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Abstract: Electricity demand forecasting plays an important role in capacity planning, scheduling,
and the operation of power systems. Reliable and accurate prediction of electricity demands
is therefore vital. In this study, artificial neural networks (ANNSs) trained by different heuristic
algorithms, including Gravitational Search Algorithm (GSA) and Cuckoo Optimization Algorithm
(COA), are utilized to estimate monthly electricity demands. The empirical data used in this study are
the historical data affecting electricity demand, including rainy time, temperature, humidity, wind
speed, etc. The proposed models are applied to Hanoi, Vietnam. Based on the performance indices
calculated, the constructed models show high forecasting performances. The obtained results also
compare with those of several well-known methods. Our study indicates that the ANN-COA model
outperforms the others and provides more accurate forecasting than traditional methods.

Keywords: Cuckoo Optimization Algorithm; Gravitational Search Algorithm; neural networks;
forecasting; monthly electricity demand

1. Introduction

Electric energy plays a fundamental role in business operations all over the world. Our world
runs because electricity makes industries, homes, and services work. Therefore, electricity sources
must be carefully managed and implemented in order to guarantee the efficient use of electricity.
The key to this is to have accurate knowledge of future electricity demands, accurate capacity planning,
scheduling, and operations of the power systems. Hence, reliable electricity demand forecasting is
needed in order to guarantee that production can meet demand. However, it is difficult to forecast
electricity demand because the demand series often contain unpredictable trends, high noise levels,
and exogenous variables. Although demand forecasting is difficult to implement, the relevance to
forecast the electricity demand has been a much-discussed issue in recent years. This has led to the
development of various new tools and methods for forecasting.

Since the accuracy of demand forecasting plays an important role in the success of efficiency
planning, energy analysts need guidelines to select the most appropriate forecasting techniques
in order to obtain accurate forecasts of electricity consumption trends and to schedule generator
planning and maintenance. In general, electricity forecasting demand, accumulated on different
time scales, is categorized into short-term, medium-term and long-term demands. The short-term
demand forecasting carries out a prediction of the load or energy demand several hours or days
ahead. This prediction is very important for the daily operation of facilities. Short-term demand is
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generally affected by daily life habits, weather conditions, and the temperature. On the other hand,
medium-term and long-term demands, which can span periods from a week to a year, are affected
by economic and demographic growth, and climate change. Medium-term forecasting provides a
prediction of electric demand in the following weeks or months and long-term forecasting predicts the
annual power peaks in the following years in order to plan grid extension. Due to the clear interest that
medium-term demand forecasting presents in deregulated power systems, in this study, we therefore
focus on monthly electric demand forecasting.

Electricity demand forecasting is a complicated task since the demand is affected directly or
indirectly by various factors primarily associated with the economy and the climate change. In the
past, straight line extrapolations of historical energy consumption trends were adequate methods.
However, with the emergence of alternative energies and technologies, fluctuating economic inflation,
rapid change in energy prices, industrial development, and global warming issues, the modeling
techniques that capture the effect of factors are increasingly necessary, such as average air pressure,
average temperature, average wind velocity, rainfall, rainy time, average relative humidity, daylight
time, and technological variables. The modelling techniques range from traditional methods, including
autoregressive integrated moving average (ARIMA) and multiple linear regression (MLR) (both relying
on mathematical approaches), to intelligent techniques, such as fuzzy logic and neural networks [1].

In the early development of forecasting approaches, the most commonly used methods were
statistical techniques, such as the trend analysis and extrapolation. It is reasonably easy to apply
these kinds of methods due to their simple calculations. Since the total electricity demand includes
the demand of factories, enterprises, citizens, and the service industry, forecasting electricity usage
requires certain knowledge of past demands in order to take into account the social evolution of future
energy demand. Therefore, as past data is needed to forecast future data, a time series analysis of
energy demand is usually used to predict future energy use. Time series forecasting is a powerful tool
that is widely used to predict time evolution in a number of divergent applications. Different tools,
including ARIMA and MLR, have also been developed in the field of time series analysis.

Recently, artificial intelligence techniques have been found to be more effective than traditional
methods. Among these, artificial neural networks (ANNs) have been widely applied in various
application areas [2—4] as well as in the electricity demand forecasting area [5-11]. ANN is a parallel
computing system that uses a large number of connecting artificial neurons. This approach is similar
to the function of the biological neural networks. After being trained by historical data, ANNs
can be used a prediction tool. Many researchers use ANN to solve electricity demand forecasting
problems because of its speed and accuracy. Additionally, ANN can be easily implemented in
the development of software. When applying the ANN for forecasting [12,13], most researchers
focused on the multi-layer perception (MLP) neural network model. Back-propagation (BP) is the
most commonly used training method for training an MLP network. However, many studies have
pointed out drawbacks of this algorithm, including the tendency to be trapped in local minima [14]
and having a slow convergence [15]. Heuristic algorithms are known for their ability to produce
optimal or near optimal solutions for optimization problems. In recent years, several heuristic
algorithms—including genetic algorithms (GA) [16], particle swarm optimization (PSO) [17], ant
colony optimization (ACO) [18] and differential evolution (DE) [19]—have been proposed for the
purpose of training.

Other than these, two heuristic algorithms, the Gravitational Search Algorithm (GSA),
and Cuckoo Optimization Algorithm (COA), both inspired by the behavior of natural phenomena,
were also developed for solving optimization problems. Through some benchmarking studies,
these algorithms have been proven to be powerful and are considered to outperform other algorithms.
The GSA, introduced by Rashedi [20], is based on the law of gravity and mass interactions.
The comparison of the GSA with other optimization algorithms in some problems shows that the
GSA performs well [20,21]. The COA algorithm was developed by Rajabioun [22]. The comparison
of the COA with standard versions of PSO and GA also shows that the COA has superiority in fast
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convergence and near global optimal achievement [22,23]. Moreover, GSA and COA algorithms
are efficient optimization algorithms in terms of reducing the aforementioned drawbacks of back
propagation. Since these algorithms are relatively new, they have yet to be compared with each other
for many different applications.

The merits of the GSA and COA algorithms and the success of ANNSs in electricity demand
forecasting have encouraged us to use these heuristic algorithms for training ANNSs. In this study,
several models for electricity demand forecasting have been developed and tested to provide monthly
predictions. These models utilize ANNs trained by the three mentioned heuristic algorithms.
The error criteria, such as root mean squared error (RMSE) and mean absolute percentage error
(MAPE), were used as measures to justify the appropriate model.

The rest of this paper is organized into five sections. After the introduction in Section 1,
the literature review is provided in Section 2. The three heuristic algorithms are described in Section 3.
Section 4 is dedicated to the research design. The experimental results are discussed in Section 5.
Finally, Section 6 gives the conclusions.

2. Literature Review

The ANN has been widely used in different applications. This section provides a glimpse into the
literature concerning the use of ANN in electricity demand forecasting. Feilat and Bouzguenda [7]
developed a mid-term load forecasting model based on ANN. The proposed model was applied
to the Al-Dakhiliya franchise area of the Mazoon Electricity Distribution (MZEC) Company, Oman.
The model used monthly load data, temperature, humidity and wind speed from 2006 to 2010 as
inputs. The performance indices and the simulation results showed that the forecasting accuracy was
satisfactory. The obtained results were also compared with those obtained from the linear regression
model. It was found that the ANN-based model outperformed the multiple linear regression method.
Kandananond [5] applied different forecasting methods, including ARIMA, ANN, and MLR to forecast
electricity demand in Thailand. His study used the historical data of the electricity demand in
Thailand from 1986 to 2010. Based on the performance indices, the ANN approach outperformed
the ARIMA and MLR methods. Santana et al. [9] used the MLP network with one hidden layer
to forecast power consumption in Brazil. The algorithms used in the training of the MLP network
were Levenberg—Marquardt and the back propagation. The results showed that the MLP networks
presented exceptional results when studying a mid-term forecast. Azadeh et al. [10] used the MLP
network to forecast electricity consumption. Monthly electricity consumption in Iran for the past
20 years was collected to train and test the network. The conventional regression model was also
applied to the research problem. Through analysis of variance, actual data was compared with
forecasting data obtained from the ANN and conventional regression models. It was shown that
the ANN approach was superior for estimating the total electricity consumption. Azadeh et al. [11]
proposed an artificial neural network (ANN) approach for annual electricity consumption in high
energy consumption industrial sectors. Actual data from high energy consuming (intensive) industries
in Iran from 1979 to 2003 was used. The ANN forecasting values were compared with actual data and
the conventional regression model. The results also indicated that the MLP network can estimate the
annual consumption with less error. Deng [24] presents a model based on the multilayer feed-forward
neural network to forecast the energy demand for China. The model outperformed the linear regression
model in terms of root mean squared error without any over-fitting problem. Hotunluoglu and
Karakaya [25] forecasted Turkey’s energy demand by the use of an artificial neural network. Three
different scenarios were developed. The obtained energy demand forecasts are useful in future energy
planning and policy making process. In [26], the ANN model was tested and compared with other
forecasting methods including simple moving average, linear regression, and multivariate adaptive
regression splines. It was concluded that the ANN model was effective at forecasting peak building
electrical demand in a large government building sixty minutes into the future. Hernandez et al. [27]
presented a two-stage prediction model based on an ANN to forecast short-term load forecasting of the
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following day in a microgrid environment. The obtained mean absolute percentage error showed an
overall improvement of 52%. Ryu et al. [28] proposed deep neural network-based models to predict the
24-h load pattern day-ahead based on weather, date and past electricity consumptions. The obtained
results indicated that the proposed models demonstrated accurate and robust predictions compared to
other forecasting models, e.g., mean absolute percentage error and relative root mean square error are
reduced by 17% and 22% compared to the shallow neural network model and 9% and 29% compared
to the double seasonal Holt-Winters model.

The abovementioned studies revealed that ANN-based models have been successfully used in
the area of power electricity forecasting. However, in order to increase the reliability of forecasting
results of the ANN-based model, attention is needed to focus on optimizing the parameters of the
model. In other words, training phase plays an important role in developing the ANN-based models.
In the literature we examined, the BP algorithm, a gradient-based algorithm, has been widely used
in the training phase. However, the BP algorithm has some drawbacks. The two recent algorithms,
including GSA and COA, are efficient algorithms in terms of reducing the drawbacks of the BP.

Taking into account the available literature, there is still room for improving the ANN-based
models for electricity demand forecasting. In this paper, we propose a multilayer feed-forward
network improved by the GSA and COA algorithms for forecasting electricity demand. The scientific
contributions made by the current research are the new approaches applied herein. Although
the models are developed for a specific application, they can be used as basic guides for other
application areas.

3. Heuristic Algorithms

In this section, the heuristic algorithms, including GSA and COA used in the training phase
are described.

3.1. Gravitational Search Algorithm

The GSA, proposed by Rashedi et al. [20], is based on the physical law of gravity and the law of
motion. In the universe, every particle attracts every other particle with a gravitational force that is
directly proportional to the product of their masses, and is inversely proportional to the square of the
distance between them. The GSA can be considered as a system of agents, called masses, that obey the
Newtonian laws of gravitation and masses. All masses attract each other through the gravity forces
between them. A heavier mass has a bigger force.

Consider a system with N masses in which the position of the ith mass is defined as follows:

Xi= (', o x, o x) fori=1,2,.., N, 1)

where x;? is the position of the ith agent in the dth dimension and 7 presents the dimension of search
space. At a specific time, t, the force acting on mass i from mass j is defined as follows:

Myi(t) x My;(t)

Fi{j'(t) =G(1) Rij(t) Te

d d
(xf (£) = xi' (1)), 2
where M,; denotes the active gravitational mass of agent j; M,; is the passive gravitational mass of
agent i; G(t) represents the gravitational constant at time #; € is a small constant; and R;(t) is the
Euclidian distance between agents i and ;.
The total force acting on agent i in dimension d is as follows:

N
2 rand; Fd 3)
1:1 J#
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where rand; is a random number in [0, 1]. According to the law of motion, the acceleration of agent i at
time ¢ in the dth dimension, a;4(t), is calculated as follows:

(4)

where M;;(t) is the mass of object i. The next velocity of an agent is a fraction of its current velocity
added to its acceleration. Therefore, the next position and the next velocity can be calculated as:

oAt +1) = rand; x v(t) + a(¥), (5)

At +1) = x4 1) + 0+ 1). (6)

The gravitational constant, G, is generated at the beginning and is reduced with time to control
the search accuracy. It is a function of the initial value (Gg) and time (#):

G(t) = G(Go, ). @)

Gravitational and inertia masses are calculated by the fitness value. Fitness function is used in
each iteration of the algorithm to evaluate the quality of all the proposed solutions to the problem in the
current population. The fitness function evaluates how good a single solution in a population is, e.g.,
suppose that if we find for what x-value a function has its y-minimum, the fitness function for a unit
might be the negative y-value (the smaller the value, the higher the fitness function). In general, the
fitness value is the objective value of the optimization problem that we want to minimize or maximize.
A heavier mass is a more efficient agent. This means that better agents have higher attractions and
move more slowly. The gravitational and inertial masses are updated by the following equations:

_ fiti(t) — worst(t)

mi(t) = best(t) — worst(t)’ ®
M) = -2 ©
X om(t)
j=1

where fit;(t) denotes the fitness value of agent i at time f, and worst(t) and best(t) represents the weakest
and strongest agents in the population, respectively.
For a minimization problem, worst(t) and best(t) are as follows:

best(t) = je&i?}\]}fitj(t), (10)
worst(t) = jegl,?.),(N}fitj(t)' (11)
For a maximization problem,
best(t) = jeg’?i(N}fit]-(t), (12)
worst(t) = jGETN}fitj(t). (13)

The pseudo code of the GSA is given in Figure 1.
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begin
Objective function fix), x= (xp,...,xz)7
Generate an initial population of N agents X; (i=1,2,...,.N)
while (t <MaxGeneration) or (stop criterion)
Evaluate the fitness for each agent.
fori=1toNdo
Update the G(i), best(t), worst(t) and Myt) of the population.
end for
Calculate the total force in different directions.
Calculate acceleration and velocity.
Update agents’ position.
end while
Return the best solution;
end

Figure 1. Pseudo code of the Gravitational Search Algorithm (GSA).

3.2. Cuckoo Optimization Algorithm

Rajabioun [22] developed an algorithm based on the cuckoo’s lifestyle, named the Cuckoo
Optimization Algorithm. The lifestyle of the cuckoo species and their characteristics were the basic
motivations for the development of this evolutionary optimization algorithm. The cuckoo groups
are formed in different areas that are called societies. The cuckoo population in each society consists
of two types: mature cuckoos and eggs. The effort to survive among cuckoos constitutes the basis
of COA. During the survival competition, some of the cuckoos or their eggs are detected and killed.
Then, the survived cuckoo societies try to immigrate to a better environment and start reproducing
and laying eggs. Cuckoos’ survival effort hopefully may converge to a place in which there is only one
cuckoo society, all having the same survival rates. Therefore, the place in which more eggs survive is
the objective that COA wants to optimize. The fast convergence and global optima achievement of
this algorithm have been proven through some benchmark problems. The pseudo code of the COA is
presented in Figure 2.

Begin
Objective function f{x), X=(X1,X2, ..., XNvar) T
Generate a candidate population of N,,, habitats x; (i=1,2, ...,Nyyp)
while (t <MaxGeneration) or (stop criterion);
Dedicate some eggs to each cuckoo
Define Egg Laying Radius (ELR) for each cuckoo
Lay eggs in different nests (inside their corresponding ELR)
Some of eggs (p% of all eggs) are detected and killed
if (population >= cuckoos’ maximum number) then
Kill cuckoos in the worst area
end if
Check Survival of eggs in nests (get profit values)
Let eggs grow
Find nests with best survival rate
Determine cuckoo societies
Move all cuckoos toward good environment
end while
return the best place for laying (the region with the highest profit value)
end

Figure 2. Pseudo code of the Cuckoo Optimization Algorithm (COA).
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In COA, cuckoos lay eggs within a maximum distance from their habitats. This range is called the
Egg Laying Radius (ELR). In the algorithm, ELR is defined as:

Number of current cuckoo's eggs

ELR =
“x Total number of eggs

X (varp; — varyyy), (14)

where « is an integer used to handle the maximum value of ELR, and vary; and var;y, are the upper
limit and lower limit of variables in an optimization problem. The society with the best profit value
(the highest number of survival eggs) is then selected as the goal point (best habitat) to which other
cuckoos should immigrate. In order to recognize which cuckoo belongs to which group, cuckoos are
grouped by the K-means clustering method. When moving toward the goal point, each cuckoo only
flies A% of the maximum distance and has a deviation of ¢ radians. The parameters for each cuckoo
are defined as follows:
A ~U(0,1),

4) NU(—(,U, (U),

where A ~U(0,1) means that A is a random number (uniformly distributed) between 0 and 1. w is a
parameter to constrain the deviation from the goal habitat. A w of 7t/6 is supposed to be enough for
good convergence [22].

4. Research Design

The following subjects were considered in developing theforecasting models.

4.1. Historical Data

Due to divergent climate characteristics in northern Vietnam, demand for electricity in Hanoi
varies between the summer period (May—August) and the winter period. The demand increases
to its full extent during summer and decreases significantly during the rest of the year. Figure 3
shows the monthly demand profile of the Hanoi over the years 2009-2013. The significant increase in
electricity demand during the summer period is influenced by the need for operating air conditioners
to overcome the high temperatures.

Monthly Peak Load (MWh)

1 1 ]
2010/12 2011/12 2012/12 2013/12 2014/12
Time (Month)

Figure 3. The load time series from January 2009 to December 2013.

Electricity consumption (MWh) is influenced by several related factors (as shown in Table 1),
including month index, average air pressure, average temperature, average wind velocity, rainfall,
rainy time, average relative humidity, and daylight time. The historical data regarding these factors
were collected from January 2003 to December 2013; in other words, there are 132 monthly data
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samples. These data were used to determine a forecasting model for future electricity demand.
The data used in this study were obtained from the Bureau of Statistics, the National
Hydro-Meteorological Service, and the Hanoi Power Company. The available data were divided
into two groups. The first group is called the training dataset (84 samples) and includes the data over
years 2003-2009 (seven years). The second group is called the testing dataset (48 samples) and includes
the data over years 2010-2013 (four years). The training dataset served in model building, while the
testing dataset was used for the validation of the developed models.

Table 1. Factors used for electricity forecasting.

Factor
X1 Month index
X2 Average air pressure
X3 Average temperature
X4 Average wind velocity
X5 Rainfall
X6 Rainy time
Xy Average relative humidity
xg Daylight time

4.2. Structure of the Neural Network

A neural network, in which activations spread only in a forward direction from the input layer
through one or more hidden layers to the output layer, is known as a multilayer feed-forward network.
For a given set of data, a multi-layer feed-forward network can provide a good nonlinear relationship.
Studies have shown that a feed-forward network, even with only one hidden layer, can approximate
any continuous function [29]. Therefore, a feed-forward network is an attractive approach [30].
Figure 4 shows an example of a feed-forward network with three layers. In Figure 5, R, N, and S
are the numbers of input, hidden neurons, and output, respectively; iw and hw are the input and
hidden weights matrices, respectively; ib and ob are the bias vectors of the hidden and output layers,
respectively; x is the input vector of the network; ho is the output vector of the hidden layer; and y
is the output vector of the network. The neural network in Figure 5 can be expressed through the
following equations:

R
ho; = f(z iwi,]ij + hbi), fori =1,..,N, (15)
j=1
N
yi = f(z hw; xhoy + ob;), fori=1,..,5 (16)
k=1

where f is an activation function.

When implementing a neural network, it is necessary to determine the structure in terms of the
number of layers and the number of neurons in the layers. The larger the number of hidden layers and
nodes, the more complex the network is. A network with a structure that is more complicated than
necessary may over fit the training data [31]. This means that it may perform well on the data that is
included in the training dataset but may perform poorly on the data in a testing dataset.

The structure of an ANN is dictated by the choice of the numbers in the input, hidden, and output
layers. Each data set has its own particular structure, and therefore determines the specific ANN
structure. The number of neurons comprised in the input layer is equal to the number of features
(input variables) in the data. The number of neurons in the output layer is equal to the number of
output variables. In this study, the data set includes eight input variables and one output variable;
hence, the numbers of neurons in the input and output layers are eight and one, respectively. The
three layer feed-forward neural network is utilized in this work since it can be used to approximate
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any continuous function [32,33]. Regarding the number of hidden neurons, the choice of a proper
size of hidden layer has often been studied. However, a rigorous generalized method has not been
found [4,34]. Hence, the trial-and-error method is the most commonly used method for estimating the
optimum number of neurons in the hidden layer. In this method, various network architectures are
tested in order to find the optimum number of hidden neurons [2,3]. In our study, the choice was also
made through extensive simulation with different choices for the number of hidden nodes. For each
choice, we obtained the performance of the concerned neural networks, and the number of hidden
nodes providing the best performance was used for presenting results. The activation function from
input to hidden is sigmoid. With no loss of generality, a commonly used form, f(n) =2/(1 +e~2") — 1,
is utilized, while a linear function is used from the hidden layer to the output layer.

Input layer Hidden layer Output layer

Figure 4. A feed-forward network with three layers.

4.3. Training Neural Networks by Heuristic Algorithms

There are three ways of encoding and representing the weights and biases of ANN for every
solution in evolutionary algorithms [15]. They are the vector, matrix, and binary encoding methods.
In this study, we utilized the vector encoding method and the objective function is to minimize SSE.
The two mentioned heuristic algorithms were utilized to search near optimal weights and biases
of neural networks. In order to make a comprehensive comparison, the differential evolution (DE)
algorithm was also used to train the neural network. We refer to these models hereafter as ANN-GSA,
ANN-COA, and ANN-DE. The amount of error is determined by the squared difference between the
target output and actual output. In the implementation of the heuristic algorithms to train a neural
network, all training parameters, 8 = {iw, hw, hb, ob}, are converted into a single vector of real numbers,
as shown in Figure 5.

B

=== ‘X(N><R+S><N+N+S) ‘

Finput weights %hidden Weightsﬁ— hidden biases—+7 output biase54>{

Figure 5. The vector of training parameters.

--- ‘X(NxR)‘X(NxRﬂ) X(N>R+S><N)‘X(N>Q+S><t\l+1) --- ‘X(N><R+S><N+N) X(N>R+S>N+N+1)

Suppose that there are m input-target sets, the target, t;,, is the desired output for the given
input x, fork=1,2,..., mandp=1,2,..,5; Yip and tyy are forecasting and actual values of pth
output unit for sample k. Thus, network variables arranged as iw, hw, hb, and ob are to be changed to



Information 2017, 8, 31 10 of 15

minimize an error function, E, such as the SSE (Sum of Squared Errors) between network outputs and

desired targets:
S

m
E= ) Eywhere Ex = Y (tp — vxp)° (17)
k=1 p=1

Figure 6 describes how heuristic algorithms are being used to train ANN.

Initialize weights and biases
with random values

]

Initialize objective function

>

Using the heuristic algorithm to
minimize sum of squared errors
of the neural network

]

Update values

|

k=k+1

k <= iteration
number?

Figure 6. Using heuristic algorithm to train neural networks.

4.4. Examining the Performance

To compare the performances of different forecasting models, several criteria are used.
These criteria are applied to the trained neural network to determine how well the network works.
These criteria are used to compare forecasting values and actual values. They are as follows:

Mean absolute percentage error (MAPE): this index indicates an average of the absolute percentage
errors; the lower the MAPE, the better the model is:

1 m
MAPE = =Y
=

fe — Yk

— (18)

where t is the actual (desired) value, y; is the forecasting value produced by the model, and m is the
total number of observations.
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Root mean squared error (RMSE): this index estimates the residual between the actual value and
desired value. A model has better performance if it has a smaller RMSE. An RMSE equal to zero

represents a perfect fit:
1 m
RMSE = [ =Y (t — i)™ (19)
=i

Mean absolute error (MAE): this index indicates how predicted values are close to the
actual values:

1 m
MAE = — ) [t — vl (20)
m3

Correlation coefficient (R): this criterion reveals the strength of relationships between actual values
and forecasting values. The correlation coefficient has a range from 0 to 1, and a model with a higher R
means it has better performance:

L (6 1) (v~ )
R=_*1 , 1)

\/g (t — 1) 3 vk — )
k=1 k=1

- m i
where t = %k; trandy = %kgl Yk are the average values of t; and yy, respectively.

5. Experimental Results and Discussion

The four models were coded and implemented in the Matlab environment (Matlab R2014a, the
MathWorks Inc, Natick, MA, USA). As discussed earlier, the one-hidden layer feed-forward neural
network architecture was used. The optimum number of neurons in the hidden layer was determined
by varying their number, starting with a minimum of one, and then increasing one neuron each time.
Hence, various network architectures were tested to achieve the optimum number of hidden neurons.
The best performing ANN architecture for the dataset used was then identified, which provided
the results with the smallest error values during the training. The best performing architectures for
standard ANN, ANN-GSA, ANN-COA, and ANN-DE were found to be 8-6-1, 8-7-1, 8-5-1, and 8-9-1,
respectively. A five-fold cross validation method was used to avoid an over-fitting problem. Different
parameters of training algorithms were tried to obtain the best performance. For standard ANN, the
Back-Propagation (BP) algorithm was used to train the neural networks; the learning and momentum
rates were 0.4 and 0.3. For ANN-GSA, the parameters for the GSA algorithm were as follows: the
number of initial population was 20 and the gravitational constant in Equation (7) was determined
by the function G(t) = Gg exp(—a x t/T), where Gy = 100, « = 20, and T was the total number of
iterations. For ANN-COA, the parameters were set as follows: the number of initial population was
20 and p% was 10%. For ANN-DE, the crossover rate Cr and the scale factor F were set to 0.9 and
0.85, respectively.

In this study, the number of iterations was chosen as the stopping criterion. Table 2 gives the
performance statistics on the test dataset for the ANN, ANN-GSA, ANN-COA, and ANN-DE at
the 500th iteration and 1000th iteration. As can be seen from Table 2, the ANN-COA has smaller
MAPE, RMSE, and MAE values as well as a bigger R value than those of the ANN, ANN-GSA and
ANN-DE. This means that the ANN-COA had a better overall performance in forecasting. At the
1000th iteration, the performance statistics MAPE, RMSE, MAE, and R obtained by the ANN-COA
model were calculated as 0.0577, 59,073, 49,238, and 0.9287, respectively. These results were highly
correlated. At the 500th iteration, the ANN-GSA had a better performance than the ANN-DE. However,
at the 1000th iteration, the ANN-CS outperformed the ANN-GSA. Figure 8 presents the time series
of actual and forecasting values obtained using the three models. The trends in the plots of the time
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series suggest that the ANN-based models are appropriate for electricity demand forecasting. It can
also be concluded that the standard ANN model had the worst performance due to the fact that the BP
algorithm (a gradient-based algorithm) has the tendency to become trapped in local minima. Therefore,
hereafter, the performance statistics of ANN are excluded in Figures 7 and 8.

Table 2. Performance statistics of the Artificial Neural Network, Artificial Neural Network
trained by Gravitational Search Algorithm (ANN-GSA), Artificial Neural Network trained by
Cuckoo Optimization Algorithm (ANN-COA), and Artificial Neural Network trained by Differential
Evolution (ANN-DE).

No. of Iterations Model MAPE RMSE MAE R
ANN 0.1472 137,208 121,152 0.7206
500 ANN-GSA 0.0848 86,080 73,540 0.8415
ANN-COA 0.0843 85,118 73,108 0.8709
ANN-DE 0.1462 136,819 119,261 0.7608
ANN 0.0826 78,652 120,242 0.7932
1000 ANN-GSA 0.0764 75,148 66,267 0.8779
ANN-COA 0.0577 59,073 49,238 0.9287
ANN-DE 0.0671 68,325 56,409 0.9332
ANN 0.0803 75,524 93,142 0.7988
1500 ANN-GSA 0.0759 74,218 63,733 0.8842
ANN-COA 0.0578 57,731 49,100 0.9372
ANN-DE 0.0633 65,529 56,937 0.9382
ANN 0.0796 73,482 76,249 0.8020
2000 ANN-GSA 0.0731 72,980 64,267 0.8892
ANN-COA 0.0478 53,308 48,238 0.9386
ANN-DE 0.0582 64,372 55,021 0.8921

—+— Actual value

"""" Forecasting value by ANN-GSA
12 |—--| — ©— - Forecasting value by ANN-COA |- oo ?"1 ————————————————————————————————————— B
—— Forecasting value by ANN-DE

Monthly Peak Load (MWh)

201012 201112 201212 201312
Time (Month)

Figure 7. The forecasting performance of Artificial Neural Network trained by Gravitational Search
Algorithm (ANN-GSA), Artificial Neural Network trained by Cuckoo Optimization Algorithm
(ANN-COA), and Artificial Neural Network trained by Differential Evolution (ANN-DE).

Figure 8 depicts the RMSE values obtained in the training phase for the three models
in 1000 iterations. At the 2000th iteration, the RMSE values of the ANN, ANN-GSA, ANN-COA,
and ANN-DE were 73,482, 72,980, 53,308, and 64,358, respectively. The ANN-COA and ANN-GSA
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had a faster convergence than the ANN-DE. The ANN-GSA was trapped in local minima of the
parameter space; therefore, it yielded poor performance. Among the three models, the ANN-COA has
the capability of avoiding premature convergence and exploring the whole search space.

In order to evaluate the performance of the ANN-based models, the ARIMA and MLR methods
were also applied to the problem. The details of these methods can be found in the relevant literature,
which is beyond the scope of this work. After a few testing attempts, the ARIMA model was selected
as ARIMA (2,1,1). These models were also implemented in Matlab R2014a. The results obtained by
these models were recorded and are shown in Table 3. As can be seen from Table 3, the ARIMA had
a better performance than the MLR. However, when compared with the results from Table 2, the
ANN-based models surpassed the ARIMA and MLR. Based on the results presented in this section,
it can be inferred that the ANN-based models perform better than traditional forecasting methods
(ARIMA and MLR) and the ANN-COA model is clearly superior to its counterparts. Regarding the
complexity of the models, the ARIMA model requires less computational time than the other models.
ANN-based models are more complex, involving a network of processing elements.
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. N ANN-COA |}
@ @ : : .......... AMNN-DE :
= = : : : :
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Figure 8. Root mean squared error (RMSE) values in 2000 iterations.

Table 3. Performance statistics of the Autoregressive Integrated Moving Average (ARIMA) and
Multiple Linear Regression (MLR).

Method MAPE RMSE MAE R
MLR 0.1662 170,540 145,910 0.6031
Aé{ IlNll)A 0.1603 152,070 136,260 0.7043

6. Conclusions

Understanding electricity demand is a critical factor that is required for ensuring future stability
and security. Executives and government authorities need this information for decision making in
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energy markets. In this study, a new approach based on ANNs and heuristic algorithms for electricity
demand forecasting is proposed. The proposed approach and other well known forecasting methods,
ARIMA and MLR, were used to forecast the electricity demand in Hanoi, Vietnam based on historical
data from 2003 to 2013. The results indicate that the ANN-COA is the best model to fit the historical
data. This study using the neural networks as a modelling tool for forecasting electricity demand has
shown the benefits of the application of neural networks. Therefore, this work has made a contribution
to the development of forecasting methods. Further studies may include different segments of
electricity consumption, including residential, industrial, agricultural, government commerce, and
city services. Province based forecasting is also essential for distribution companies. Technical loss
should be taken into account when analyzing electricity demand because this parameter may have a
tremendous impact.
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