower
dimensional E8 lattice where the Th group’s movements take place? It is central to remind that
the step from an E8 lattice to the Leech lattice requires ×3 multiplication and peculiar rotations.

(f) The topological step from the vertex operator algebra to the Lie Monster Group requires a
continuous function. Are we in front of a “super” gauge field? In other words, is there a gauge
field that causes the first projection depicted at the top of Figure 3? In a topological framework,
the feature that links the symmetries at a higher level with the single point at a lower level is the
continuous function. If we assess two antipodal points as symmetries, and the single point as
symmetry breaks and local transformations, a gauge field could be required, in order to restore
the (apparently hidden) symmetry.
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