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Abstract: Hepatic steatosis is the accumulation of fat in the hepatic cells and the liver. Triglycerides
and other kinds of molecules are included in the lipids. When there is some defect in the process,
hepatic steatosis arise, during which the free fatty acids are taken by the liver and exuded as
lipoproteins. Alcohol is the main cause of steatosis when excessive amounts are consumed for a long
period of time. In many cases, steatosis can lead to inflammation that is mentioned as steatohepatitis
or non-alcoholic steatohepatitis (NASH), which can later lead to fibrosis and finally cirrhosis. For
automated detection and quantification of hepatic steatosis, a novel two-stage methodology is
developed in this study. Initially, the image is processed in order to become more suitable for the
detection of fat regions and steatosis quantification. In the second stage, initial candidate image
regions are detected, and then they are either validated or discarded based on a series of criteria.
The methodology is based on liver biopsy image analysis, and has been tested using 40 liver biopsy
images obtained from patients who suffer from hepatitis C. The obtained results indicate that the
proposed methodology can accurately assess liver steatosis.
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1. Introduction

Steatosis or fatty liver is the term that describes the abnormal buildup fat in the liver. While the
existence of fat in the liver is normal, if it is more than 10% of the liver weight then it constitutes a
hazardous condition. Steatosis may be the result of a short-term or long-term condition, which by itself
is not harmful, but may lead to different kinds of problems such as liver cirrhosis [1]. Fatty liver is a
reversible condition that can be resolved with changed behaviors. Triglycerides are mostly included in
“droplets” of fat in fatty liver [2]. Steatosis often has no symptoms and it does not hurt and may not
be noticed for a long period of time, however, in severe cases, the liver size grows up to three times,
thus leading to a very harmful condition.

1.1. Types of Fatty Liver

Fatty liver is categorized into four types: Nonalcoholic Fatty Liver (NAFL), Alcoholic Fatty Liver
(AFL), Nonalcoholic Steatohepatitis (NASH), and Acute Fatty Liver of Pregnancy. NAFL is developed
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when fat accumulates in the liver and this is not related to alcohol. NAFL causes a buildup in the
liver tissue and it is strongly associated with metabolic syndromes. When more than 10 percent of the
liver is fat, NAFL is diagnosed [3]. AFL is the earliest stage of alcohol-related liver disease. Because
of the alcohol related damage in the liver, it cannot break down fat. Although AFL may disappear if
the patient abstains from alcohol, cirrhosis may also develop if alcohol use continues [3]. In NASH,
swelling of the liver is induced when enough fat is accumulated. If left untreated, NASH can impair
liver function and can cause liver failure and permanent scaring of the liver, while appetite loss,
nausea, vomiting, abdominal pain, and yellowing of the skin (jaundice) are some of its symptoms [3].
Acute Fatty Liver of Pregnancy is a rare complication of pregnancy and can be life-threatening.
Usually appearing in the third trimester, the symptoms may include pain in the upper-right abdomen,
persistent nausea and vomiting, jaundice, and general malaise. Most women improve after delivery
and have no lasting effects [3].

1.2. Causes of Liver Steatosis

Since regular alcohol consumption causes fat deposition in the liver, alcoholism is the most
common reason for steatosis. Hepatic steatosis is developed by people who consume large amount of
alcohol for a long period of time [4].

Some other reasons that can result in liver steatosis are:

(1) Drugs. Cortisone, synthetic estrogens, contraceptives, amiodarone (Angoron), tamoxifen,
and tetracyclines when consumed for a long time may cause hepatic steatosis [5].

(2) Diabetes. Chances for fat deposition in the liver increases in cases where diabetes remains
unregulated [5].

(3) Obesity. Liver steatosis is caused by central obesity characterized by increased fat deposition in
the abdomen [5].

(4) Sudden weight loss. Crash diets leading to rapid weight loss can also cause fat deposition in
the liver.

(5) Rare causes. A series of diseases such as hepatitis C, Crohn’s disease, ulcerative colitis, Wilson’s
disease and avitalipoproteinaimia are also considered rare causes for hepatic steatosis.

1.3. Diagnosis and Identification of Steatosis

Ultrasound (US), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and biopsy
are imaging techniques which are used for the diagnosis of hepatic steatosis [5]. However, a liver
biopsy examination is required for the determination of the severity of steatosis in the liver tissue [6].
Liver biopsies have some very important advantages over imaging methods since they provide high
sensitivity in steatosis diagnosis and severity assessment. The disadvantage of a biopsy is that it
is an invasive method; obtaining biopsy material for examination maximizes the performance of
diagnosis [7] since non-invasive methods cannot estimate the degree of liver disease with certainty [8].

The steatosis on biopsy images can be identified by the shape and size of fat accumulation points,
since those areas are expanded in circular shapes. In Figure 1, fat droplets are illustrated in the small
enlarged area (blue circles).
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Figure 1. Liver biopsy image and annotated fat regions. 
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Figure 1. Liver biopsy image and annotated fat regions.

1.4. Related Work

According to the literature, recent studies for the assessment of steatosis have been presented
regarding quantitative staging, diagnosis, and treatment monitoring. Since Fatty Liver Diseases are
currently the focal point of liver diseases, such studies have significantly increased. According to
the employed technology, the image analysis methods for steatosis assessment can be categorized
as (i) Histological/Biopsy; (ii) CT [9,10]; (iii) US [11,12]; and (iv) MRI analysis [2,13]. Reasonably,
advantages and disadvantages of these methods can be also listed according to the technology used.
For example, although a CT-based method is non-invasive, ionizing radiation is required. An extensive
review has been recently presented by Goceri et al. [14] comparing studies from all categories.

It is obvious from the above comparative study that biopsy image analysis has been used less
than other approaches. Early methods aim to correlate pathologist assessment for the steatosis staging
with quantitative results of digital image analysis. Such an approach [15–17] either uses morphometric
analysis, without providing imaging details, or employs software packages such as Image Pro Plus [18]
for simple thresholding application. Classical image processing techniques, such as morphology
operations and algorithms, have been also used. Liquori et al. [19] presented an automated method
based on morphology, where fat regions are recognized according to color uniformity and circular
shape. The procedure was tested in liver biopsy images obtained from rats, and the results are not
numerical. Kong et al. [2] presented a watershed-based image analysis method in order to correlate the
results with MRI lipid analysis. More sophisticated methods have been recently presented based on
machine learning. The earliest one is presented by Roullier et al. [20], where modifications of the Fuzzy
C-Means Algorithm was used to cluster the pixels of HSV (Hue, Saturation, Value) saturation images.
Unsupervised clustering was also used by Nativ et al. [21], where features of the detected regions were
extracted from the rules of Decision Trees. Sciarabba et al. [22] performed a multi-step procedure by
using a clustering technique and a two-levels thresholding for shape parameters to correctly distinguish
fat droplets from other not stained objects. Furthermore, a classification approach [23] which directly
classifies all the white regions in liver tissue, has been proposed. The methodology is based on feature
extraction from image regions and several supervised machine learning classifiers. Finally, a recently
presented work [24] explores the spatial characteristics of fat globules using morphological filtering
and sparse linear models.

2. Description of Methodology

The proposed methodology is developed in two stages. Initially, in the first stage, several image
preprocessing steps are used to generate the image in which the fat detection and evaluation is made.
In the second stage, some candidate image regions are tracked and then an initial check is carried out,
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based on the eccentricity of the region, to decide if a candidate region will be discarded (not fat) or
will proceed to the next step. The candidate fat regions which are not rejected through the first stage,
are then assessed further based on their shape (roundness). This feature is calculated based on the
area and the perimeter of the region and expresses the region’s circularity (if the value is 1, then the
region is a circle). Regions meeting the roundness criterion are categorized as fat. The second stage
of the methodology is threshold-based and lies inside an iterative procedure; in each iteration, the
threshold becomes stricter, thus, recognizing less fat regions, while the recursive procedure goes on
until all candidate regions in the image are checked and classified as fat or not-fat (rejected). In Figure 2,
a flowchart of the proposed methodology is presented.
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Figure 2. Flowchart of the proposed methodology.

2.1. Image Preprocessing

The first stage of the methodology is an image preprocessing stage, in which the initial liver
biopsy image is processed using a number of image processing steps:
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i Image magnification. The methodology is designed to process low-resolution images. Thus,
in the first step of the preprocessing stage the image is enlarged by 2×, to make more visible the
joined regions. Bicubic interpolation is employed to calculate the additional pixels. A weighted
average of pixels in the nearest 4-by-4 neighborhood is the new value of each pixel.

ii Convert to grayscale. The image is converted from red, green, blue (RGB) to grayscale, using a
weighted sum of R, G and B:

I_grayscale = 0.2989R + 0.5870G + 0.1140B (1)

where I_grayscale is the grayscale image and R, G, and B are the intensity values of each RGB
channel, respectively [25].

iii Histogram equalization. Histogram normalization is used to adjust the brightness of the image.
iv Edge sharpening. This step is done by using the unsharp masking method which returns an

upgraded version of the grayscale image, where the edges and features have been sharpened.
v Convert to binary. Finally, the image is converted to binary, using histogram thresholding.

The threshold was defined based on a trial-and-error approach, and it was set to 200.

The image processing steps of the first stage of the methodology are illustrated in Figure 3.
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The steps of the preprocessing stage are illustrated in Figure 3. In the binary image, all white
regions are recognized following a three steps algorithm: (i) search for the next unlabeled pixel;
(ii) use a flood-fill algorithm to label all the pixels in the connected component;
and (iii) repeat steps 1 and 2 until all the pixels are labelled. Based of the above, each connected region
is labeled with a different label. Then, regions are filtered according to their size and all very small
and extremely large regions are rejected to avoid false positive points. This is because very small
regions (<10 pixels) may appear because of poor resolution of the image, while extremely large regions
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(>1000 pixels) are related to other types of areas such as central veins, portal veins and arteries,
sinusoids, and bile ducts.

2.2. Second Stage

The second stage of the methodology consists of an iterative procedure. Initially, a morphological
process is applied to all regions. The morphological opening performs an erosion operation followed
by a dilation operation using a disk structuring element with a starting size of 2, and it increases in
each iteration to separate the fat accumulation regions that are joined.

The eccentricity of each detected region in the image is calculated as:

eccentricity =

√
1−

(
b
c

)2
, (2)

where c is the half length of the major axis and b is the half length of the secondary axis. Eccentricity of
a region shows where the center of the region is, and its values range from 0 to 1, indicating whether
the region’s shape is circular or linear; if this value is 1, then the shape of the region is a straight line,
while if it is 0 then the shape of the region is a circle. The first test was chosen to be more relaxed so
we set the value of the threshold to 0.8. If the eccentricity of the point is greater than 0.8 then it is
discarded, otherwise it goes to the next stricter control.

The roundness of each detected region in the image is calculated as:

roundness = 4π
a
p

(3)

where, a and p are the area and perimeter of the region, respectively. The roundness determines if the
shape of the region resembles a circle; if the value is 1, then the shape is a circle. The initial threshold
for roundness is set to 0.6 and increases with each iteration until it reaches 0.9.
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At the end of each iteration, an individual result image is generated, which includes all regions
identified as fat in this iteration. To be sure that the regions are identified only once, all regions
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evaluated in each iteration are subtracted from the image (either classified as fat or rejected). If there
are no other regions to evaluate, then the iterative procedure terminates. The final result image with all
fat regions is generated after the end of the iterative procedure by merging all individual result images
generated at each iterative procedure. An example of the iterative procedure is illustrated in Figure 4.
In the first figure of each iterative procedure are the regions that meet the eccentricity criterion, in the
second figure are the regions meeting the roundness criterion and in the third figure are the regions
that are characterized as fat accumulation points.

3. Results

Data Set

Forty biopsy images where used for the validation of the proposed methodology. All samples
were from patients with hepatitis C, and twenty images were selected from patients who also presented
with steatosis while the remaining twenty were from patients without steatosis. The images were
obtained in the University Hospital of Patras (Greece). Biopsies were digitized using a Nikon Eclipse
50i microscope with a DS-Fi2 high-definition color camera, at 2× magnification. All images have been
characterized due to Ishak HAI (Histology Activity Index) while the fat regions in each image have
been annotated by expert pathanatomists.

Using the experts’ annotations and the outcome of the methodology, all regions in the image were
divided into the following categories: (1) True Positive (TP), being the regions categorized as fat and
detected as fat from the proposed methodology; (2) False Positive (FP), being non-fat areas classified as
fat; and (3) False Negative (FN), being fat annotated regions that were not recognized as fat from the
methodology. Based on these categories, Classification Accuracy, Sensitivity, and Positive Predictive
Value (PPV) for the detected fat regions were calculated:

Classification Accuracy =
TP

TP + FP + FN
, (4)

Sensitivity =
TP

TP + FN
, (5)

PPV =
TP

TP + FP
. (6)

All Classification Accuracy, Sensitivity, and PPV results for the region detection are presented in
Table 1. Results are only for the images from patients with steatosis.

Beside the region-based results, pixel-based results were also calculated. Annotated Steatosis is
the real percentage of fat that exists in liver:

Annotated Steatosis =
total pixels in fat annotated regions

N
, (7)

with N being the total number of pixels in the liver tissue area, while Calculated Steatosis is the
estimated fat percentage:

Calculated Steatosis =
total pixels in fat detected regions

N
. (8)

Also, the absolute error, which is the difference between the two percentages, is calculated as:

Absolute Error = |Annotated Steatosis−Calculated Steatosis|. (9)

The obtained results for Annotated Steatosis, Calculated Steatosis, and Absolute Error are
presented in Table 2 (for all images in the dataset). For the Absolute Error, the mean value (for all
samples) is µ = 1.07 and the standard deviation is σ = 1.29. Furthermore, the Concordance Correlation
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Coefficient (CCC) was used to check the agreement between the steatosis percentage provided by
the experts and the calculated value resulting from the proposed methodology [26]. Values for CCC
range in [−1, 1], with 1 corresponding to perfect agreement, −1 to perfect disagreement, and 0 to no
agreement. The CCC calculated for the proposed methodology results is 0.87.

Table 1. Accuracy, Sensitivity, and Positive Predictive Value (PPV) results for the fat region detection.

# Accuracy (%) Sensitivity (%) PPV (%) # Accuracy (%) Sensitivity (%) PPV (%)

1 93.05 96.56 96.23 11 88.11 88.11 100
2 92.97 94.44 98.35 12 94 94 100
3 93.18 93.18 100 13 91.89 91.89 100
4 86.22 89.05 96.44 14 92.97 92.97 100
5 97.78 97.78 100 15 97.11 97.11 100
6 93.44 100 93.44 16 94.70 98.42 96.15
7 90.41 90.41 100 17 97.62 97.61 100
8 79.35 86.90 90.12 18 98.75 98.75 100
9 93.18 95.35 97.62 19 86.57 100 86.56

10 91.84 91.84 100 20 95.45 100 95.45

Table 2. Annotated and Calculated Steatosis (%), and Absolute Error (%).

# Annotated
Steatosis (%)

Calculated
Steatosis (%)

Absolute
Error % # Annotated

Steatosis (%)
Calculated

Steatosis (%)
Absolute
Error %

1 4.99 4.79 0.20 21 0 1.23 1.23
2 7.84 6.68 1.16 22 0 0.67 0.67
3 9.48 8.65 0.83 23 0 0.21 0.21
4 10.20 6.91 3.29 24 0 1.51 1.51
5 5.03 4.25 0.78 25 0 0.11 0.11
6 1.25 1.36 0.11 26 0 1.90 1.90
7 2.34 1.85 0.49 27 0 0.22 0.22
8 15.56 13.14 2.42 28 0 0.13 0.13
9 4.41 4.48 0.07 29 0 5.75 5.75

10 4.89 3.19 1.70 30 0 1.43 1.43
11 6.11 5.38 0.73 31 0 3.76 3.76
12 4.12 3.85 0.27 32 0 2.37 2.37
13 4.90 4.63 0.27 33 0 3.18 3.18
14 5.59 5.25 0.34 34 0 3.69 3.69
15 6.59 6.28 0.31 35 0 0.02 0.02
16 8.07 8.27 0.20 36 0 1.20 1.20
17 4.92 4.75 0.17 37 0 0.89 0.89
18 6.12 6 0.12 38 0 0 0
19 2.46 2.83 0.37 39 0 0.28 0.28
20 2.16 2.28 0.12 40 0 0.17 0.17

4. Discussion and Conclusions

In Figure 5, the actual (annotated) and calculated percentage of steatosis for each image is
presented. The first 20 samples include steatosis and the rest are normal (not presenting steatosis).
The outcome shows that the proposed methodology can precisely detect fat and calculate liver steatosis.
However, some normal samples presented a large false positive detection.

The proposed methodology is optimized as far as it concerns processing time, since it is designed
to process low resolution images. Images were obtained in a low resolution (2×magnification) using
plain pathology laboratory equipment (microscope). This is an important advantage of the proposed
methodology in comparison to other methods presented in the literature which use high resolution
images, since acquisition of high resolution images takes a lot of time (to manually obtain several
figures and merge them into a single one) or sophisticated equipment (microscope with scanning and
image merging ability). Therefore, the time to process a high-resolution image is significantly larger
and computationally demanding. Another advantage of the proposed methodology is that it is fully
automated, without any manual interference required in any step.
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Figure 5. Comparison of annotated and calculated steatosis for all samples (images).

In order to assess the robustness of the methodology, a threshold analysis has been conducted
for the intensity used in the histogram thresholding step to convert the image to binary (the v step
in the image preprocessing stage) and on the value used for the eccentricity threshold (second stage).
The average accuracy for the detection fat regions in the steatosis images (i.e., images 1–20) was
calculated using grid search for values ranging from 180 to 220 for the gray level in the histogram
thresholding and from 0.7 to 0.9 for the eccentricity threshold. The threshold analysis results are
presented in Figure 6.
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From the threshold analysis, it is clear that the gray level threshold (intensity) can range
from 190 to 210 without greatly affecting the accuracy results (being > 80%), while the eccentricity
threshold has a small impact on the accuracy. This is due to the fact that the eccentricity control is
followed by the roundness control which becomes stricter in each iteration, and, thus, it is mainly to
reduce the number of detected fat regions by rejecting those with shapes resembling straight lines.
However, very small values result in large numbers of false negatives, since a lot of fat annotated
regions are falsely discarded from the analysis.

Furthermore, the methodology at the moment is designed to process tissue images,
which are obtained by cropping initial images (with tissue and background) until only tissue remains.
Nevertheless, although this is a disadvantage of the proposed methodology, it is not a significant
aspect in the clinical practice, since cutting a liver tissue image can be done very easily.

Table 3 summarizes studies presented in the literature and the proposed methodology. Although
a direct comparison is not feasible, since each method is tested using a different dataset, the proposed
methodology compares well in terms of accuracy and sensitivity.

Table 3. Comparison with other methods from the literature.

Author/Year Sample Method Results

Marsman et al., 2004 [16] 46 High-definition
biopsy images

No details for image analysis.
Correlation between the

measurement of fat using
automated software and the
assessment of Pathologists.

High correlation value (r = 0.97)

Roullier et al., 2007 [20] 37 Images Modification of Fuzzy C-Means
Algorithm for pixel clustering.

High correlation with
pathologist assessment

(r2 > 0.85)

El Badry 2009 [17] 46 Images
Thresholding for white area

detection and roundness
criteria for lipid droplets.

Poor correlation with four
pathologists (Spearman rank

correlation coefficient:
0.82, 0.22, 0.28, 0.38)

Liquori et al., 2009 [19] Biopsy images from rats

Morphology image
preprocessing. Detect fat

regions based on color and
circular shape.

No method evaluation.
Follow-up results for fat

development during diet in rats

Turlin et al., 2009 [18] 97 Biopsy images
Image analysis using Image Pro

Plus. Filtering and
thresholding.

Strong correlation with
pathologist’s grading (r = 0.89)

Kong et al., 2011 [2] 21,900 Steatosis regions

Image preprocessing.
Separation of bonded areas,

image rotation and deletion of
small points.

High Pearson Correlation value
with MRI (ρ = 0.92)

Nativ et al., 2014 [21] 54 Histological Images K-means clustering and feature
extraction using Decision trees. Sensitivity 97% Specificity 60%

Vanderbeck et al., 2014 [23] 59 Biopsy images

Image preprocessing.
Clustering pixel using the

k-means algorithm. Supervised
machine learning classifiers.

The overall accuracy of the
classification algorithm is

greater than 89%

Sciarabba et al., 2015 [22] 15 Images Clustering using K-means and
thresholding in shape features.

Detected steatosis 91% False
positive ratio 5%

Nazre, 2016 [24] 38 High resolution images Morphological filtering and
sparse linear models.

Pearson’s correlation with
pathologists (ρ = 0.90)

Proposed methodology 40 Low-resolution
biopsy images

Image preprocessing.
Examination of regions

according to their eccentricity
and roundness.

Region detection
(accuracy > 90%) Steatosis

assessment (Abs. Error:
1.07% ± 1.29%) Concordance

Correlation Coefficient
(CCC = 0.87)

The main advantage of the proposed methodology is that it can process images of low resolution,
unlike most of the methods introduced in the literature, which can be obtained with standard laboratory
equipment. Moreover, the processing time is reduced. Both of these characteristics (easily obtained
images and small processing time) are important features that can allow the proposed methodology to
be easily adopted in common, everyday clinical practice.
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