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Abstract: Triangular intuitionistic fuzzy number (TIFN) is a more generalized platform for expressing
imprecise, incomplete, and inconsistent information when solving multi-criteria decision-making
problems, as well as for expressing and reflecting the evaluation information in several dimensions.
In this paper, the TIFN has been applied for solving multi-criteria decision-making (MCDM) problems,
first, by defining some existing triangular intuitionistic fuzzy geometric aggregation operators, and
then developing a new triangular intuitionistic fuzzy geometric aggregation operator, which is the
generalized triangular intuitionistic fuzzy ordered weighted geometric averaging (GTIFOWGA)
operator. Based on these operators, a new approach for solving multicriteria decision-making
problems when the weight information is fixed is proposed. Finally, a numerical example is provided
to show the applicability and rationality of the presented method, followed by a comparative analysis
using similar existing computational approaches.

Keywords: generalized triangular intuitionistic fuzzy geometric aggregation operator; triangular
intuitionistic fuzzy number; intuitionistic fuzzy set; multi-criteria decision-making; attitudinal
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1. Introduction

In solving multi-criteria decision-making (MCDM) problems, it is often required that several
criteria are considered simultaneously before selecting or ranking alternatives. Since the information
required for solving the MCDM problems is often incomplete, inconsistent, and indeterminate, the
manner in which it is expressed, therefore, has remained a major task and of great interest among
researchers over the past several years. In handling these issues, Zadeh [1], who introduced the
concept of fuzzy set theory, has outlined how the fuzzy set (FS) concept could be used for expressing
such decision-making problems. However, the FS theory, which is characterized by only one function,
“the membership function µA(x)”, in most cases cannot be used fully to express some kind of complex
fuzzy information. “For example, during voting, if there are ten persons voting for an issue, and three of them
give the ‘agree’, four of them give the ‘disagree’, and the others abstain. Obviously, FS cannot fully express the
polling information” [2]. To solve this kind of problem, Atanassov [3] extended the fuzzy set theory by
adding a new function “the non-membership function vA(x)”, in order to form the intuitionistic fuzzy
set (IFS) theory.

The membership and non-membership functions of the IFS theory are represented by an
intuitionistic fuzzy number (IFN), are more or less independent and are constrained with the conditions
that the sum of the membership and non-membership must not exceed one [4]. These constraints,
however, have been challenged recently by Despi [5] who defined a new IFS in which the sum of
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the membership and non-membership functions are more than one and their differences are either
positive or negative. This new IFS has been justified and supported by Marasini et al. [6] and Li [7].
The computation of membership and non-membership function in this study will be based on the new
IFS by Despi [5]. The IFS has shown its usefulness in dealing with complex engineering problems [8,9],
and in providing a flexible model to elaborate uncertainty [10,11].

Extensive review of the IFS, which is represented by IFN for solving MCDM problems, has shown
an increase over the past few years as revealed in the literature [8–18] with a few extensions of the IFN,
such as the trapezoidal IFN (TrIFN) [19,20], the interval-valued TrIFN (IVTrIFN) [21,22], Pythagorean
IFN (PIFN) [23], and the triangular IFN (TIFN) [24–26]. This study, however, will be concerned with the
triangular intuitionistic fuzzy numbers (TIFNs) only, with the purpose of accounting for the attitudinal
character or risk attitude of the DMs, which have not been fully studied in the reviewed literature.

The application of TIFN in MCDM is based on its ability to express decision information in several
dimensions, reflect the assessment information in a more holistic manner [24], and for quantifying
ill-known quantities [12]. Several research efforts have been made in the advancement of TIFN
over the past few years. Among them, we can mention the characterization of membership and
non-membership degrees in intuitionistic fuzzy sets (IFS) using the triangular fuzzy numbers by
Shu et al. [26]. Chen and Li [27] developed a new distance measurement between two TIFNs for
determining attribute weights, as well as weighted arithmetic averaging (TIFN-WAA) operators
on TIFNs. Zhang and Nan [28] developed a methodology for ranking TIFNs by considering the
concept of a TIFN as a special case of the IFN. Wan et al. [29], using the TIFN, extended the classical
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method for solving multi-attribute
group decision-making (MAGDM) problems, while Li et al. [30] investigated the arithmetic operations
and cut sets over TIFNs, and defined the values and ambiguities of the membership degree and
non-membership degree for the TIFNs, as well as the value index and ambiguity index.

Other contributions to the study of TIFN are in the area of information fusion operators
(aggregation), where Chen and Li [27] introduced the weighted arithmetic averaging operator on
TIFNs (TIFN-WAA). Wan et al. [29] presented the triangular intuitionistic fuzzy weighted average
(TIF-WA) operator for the selection of personnel. The triangular intuitionistic fuzzy weighted
average (TIFWA) operator, the ordered weighted average (TIFOWA) operator, the hybrid weighted
average (TIFHWA) operator, the triangular intuitionistic fuzzy generalized ordered weighted average
(TIFGOWA) operator, and the generalized hybrid weighted average (TIFGHWA) operator were
developed by Wan et al. [31].

Upon investigation of the different aggregation operators of TIFN, it has been revealed that the
ranking of TIFNs are a bit complicated and cannot be easily compared with other TIFNs [32], as well
as account for attitudinal character or risk attitude of the DMs. In order to further advance the study
of aggregation operators of TIFN, simplify its comparison and application in MCDMs, and to express
the risk attitude of the DMs in the decision-making process, this paper attempts to do the following:

(1) Define some triangular intuitionistic fuzzy aggregation operators, that is, the triangular
intuitionistic fuzzy weighted geometric averaging (TIFWGA) operator, ordered weighted
geometric averaging (TIFOWGA) operator and the hybrid weighted geometric averaging
(TIFHWGA) operator;

(2) Develop a new generalized triangular intuitionistic fuzzy aggregation operator, that is, the
generalized triangular intuitionistic fuzzy ordered weighted geometric averaging (GTIFOWGA)
operator. This is mainly to allow for more attitudinal information to be expressed or used in
accordance with the different DMs interests or preference;

(3) Propose a simple and straightforward approach for solving MCDM problems when the
performance ratings are expressed in triangular intuitionistic fuzzy numbers (TIFNs).

The rest of this paper is organized as follows: in Section 2, the concepts of intuitionistic fuzzy
set theory and triangular intuitionistic fuzzy sets are presented. In Section 3, some triangular
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intuitionistic fuzzy weighted geometric operators are defined, and the GTIFOWGA operator is
developed. In Section 4, the algorithm of the proposed method is presented and applied to solving
MCDM problems. Finally, in Section 5, some conclusions are presented.

2. Preliminaries

In this section, the fundamental definitions and concepts of TIFN and IFS as described by
Liang et al. [32] and Despic and Simonovic [33] are presented.

2.1. Intuitionistic Fuzzy Set (IFS)

Definition 1. [32] If the IFS A in X = {x} is defined fully in the form A = {〈x, µA(x), vA(x), πA(x)〉|x ∈ X} ,
where µA : X → [0, 1] , vA : X → [0, 1] and πA : X → [0, 1] , then the different relations and operations for the
IFS are given as:

1. A·B = {〈x, µA(x)·µB(x), vA(x) + vB(x)− vA(x)·vB(x)〉|x ∈ X };
2. A + B = {〈 x, µA(x) + µB(x)− µA(x)·µB(x), vA(x)·vB(x)〉|x ∈ X } ;

3. λA = {〈x, 1− (1− µA(x))λ, (vA(x)) λ〉|x ∈ X }, λ > 0;

4. Aλ = {〈x, (µA(x))λ, 1− (1− vA(x)) λ〉|x ∈ X }, λ > 0;
5. A = B if and only if µA(x) = µB(x) and vA(x) = vB(x) for all x ∈ X;
6. A ≤ B if and only if µA(x) ≤ µB(x) and vA(x) ≥ vB(x) for all x ∈ X.

2.2. The Triangular Intuitionistic Fuzzy Number (TIFN)

The TIFN is basically the use of the traditional triangular fuzzy number to express the membership
µA(x) and non-membership degree vA(x) such that the intuitionistic fuzzy number is based on the
triangular fuzzy number, which is termed the triangular intuitionistic fuzzy number (TIFN). In the
following, the basic concepts relating to the TIFN are introduced:

Definition 2. [28,31,32] Let α be a TIFN, where the membership and non-membership function for α are defined
as follows:

Membership function:

µα(x) =


(x−a)µα

(b−a) , (a ≤ x < b),

µα, (x = b),
(c−x)µα

c−b , (b < x ≤ c),
0, otherwise.

(1)

For non-membership function, it is given as:

vα(x) =


(b−x+vα(x−á))

(b−á) , (á ≤ x < b),
vα, (x = b),

(x−b+vα(ć−x))
ć−b , (b < x ≤ ć),

0, otherwise,

(2)

where 0 ≤ µα ≤ 1; 0 ≤ vα ≤ 1; 0 ≤ µα + vα ≤ 1, a, b, c, á, ć ∈ R.
The TIFN is therefore denoted as ά = 〈([a, b, c]; µα) , ([a, b, c]; vα)〉, when µα = 1, and vα = 0,

and ά will change into the traditional triangular fuzzy number (TFN). Generally, the TIFN ά is defined as
ά = ([a, b, c]; µα, vα) for convenience. In the following, the operational rules for any two TIFNs are presented.

Definition 3. [32,34] Let α1 = ([a1, b1, c1]; µα1 , vα1) and α2 = ([a2, b2, c2]; µα2 , vα2) be two TIFNs and
λ ≤ 0. Then:

1. α1 + α2 = ([a1 + a2, b1 + b2, c1 + c2]; µα1 + µα2 − µα1 µα2 , vα1 vα2);
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2. α1α2 = ([a1a2, b1b2, c1c2]; µα1 µα2 , vα1 + vα2 − vα1 vα2);

3. λα =
(
[λa, λb, λc]; 1− (1− µα)

λ, (vα)
)

, λ ≥ 0;

4. αλ =
([

aλ, bλ, cλ
]
; (µα)

λ, 1− (1− vα)
λ
)

, λ ≥ 0.

The operational results for the rules given in the Definition 3 for the two TIFNs are given in the operations:

1. α1 + α2 = α2 + α1;
2. α1 ⊗ α2 = α2 ⊗ α1;
3. λ(α1 + α2) = λα1 + λα2 λ ≥ 0;
4. λ1α + λ2α = (λ1 + λ2)α λ1 λ2 ≥ 0;
5. αλ1 ⊗ αλ2 = αλ1+λ2 λ1 λ2 ≥ 0;

6. α1
λ ⊗ α2

λ = (α1 ⊗ α2)
λ λ ≥ 0.

Definition 4. [31] Let α1 = ([a1, b1, c1]; µα1 , vα1) and α2 = ([a2, b2, c2]; µα2 , vα2) be two TIFNs, and the
Hamming distance between α1 and α2 is given as:

d(α1, α2) =
1
6

[
|(1 + µα1 − vα1)a1 − (1 + µα2 − vα2)a2|+ |(1 + µα1 − vα1)b1 − (1 + µα2 − vα2)b2|

+|(1 + µα1 − vα1)c1 − (1 + µα2 − vα2)c2|

]
. (3)

Definition 5. [31,35] Let ά = ([a, b, c]; µα, vα) be a TIFN. If the membership and non-membership functions
are represented by the score function S(ά) and accuracy function H(ά), respectively, then ά can be defined
as follows:

S(ά) =
(a + 2b + c)µα

4
, (4)

H(ά) =
(a + 2b + c)(1− vα)

4
. (5)

Definition 6. [31,35] Let ά1 and ά2 be two TIFNs. If S(άi) =
(ai+2bi+ci)µαi

4 and H(ά) =
(ai+2bi+ci)(1−vαi )

4
are the membership and non-membership functions of ά, then:

1. If S(ά1) < S(ά2) then ά1 < ά2;
2. If S(ά1) = S(ά2) and H(ά1) = H(ά2), then ά1 = ά2;
3. If S(ά1) = S(ά2) and H(ά1) < H(ά2), then ά1 < ά2.

3. Some Weighted Geometric Operators and the Generalized Ordered Weighted Geometric
Operators of TIFNs

In this section, motivated by existing achievements [32,36,37], we develop some triangular
intuitionistic fuzzy geometric averaging operators and discuss some of their useful properties and
then introduce new generalized geometric operators for TIFNs.

3.1. Some Weighted Geometric Aggregation Operators on TIFNs

Definition 7. [32] Let αi = ([ai, bi, ci]; µαi , vαi ) for all
(

i = 1
n , 1

n , . . . , 1/n
)

be a collection of TIFNs on X.
The TIFWGA operator of dimension n is a mapping TIFWGA: Ωn → Ω, and:

TIFWGAw(α1, α2, α3, . . . , αn) = (α1)
w1 ⊗ (α2)

w2 ⊗ (α3)
w3 . . .⊗ (αn)

wn ,

where w = (w1, w2, w3, . . . , wn)
T is the weighting vector of αi (i = 1, 2, 3, . . . , n) with wi ∈ [0, 1] and

∑n
i=1, wi = 1. Furthermore:
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TIFWGAw(α1, α2, α3, . . . , αn) = ∏ n
i=1(αi)

wi =([
∏ n

i=1(ai)
wi , ∏ n

i=1(bi)
wi , ∏ n

i=1(ci)
wi
]
; ∏ n

i=1(µαi )
wi , 1−∏ n

i=1(1− vαi )
wi
)
.

(6)

Definition 8. [36] Let αi = ([ai, bi, ci]; µασi , vασi ) for all
(

i = 1
n , 1

n , . . . , 1/n
)

be a collection of TIFNs on
X. The TIFOWGA operator of dimension n is a mapping TIFOWGA: Ωn → Ω, and:

TIFOWGAw(α1, α2, α3, . . . , αn) = (ασ1)
w1 ⊗ (ασ2)

w2 ⊗ (ασ3)
w3 . . .⊗ (ασn)

wn ,

where w = (w1, w2, w3, . . . , wn)
T is the exponential weighting vector of αi (i = 1, 2, 3, . . . , n) with

wi ∈ [0, 1] and ∑n
i=1 wi = 1, and (α1, α2, α3, . . . , αn) is a permutation of X (i.e., 1, 2, 3, . . . , n) such that

ασ1 ≤ ασ2 ≤ . . . ≤ ασn. Furthermore:

TIFOWGAw(α1, α2, α3, . . . , αn) =
n

∏
i=1

(αασi )
wi

=

([
n

∏
i=1

(ai)
wi ,

n

∏
i=1

(bi)
wi ,

n

∏
i=1

(ci)
wi

]
;

n

∏
i=1

(µασi )
wi , 1−

n

∏
i=1

(1− vασi )
wi

)
.

(7)

Definition 9. [32,36] Let αi =
(
[ai, bi, ci]; µβαi

, vβαi

)
for all

(
i = 1

n , 1
n , . . . , 1/n

)
be a collection of TIFNs

on X. The TIFHWGA operator of dimension n is a mapping TIFHWGA: Ωn → Ω, such that:

TIFHWGAωw(α1, α2, α3, . . . , αn) = (βα1)
w1 ⊗ (βα2)

w2 ⊗ (βα3)
w3 . . .⊗ (βαn)

wn ,

where βαi is the ith largest of the weighted TIFN βαi (βαi = αi
nω, i = 1, 2, 3, . . . , n),

ω = (ω1, ω2, ω3, . . . , ωn)
T is the exponential weighting vector of αi (i = 1, 2, 3, . . . , n) with

ωi ∈ [0, 1] and ∑n
i=1 wj = 1, and (α1, α2, α3, . . . , αn) is a permutation of X (i.e., 1, 2, 3, . . . , n)

such that βα1 ≤ βα2 ≤ . . . ≤ βαn . Furthermore:

TIFHWGAω,w(α1, α2, α3, . . . , αn)

=

([
n
∏
i=1

(ai)
wi ,

n
∏
i=1

(bi)
wi ,

n
∏
i=1

(ci)
wi

]
;

n
∏
i=1

(
µβσi

)wi , 1

−
n
∏
i=1

(
1− vβσi

)wi

)
.

(8)

3.2. The Generalized Ordered Geometric Operator of TIFNs

The TIFOWGA operator is extended to develop a new generalized aggregation operator for TIFN.
The new GTIFOWGA has been inspired by the work of Tan [37] and Qi et al. [38].

Definition 10. Let (β1, β2, β3, . . . , βn) be a collection of triangular intuitionistic fuzzy arguments
and βαi =

(
[ai, bi, ci]; µβαi

, vβαi

)
. The GTIFOWGA operator of dimension n is a mapping GTIFOWGA:

Ωn → Ω, which has an exponential weighting vector ω = (ω1, ω2, ω3, . . . , ωn)
T , ∑n

i=1 ωi = 1, and
ωi ∈ [0, 1], λ > 0; then:

GTIFOWGAλ(β1, β2, β3, . . . , βn) =
1
λ

(
⊗n

i=1(λβα1)
ωi
)
.

Theorem 1. Let (β1, β2, β3, . . . , βn) for all
(

i = 1
n , 1

n , . . . , 1/n
)

be a collection of triangular

intuitionistic fuzzy arguments and βαi =
(
[ai, bi, ci]; µβαi

, vβαi

)
. If the exponential weighting vector

ω = (ω1, ω2, ω3, . . . , ωn)
T , ∑n

i=1 ωi = 1, and ωi ∈ [0, 1], λ > 0, then the GTIFOWGA operator obtained
is a TIFN and is given as follows:
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GTIFOWGAλ(β1, β2, β3, . . . , βn) = (λβα1)
ωi ⊗ (λβα2)

ω2 ⊗ . . . ..⊗ (λβαn)
ωn

=

( n

∏
i=1

(a(i))
ωi ,

)1/λ

,

(
n

∏
i=1

(b(i))
ωi ,

)1/λ

,

(
n

∏
i=1

(c(i))
ωi ,

)1/λ
; 1−

(
1−

n

∏
i=1

(
1−

(
1− µβ(i)

)λ
)ωi

,

)1/λ

,

(
1−

n

∏
i=1

(
1− vβ(i)

)ωi

)1/λ
 (9)

Proof. Using mathematical induction on Ω:

1. For n = 1:

(λβα1)
ωi =[(

(a(i))
ωi
) 1

λ ,
(
(b(i))

ωi
) 1

λ ,
(
(c(i))

ωi
) 1

λ

]
; 1−

(
1−

(
1−

(
1− µβ(i)

)λ
)ωi

)1/λ

,
(

1−
(

1− vβ(i)

)ωi
)1/λ

.

Thus, for n = 1, Equation (9) holds.
2. For n = 2:

(λβα1)
ω1 ⊗ (λβα2)

ω2

=

[(
(a(1))

ω1
) 1

λ ,
(
(b(1))

ω1
) 1

λ ,
(
(c(1))

ω1
) 1

λ

]
; 1

−
(

1−
(

1−
(

1− µβ(1)

)λ
)ω1

) 1
λ

,
(

1−
(

1− vβ(1)

)ω1
) 1

λ

⊗
[(

(a(2))
ω2
) 1

λ ,
(
(b(2))

ω2
) 1

λ ,
(
(c(2))

ω2
) 1

λ

]
; 1

−
(

1−
(

1−
(

1− µβ(2)

)λ
)ω2

) 1
λ

,
(

1−
(

1− vβ(2)

)ω2
) 1

λ
.

Since, α1α2 = ([a1a2, b1b2, c1c2]; µα1 µα2 , vα1 + vα2 − vα1 vα2) then:

(λβα1)
ω1 ⊗ (λβα2)

ω2

=

[(
(a(1))

ω1
) 1

λ
(
(a(2))

ω2
) 1

λ ,
(
(b(1))

ω1
) 1

λ
(
(b(2))

ω2
) 1

λ ,
(
(c(1))

ω1
) 1

λ
(
(c(2))

ω2
) 1

λ

]
;

1−
(

1−
(

1−
(

1− µβ(1)

)λ
)ω1

) 1
λ

× 1−
(

1−
(

1−
(

1− µβ(2)

)λ
)ω2

)1/λ

,
(

1−
(

1− vβ(1)

)ω1
) 1

λ
+

(
1−

(
1− vβ(2)

)ω2
)1/λ

−
(

1−
(

1− vβ(1)

)ω1
) 1

λ ×
(

1−
(

1− vβ(2)

)ω2
)1/λ

=

[(
(a(1))

ω1
) 1

λ
(
(a(2))

ω2
) 1

λ ,
(
(b(1))

ω1
) 1

λ
(
(b(2))

ω2
) 1

λ ,
(
(c(1))

ω1
) 1

λ
(
(c(2))

ω2
) 1

λ

]
;

1−
(

1−
(

1−
(

1− µβ(1)

)λ
)ω1

) 1
λ

× 1−
(

1−
(

1−
(

1− µβ(2)

)λ
)ω2

) 1
λ

,
(

1−
(

1− vβ(1)

)ω1
) 1

λ

×
((

1− vβ(2)

)ω2
) 1

λ
.

Thus, the result is true for n = 2.
3. Suppose n = k, then:

(λβα1)
ωi ⊗ (λβα2)

ω2 ⊗ . . . ..⊗ (λβαn)
ωn =( k

∏
i=1

(a(i))
ωi

)1/λ

,

(
k

∏
i=1

(b(i))
ωi

)1/λ

,

(
k

∏
i=1

(c(i))
ωi

)1/λ
; 1−

(
1−

k

∏
i=1

(
1−

(
1− µβ(i)

)λ
)ωi

,

)1/λ

,

(
1−

k

∏
i=1

(
1− vβ(i)

)ωi

)1/λ
.
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For n = k + 1, we then have:
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௜ୀଵ ൱ଵ/ఒ , ൭ෑ(ܾ(௜))ఠ೔	௞ାଵ

௜ୀଵ ൱ଵ/ఒ , ൭ෑ(ܿ(௜))ఠ೔	௞ାଵ
௜ୀଵ ൱ଵ/ఒ቏ ; 	1

− ൭1 −ෑቀ1 − ൫1 − ௞ାଵ	ఉ(௜)൯ఒቁఠ೔ߤ
௜ୀଵ ൱ଵ/ఒ , ቌ1 −ෑ	௞ାଵ

௜ୀଵ ൫1 −  .ఉ(௜)൯ఠ೔ቍଵ/ఒ൲ݒ
It confirms that the result is true for 	݊ = ݇ + 1, and thus it holds for all of	݊.  
Hence: ܣܩܹܱܨܫܶܩఒ(ߚଵ, ,ଶߚ ,ଷߚ … , (௡ߚ = ߣ1 ൫⨂௜ୀଵ௡ ൫ߚߣఈభ൯ఠ೔൯ = ߣ1 ൫ߚߣఈభ൯ఠ೔ ⊗ ൫ߚߣఈమ൯ఠమ ⊗ … . .⊗ ൫ߚߣఈ೙൯ఠ೙ 

= ቌ቎൭ෑ(ܽ(௜))ఠ೔	௡
௜ୀଵ ൱ଵ/ఒ , ൭ෑ(ܾ(௜))ఠ೔	௡

௜ୀଵ ൱ଵ/ఒ , ൭ෑ(ܿ(௜))ఠ೔	௡
௜ୀଵ ൱ଵ/ఒ቏ ;	1

− ൭1 −ෑቀ1 − ൫1 − ఉ(௜)൯ఒቁఠ೔௡ߤ
௜ୀଵ ൱ଵ/ఒ , ൭1 −ෑ௡௜ୀଵ ൫1 −  .ఉ(௜)൯ఠ೔൱ଵ/ఒቍݒ

The theorem is true for any number of TIFN, which completes the proof. □ 

3.3. Some Useful Properties of the GTIFOWGA Operator 

Theorem 2. Commutative property. Let ߚఈ೔ = ቀ[ܽ௜, ܾ௜, ܿ௜]; ఉഀ೔ߤ , ෨ఈ೔ߚ ఉഀ೔ቁ andݒ = ቀൣ ෤ܽ௜, ෨ܾ௜, ܿ̃௜൧; ෤ఉഀ೔ߤ , ݅) ෤ఉഀ೔ቁݒ = 1, 2, 3, … , ݊	) be two TIFNs. If the exponential weighting vector ߱ = (߱ଵ, ߱ଶ, ߱ଷ,… , ߱௡)், ∑ ߱௜௡௜ୀଵ = 1, 
and ߱௜ ∈ [0, 1], ߣ > 0, then the GTIFOWGA operator obtained is a TIFN. Its commutative property for the 
TIFN is given as follows:  ߚఈ೔ = ݅∀) ෨ఈ೔ߚ = 1, 2, 3, … , ݊ ). 
Proof. If (ߚଵ, ,ଶߚ ,ଷߚ … , ,෨ଵߚ௡) is a permutation of ൫ߚ ,෨ଶߚ ,෨ଷߚ … , ఈ೔ߚ :෨௡൯, then we haveߚ = ݅) ෨ఈ೔ߚ = 1, 2, 3, … , ݊ ), 
that is: ቀ[ܽ௜, ܾ௜, ܿ௜]; ఉഀ೔ߤ , ఉഀ೔ቁݒ = ቀൣ ෤ܽ௜, ෨ܾ, ܿ̃௜൧; ෤ఉഀ೔ߤ ,  .෤ఉഀ೔ቁݒ

It confirms that the result is true for n = k + 1, and thus it holds for all of n. Hence:
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The theorem is true for any number of TIFN, which completes the proof. □ 

3.3. Some Useful Properties of the GTIFOWGA Operator 

Theorem 2. Commutative property. Let ߚఈ೔ = ቀ[ܽ௜, ܾ௜, ܿ௜]; ఉഀ೔ߤ , ෨ఈ೔ߚ ఉഀ೔ቁ andݒ = ቀൣ ෤ܽ௜, ෨ܾ௜, ܿ̃௜൧; ෤ఉഀ೔ߤ , ݅) ෤ఉഀ೔ቁݒ = 1, 2, 3, … , ݊	) be two TIFNs. If the exponential weighting vector ߱ = (߱ଵ, ߱ଶ, ߱ଷ,… , ߱௡)், ∑ ߱௜௡௜ୀଵ = 1, 
and ߱௜ ∈ [0, 1], ߣ > 0, then the GTIFOWGA operator obtained is a TIFN. Its commutative property for the 
TIFN is given as follows:  ߚఈ೔ = ݅∀) ෨ఈ೔ߚ = 1, 2, 3, … , ݊ ). 
Proof. If (ߚଵ, ,ଶߚ ,ଷߚ … , ,෨ଵߚ௡) is a permutation of ൫ߚ ,෨ଶߚ ,෨ଷߚ … , ఈ೔ߚ :෨௡൯, then we haveߚ = ݅) ෨ఈ೔ߚ = 1, 2, 3, … , ݊ ), 
that is: ቀ[ܽ௜, ܾ௜, ܿ௜]; ఉഀ೔ߤ , ఉഀ೔ቁݒ = ቀൣ ෤ܽ௜, ෨ܾ, ܿ̃௜൧; ෤ఉഀ೔ߤ ,  .෤ఉഀ೔ቁݒ

The theorem is true for any number of TIFN, which completes the proof.

3.3. Some Useful Properties of the GTIFOWGA Operator

Theorem 2. Commutative property. Let βαi =
(
[ai, bi, ci]; µβαi

, vβαi

)
and β̃αi =

(
[ãi, b̃i, c̃i]; µ̃βαi

, ṽβαi

)
(i = 1, 2, 3, . . . , n) be two TIFNs. If the exponential weighting vector ω = (ω1, ω2, ω3, . . . , ωn)

T ,
∑n

i=1 ωi = 1, and ωi ∈ [0, 1], λ > 0, then the GTIFOWGA operator obtained is a TIFN. Its commutative
property for the TIFN is given as follows:

βαi = β̃αi (∀i = 1, 2, 3, . . . , n).
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Proof. If (β1, β2, β3, . . . , βn) is a permutation of (β̃1, β̃2, β̃3, . . . , β̃n), then we have:

βαi = β̃αi (i = 1, 2, 3, . . . , n),

that is: (
[ai, bi, ci]; µβαi

, vβαi

)
=
(
[ãi, b̃, c̃i]; µ̃βαi

, ṽβαi

)
.

Then:
GTIFOWGAλ(β1, β2, β3, . . . , βn) = GTIFOWGAλ

(
β̃1, β̃2, β̃3, . . . , β̃n

)
.

Theorem 3. Idempotent property. Let βαi =
(
[ai, bi, ci]; µβαi

, vβαi

)
and β̃α =

(
[ã, b̃, c̃]; µ̃βα

, ṽβα

)
(i = 1, 2, 3, . . . , n) be two TIFNs. If the exponential weighting vector ω = (ω1, ω2, ω3, . . . , ωn)

T ,
∑n

i=1 ωi = 1, and ωi ∈ [0, 1], λ > 0, then the GTIFOWGA operator obtained is a TIFN. Its idempotent
property for the TIFN is given as follows:

βαi = βα(∀i = 1, 2, 3, . . . , n).

Proof: Since βαi = βα, then we have:
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and ߱௜ ∈ [0, 1], ߣ > 0, then the GTIFOWGA operator obtained is a TIFN. Its idempotent property for the 
TIFN is given as follows:  ߚఈ೔ = ݅∀) ఈߚ = 1, 2, 3, … , ݊ ). 
Proof: Since ߚఈ೔ = ,ଵߚ)ఒܣܩܹܱܨܫܶܩ :ఈ, then we haveߚ ,ଶߚ ,ଷߚ … , (௡ߚ = ߣ1 ൫⨂௜ୀଵ௡ ൫ߚߣఈభ൯ఠ೔൯ = ߣ1 ൫൫ߚߣఈభ൯ఠ೔ ⊗ ൫ߚߣఈమ൯ఠమ ⊗ … . .⊗ ൫ߚߣఈ೙൯ఠ೙൯= ߣ1 ఠ೔(	ఈߚߣ)) ⊗ ఠమ(	ఈߚߣ) ⊗ … . .⊗ (ఠ೙(	ఈߚߣ) = ߣ1 = (ఠభାఠభାఠభା⋯ାఠ೙(	ఈߚߣ)) ଵఒ (ఈߚߣ) =                              .ఈߚ

□ 

Theorem 4. Monotonicity property. Let ߚఈ೔ = ቀ[ܽ௜, ܾ௜, ܿ௜]; ఉഀ೔ߤ , ఉഀ೔ቁݒ  and ߚ෨ఈ೔ = ቀൣ ෤ܽ௜, ෨ܾ௜, ܿ̃௜൧; ෤ఉഀ೔ߤ , ݅) ෤ఉഀ೔ቁݒ = 1, 2, 3, … , ݊	) be two TIFNs. If the exponential weighting vector ߱ = (߱ଵ, ߱ଶ, ߱ଷ,… , ߱௡)், ∑ ߱௜௡௜ୀଵ = 1, 
and ߱௜ ∈ [0, 1], ߣ > 0, then the GTIFOWGA operator obtained is a TIFN and is given as follows for the 
monotonicity property:  ߚఈ೔ ≤ ݅∀) ෨ఈ೔ߚ = 1, 2, 3, … , ݊ ). 
Proof: Since ߚఈ೔ ≤ ,ଵߚ)ఒܣܩܹܱܨܫܶܩ :෨ఈ೔, thenߚ ,ଶߚ ,ଷߚ … , (௡ߚ ≤ ,෨ଵߚఒ൫ܣܩܹܱܨܫܶܩ ,෨ଶߚ ,෨ଷߚ … ,  ,෨௡൯ߚ
where [ܽ݅, ܾ݅, ܿ݅] ≤ [෤ܽ݅, ෤ܾ݅, ݅ߙߚߤ ,[݅̃ܿ ≤ ݅ߙߚ෤ߤ , and ݅ߙߚݒ ≥ ݅ߙߚ෤ݒ . □ 

It follows that: 

൦൭ෑ(ܽ(௜))ఠ೔	௡
௜ୀଵ ൱ଵఒ , ൭ෑ(ܾ(௜))ఠ೔	௡

௜ୀଵ ൱ଵఒ , ൭ෑ(ܿ(௜))ఠ೔	௡
௜ୀଵ ൱ଵఒ൪ 	

≤ ൦൭ෑ(෤ܽ(௜))ఠ೔	௡
௜ୀଵ ൱ଵఒ , ൭ෑ(෨ܾ(௜))ఠ೔	௡

௜ୀଵ ൱ଵఒ , ൭ෑ(ܿ̃(௜))ఠ೔	௡
௜ୀଵ ൱ଵఒ൪, 

1 − ൭1 −ෑቀ1 − ൫1 − ௡	ఉ(௜)൯ఒቁఠ೔ߤ
௜ୀଵ ൱ଵ/ఒ ≤ 1 − ൭1 −ෑቀ1 − ൫1 − ௡	෤ఉ(௜)൯ఒቁఠ೔ߤ

௜ୀଵ ൱ଵఒ, 
൭1 −ෑ	௡

௜ୀଵ ൫1 − ఉ(௜)൯ఠ೔൱ଵ/ఒݒ ≥ ൭1 −ෑ௡௜ୀଵ ൫1 −  .෤ఉ(௜)൯ఠ೔൱ଵఒݒ
According to Definition 2, number 6, we can conclude that ܣܩܹܱܨܫܶܩఒ(ߚଵ, ,ଶߚ …,ଷߚ , (௡ߚ ,෨ଵߚఒ൫ܣܩܹܱܨܫܶܩ≥ ,෨ଶߚ ,෨ଷߚ … ,   .෨௡൯ߚ
Therefore: 

Theorem 4. Monotonicity property. Let βαi =
(
[ai, bi, ci]; µβαi

, vβαi

)
and β̃αi =

(
[ãi, b̃i, c̃i]; µ̃βαi

, ṽβαi

)
(i = 1, 2, 3, . . . , n) be two TIFNs. If the exponential weighting vector ω = (ω1, ω2, ω3, . . . , ωn)

T ,
∑n

i=1 ωi = 1, and ωi ∈ [0, 1], λ > 0, then the GTIFOWGA operator obtained is a TIFN and is given
as follows for the monotonicity property:

βαi ≤ β̃αi (∀i = 1, 2, 3, . . . , n).

Proof. Since βαi ≤ β̃αi , then:

GTIFOWGAλ(β1, β2, β3, . . . , βn) ≤ GTIFOWGAλ

(
β̃1, β̃2, β̃3, . . . , β̃n

)
,

where [ai, bi, ci] ≤ [ãi, b̃i, c̃i], µβαi
≤ µ̃βαi

, and vβαi
≥ ṽβαi

.

It follows that:
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monotonicity property:  ߚఈ೔ ≤ ݅∀) ෨ఈ೔ߚ = 1, 2, 3, … , ݊ ). 
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It follows that: 
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௜ୀଵ ൱ଵఒ, 
൭1 −ෑ	௡

௜ୀଵ ൫1 − ఉ(௜)൯ఠ೔൱ଵ/ఒݒ ≥ ൭1 −ෑ௡௜ୀଵ ൫1 −  .෤ఉ(௜)൯ఠ೔൱ଵఒݒ
According to Definition 2, number 6, we can conclude that ܣܩܹܱܨܫܶܩఒ(ߚଵ, ,ଶߚ …,ଷߚ , (௡ߚ ,෨ଵߚఒ൫ܣܩܹܱܨܫܶܩ≥ ,෨ଶߚ ,෨ଷߚ … ,   .෨௡൯ߚ
Therefore: 
According to Definition 2, number 6, we can conclude that GTIFOWGAλ(β1, β2, β3, . . . , βn) ≤

GTIFOWGAλ

(
β̃1, β̃2, β̃3, . . . , β̃n

)
.

Therefore:
βαi ≤ β̃αi (∀i = 1, 2, 3, . . . , n).

In addition, let (β1, β2, β3, . . . , βn) be a collection of triangular intuitionistic fuzzy arguments and
βαi =

(
[ai, bi, ci]; µβαi

, vβαi

)
. If the exponential weighting vector ω = (ω1, ω2, ω3, . . . , ωn)

T , ∑n
i=1 ωi =

1, and ωi ∈ [0, 1], λ > 0, then the GTIFOWGA operator obtained is a TIFN and is given as follows for
the monotonicity property:

If:
βα

+ =
(
[mini(ai), mini(bi), mini(ci)]; mini(µβαi ), maxi(vβαi )

)
,

and:
βα
− =

(
[maxi(ai), maxi(bi), maxi(ci)]; maxi(µβαi ), mini(vβαi )

)
.

Then:
βα

+ ≤ GTIFOWGAδ(β1, β2, β3, . . . , βn) ≤ βα
−.

Proof. If:
βα i =

(
[ai, bi, ci]; µβαi , vβαi

)
for all:

(i = 1, 2, 3, . . . , n),

then:
α+ =

(
[mini(ai), mini(bi), mini(ci)]; mini(µβαi ), maxi(vβαi )

)
,

and:
α− =

(
[maxi(ai), maxi(bi), maxi(ci)]; maxi(µβαi ), mini(vβαi )

)
are TIFNs.

Since:
mini[ai, bi, ci] ≤ [ai, bi, ci] ≤ maxi[ai, bi, ci],miniµβαi ≤ µβαi ≤ maxiµβαi

and:
minivβαi ≤ vβαi ≤ maxivβαi ,

then we have:
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௜ୀଵ ൱ଵఒ , ൭ෑ(ܿ(௜))ఠ೔	௡
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≤ ൦൭ෑmax	(ܽ(௜))ఠ೔	௡
௜ୀଵ ൱ଵఒ , ൭ෑmax	(ܾ(௜))ఠ೔	௡

௜ୀଵ ൱ଵఒ , ൭ෑmax	(ܿ(௜))ఠ೔	௡
௜ୀଵ ൱ଵఒ൪, 

ቌ1 − ൭1 −ෑቀ1 − ൫1 −minߤఉ(௜)൯ఒቁఠ೔	௡
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≤ ൮1 − ൭1 −ෑቀ1 − ൫1 ௡	ఉ(௜)൯ఒቁఠ೔ߤ	ݔܽ݉−

௜ୀଵ ൱ଵఒ൲, 
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4. Multi-Criteria Decision Making (MCDM) with the Generalized Geometric Operators for TIFNs 

In this section, the GTIFOWGA operator is utilized for solving MCDM problems in which the 
performance ratings of the alternatives with respect to a given criteria are expressed in TIFN. 

Consider an MCDM problem in which the alternatives ܣ = ,ଵܣ} ,ଶܣ ,ଷܣ … ,  ௠}, are assessed withܣ
respect to the criteria ܥ = ,ଵܥ} ,ଶܥ ,ଷܥ … , {௠ܥ . The motivation here is to select the best alternative 
according to the intuitionistic fuzzy decision matrix given by the DM(s) ܴ௞(ߙ௜௝)	(݇ = 1, 2, 3, … , ݈) when 
the criteria weights information is fixed. In collecting the DMs preference information for the 
alternatives with respect to the given criteria, a linguistic scale has been introduced which comprises of 
some linguistic variables which can be presented to the DMs and the TIFNs which are used for the 
evaluation proper. The new linguistic and TIFNs scale is given in Table 1. 
  

That is:
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4. Multi-Criteria Decision Making (MCDM) with the Generalized Geometric Operators for TIFNs 

In this section, the GTIFOWGA operator is utilized for solving MCDM problems in which the 
performance ratings of the alternatives with respect to a given criteria are expressed in TIFN. 

Consider an MCDM problem in which the alternatives ܣ = ,ଵܣ} ,ଶܣ ,ଷܣ … ,  ௠}, are assessed withܣ
respect to the criteria ܥ = ,ଵܥ} ,ଶܥ ,ଷܥ … , {௠ܥ . The motivation here is to select the best alternative 
according to the intuitionistic fuzzy decision matrix given by the DM(s) ܴ௞(ߙ௜௝)	(݇ = 1, 2, 3, … , ݈) when 
the criteria weights information is fixed. In collecting the DMs preference information for the 
alternatives with respect to the given criteria, a linguistic scale has been introduced which comprises of 
some linguistic variables which can be presented to the DMs and the TIFNs which are used for the 
evaluation proper. The new linguistic and TIFNs scale is given in Table 1. 
  

According to Definition 2, number 6, the above equation can be rewritten as:
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4. Multi-Criteria Decision Making (MCDM) with the Generalized Geometric Operators for TIFNs 

In this section, the GTIFOWGA operator is utilized for solving MCDM problems in which the 
performance ratings of the alternatives with respect to a given criteria are expressed in TIFN. 

Consider an MCDM problem in which the alternatives ܣ = ,ଵܣ} ,ଶܣ ,ଷܣ … ,  ௠}, are assessed withܣ
respect to the criteria ܥ = ,ଵܥ} ,ଶܥ ,ଷܥ … , {௠ܥ . The motivation here is to select the best alternative 
according to the intuitionistic fuzzy decision matrix given by the DM(s) ܴ௞(ߙ௜௝)	(݇ = 1, 2, 3, … , ݈) when 
the criteria weights information is fixed. In collecting the DMs preference information for the 
alternatives with respect to the given criteria, a linguistic scale has been introduced which comprises of 
some linguistic variables which can be presented to the DMs and the TIFNs which are used for the 
evaluation proper. The new linguistic and TIFNs scale is given in Table 1. 
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That is, βα
+ ≤ GTIFOWGAλ(β1, β2, β3, . . . , βn) ≤ βα

−.

4. Multi-Criteria Decision Making (MCDM) with the Generalized Geometric Operators
for TIFNs

In this section, the GTIFOWGA operator is utilized for solving MCDM problems in which the
performance ratings of the alternatives with respect to a given criteria are expressed in TIFN.

Consider an MCDM problem in which the alternatives A = {A1, A2, A3, . . . , Am}, are assessed
with respect to the criteria C = {C1, C2, C3, . . . , Cm}. The motivation here is to select the best alternative
according to the intuitionistic fuzzy decision matrix given by the DM(s) Rk(αij) (k = 1, 2, 3, . . . , l)
when the criteria weights information is fixed. In collecting the DMs preference information for the
alternatives with respect to the given criteria, a linguistic scale has been introduced which comprises
of some linguistic variables which can be presented to the DMs and the TIFNs which are used for the
evaluation proper. The new linguistic and TIFNs scale is given in Table 1.

Table 1. Linguistic and TIFNs scale.

Linguistic Terms TIFNs

Low (L) ([0.10, 0.90, 0.2]; 0.4, 0.4)
Medium (M) ([0.20, 0.80, 0.2]; 0.4, 0.1)

Good (G) ([0.30, 0.60, 0.1]; 0.4, 0.3)
Very Good (VG) ([0.60, 0.30, 0.1]; 0.5, 0.2)

High (H) ([0.80, 0.10, 0.1]; 0.6, 0.1)
Very High (VH) ([0.90, 0.10, 0.2]; 0.7, 0.1)

4.1. Algorithm of the Proposed Approach for Solving the MCDM Problems

The algorithm of proposed approach for solving MCDM problems is given in the following steps:
Step 1: Use the decision information given by the DMs Rk, aggregate all the decision matrices

Rk(k = 1, 2, 3, . . . , l) into a collective decision matrix R = (rij)mxn using either the TIFOWGA

operator, the TIFWGA operator or the TIFHWGA operator, where w = (w1, w2, w3, . . . , wn)
T is

the weighting vector of the DMs (see Definitions 7–9).

R = (rij)mxn =



([a11, b11, c11]; µ11 , v11) . . . . . . ([a1n, b1n, c1n]; µ1n , v1n)

([a21, b21, c21]; µ21 , v21 ) . . . · · · ([a2n, b2n, c2n]; µ2n , v2n )
...

...
. . .

...
...

...
. . .

...
([am1, bm1, cm1]; µm1 , vm1 ) . . . · · · ([amn, bmn, cmn]; µmn , vmn )


.

where [aii, bii, cii]; µii , vii is the TIFN which contain both the membership and non-membership degree.
Step 2: Use the decision information given in matrix R = (rij)mxn, utilizing the GTIFOWGA

operator to derive the overall preference values ri (i = 1, 2, 3, . . . , l), which is the collective
comprehensive value ri of alternative Ai :
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where w = (w1, w2, w3, . . . , wn)
T is the weighting vector of the criteria.

Step 3: Calculate the scores function S(ri) (i = 1, 2, . . . , n) and accuracy function
H(ri) (i = 1, 2, . . . , n) for the membership and non-membership functions:

S(ά) =
(a + 2b + c)µα

4
, H(ά) =

(a + 2b + c)(1− vα)

4
.

Step 4: Rank the alternatives by virtue of Definition 6.

4.2. Numerical Example

Suppose the product development team of a design company “X” has generated four new design
alternatives (A1, A2, A3, and A4) for a new crane machine during the conceptual design phase. If a
group of experts (E1, E2, E3, and E4), within the company are assigned to evaluate the designs. If
their aggregated assessment (using the TIFOWGA operator, the TIFWGA operator, or the TIFHWGA
operator) of the design alternatives with respect to the criteria: expected mechanical safety C1, amount
of wear C2, operating and maintenance cost C3, and mass and size C4, whose weight vectors are given
as ω = {0.15, 0.25, 0.32, 0.28} are given in Table 2. We select the best alternative design using the
proposed algorithm.

Table 2. Aggregation of all the experts’ assessments (group intuitionistic fuzzy decision matrix).

Ai C1 C2 C3 C4

A1 ([0.28, 0.46, 0.65]; 0.7, 0.2) ([0.57, 0.76, 0.96]; 0.6, 0.3) ([0.47, 0.62, 0.77]; 0.6, 0.2) ([0.59, 0.80, 1.00]; 0.6, 0.3)
A2 ([0.52, 0.62, 0.71]; 0.6, 0.3) ([0.74, 0.87, 1.00]; 0.8, 0.1) ([0.48, 0.74, 1.00]; 0.8, 0.2) ([0.47, 0.57, 0.67]; 0.7, 0.3)
A3 ([0.40, 0.54, 0.68]; 0.6, 0.4) ([0.59, 0.65, 0.72]; 0.6, 0.3) ([0.46, 0.68, 0.90]; 0.5, 0.5) ([0.55, 0.68, 0.82]; 0.8, 0.1)
A4 ([0.54, 0.77, 1.00]; 0.8, 0.2) ([0.60, 0.76, 0.92]; 0.6, 0.2) ([0.37, 0.56, 0.74]; 0.8, 0.2) ([0.73, 0.80, 0.86]; 0.7, 0.1)

Since the experts’ assessments have already been aggregated, we jump to Step 2 in the algorithm
to derive the overall preference values. Using the GTIFOWGA operator when the criteria weighting
vector is given as ω = {0.15, 0.25, 0.32, 0.28}, the comprehensive evaluation for the four design
alternatives are shown in Table 3.

By applying Definitions 6, we can obtain the ranking of all the design alternatives as shown in
Table 4. In addition, from Tables 3 and 4, we can see that, when the value of λ changes, the rankings of
the design alternatives also change. Furthermore, if we decide to use any of the operators (TIFOWGA,
TIFWGA, or TIFHWGA) in Step 2, the ranking of the design alternatives will, therefore, be in the order
A2 > A4 > A1 > A3, where the best alternative is A2.
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Table 3. The overall preference values (comprehensive evaluations for four alternatives).

Ai λ=1 λ=2 λ=3 λ=4

A1
([0.486354, 0.66996, 0.853457];

0.614035, 0.25466)
([0.030397, 0.041872, 0.053341];

0.925073, 0.12733)
([0.006004, 0.008271, 0.010537];

0.980486, 0.084887)
([0.0019, 0.002617, 0.003334];

0.994251, 0.063665)

A2
([0.538137, 0.69749, 0.84916];

0.738094, 0.222068)
([0.033634, 0.043593, 0.053073];

0.963488, 0.111034)
([0.006644, 0.008611, 0.010483];

0.992694, 0.074023)
([0.002102, 0.002725, 0.003317];

0.998236, 0.055517)

A3
([0.503972, 0.64952, 0.795124];

0.613474, 0.341045)
([0.031498, 0.040595, 0.049695];

0.920472, 0.170523)
([0.006222, 0.008019, 0.009816];

0.977019, 0.113682)
([0.001969, 0.002537, 0.003106];

0.992254, 0.085261)

A4
([0.534505, 0.700587, 0.85263];

0.717162, 0.173177)
([0.033407, 0.043787, 0.053289];

0.95734, 0.086588)
([0.006599, 0.008649, 0.010526];

0.990805, 0.057726)
([0.002088, 0.002737, 0.003331];

0.997633, 0.043294)

λ=5 λ=9 λ=10 λ=50

A1
([0.000778, 0.001072,

0.001366]; 0.998186, 0.050932)
([7.41 × 10−5, 0.000102,

0.00013]; 0.999975, 0.028296)
([4.86 × 10−5, 6.7 × 10−5,

8.53 × 10−5]; 0.999991, 0.025466)
([7.78 × 10−8, 1.07 × 10−7,

1.37 × 10−7]; 1.0000, 0.005093)

A2
([0.000861, 0.001116,

0.001359]; 0.999519, 0.044414)
([8.2 × 10−5, 0.000106,

0.000129]; 0.999995, 0.024674)
([5.38 × 10−5, 6.97 × 10−5,

8.49 × 10−5]; 0.999998, 0.022207)
([8.61 × 10−8, 1.12 × 10−7,

1.36 × 10−7]; 1.0000, 0.004441)

A3
([0.000806, 0.001039,

0.001272]; 0.997147, 0.068209)
([7.68 × 10−5, 9.9 × 10−5,

0.000121]; 0.999919, 0.037894)
([5.04 × 10−5, 6.5 × 10−5,

7.95 × 10−5]; 0.999965, 0.034105)
([8.06 × 10−8, 1.04 × 10−7,

1.27 × 10−7]; 1.0000, 0.006821)

A4
([0.000855, 0.001121,

0.001364]; 0.99932, 0.034635)
([8.15 × 10−5, 0.000107,

0.00013]; 0.999992, 0.019242)
([5.35 × 10−5, 7.01 × 10−5,

8.53 × 10−5]; 0.999997, 0.017318)
([8.55 × 10−8, 1.12 × 10−7,

1.36 × 10−7]; 1.0000, 0.003464)

Table 4. The rankings of all design alternatives.

λ Ranking Best Design Alternative

1 A2 > A4 > A1 > A3 A2
2 A2 > A4 > A1 > A3 A2
3 A4 > A2 > A1 > A3 A4
4 A4 > A2 > A1 > A3 A4
9 A4 > A2 > A1 > A3 A4

10 A4 > A2 > A1 > A3 A4
20 A4 > A2 > A1 > A3 A4
50 A4 > A2 > A1 > A3 A4

4.3. Comparison Analysis and Discussion

To verify the effectiveness and the feasibility of the proposed MCDM approach based on the
GTIFOWGA operator, a comparative study has been conducted between the proposed MCDM
approach, the triangular intuitionistic fuzzy aggregation operator proposed by Li [35] and the extended
VIKOR method of TIFNs by Wan et al. [29] using the same numerical example above.

4.3.1. The Triangular Intuitionistic Fuzzy Aggregation Operator by Li [35]

Since the TIFN decision matrix has been normalized already, we calculate the weighted
comprehensive values Si for the alternative Ai:

Si =
l

∑
j=1

wjrij = 〈
(

l

∑
j=1

wjrij,
l

∑
j=1

wjrij,
l

∑
j=1

wjrij

)
; min

{
µij
}

, max
{

vij
}
〉= ([a1, b1, c1]; µα1 , vα1).

In applying the weighted comprehensive values Si for the alternatives Ai (i = 1, 2, 3, 4), we have:

S1 = 〈(0.50, 0.68, 0.86) ; 0.6, 0.3〉, S2 = 〈(0.55, 0.71, 0.86) ; 0.6, 0.3〉;

S3 = 〈(0.51, 0.65, 0.80) ; 0.5, 0.5〉, S4 = 〈(0.55, 0.71, 0.86) ; 0.6, 0.2〉.

To rank the alternatives we have, Z(Si, λ) =
V(Si ,λ)

1+A(Si ,λ)
, where λ ∈ [0, 1] is the weight representing

the DM preference information. If λ ∈
[
0, 1

2

]
, then it indicates that the DM prefers uncertainty
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or negative feelings, while if λ ∈
[

1
2 , 1

]
, it means that the DM prefers certainty or positive feelings.

Finally, if λ =
[

1
2

]
, the DM can be said to be indifferent between positive feelings and negative feelings.

In this case, since there are no indications of the feeling of the experts or DMs in the question, we
assume λ =

[
1
2

]
. In calculating the values of Z

(
Si, 1

2

)
from the comprehensive values Si, we have:

Z
(

S1,
1
2

)
= 0.416, Z

(
S2,

1
2

)
= 0.432, Z

(
S3,

1
2

)
= 0.311, and Z

(
S4,

1
2

)
= 0.462.

The ranking of the design alternatives are, therefore, in the order A4 > A2 > A1 > A3, where A4

is the best design alternative.

4.3.2. The Extended VIKOR Method of TIFNs by Wan et al. [29]

Using the extended VIKOR method of TIFNs to solve the design selection problem above, we
have the following for the group utility values and individual regret values:

S(A1) = 0.413, R(A1) = 0.141, S(A2) = 0.284, R(A2) = 0.126,

S(A3) = 0.428, R(A3) = 0.151,S(A4) = 0.307, R(A4) = 0.104.

Thus, S− = 0.428, S+ = 0.284, and R− = 0.151, R+ = 0.104.
The comprehensive values of each of the alternatives and the ranking orders, which are in

increasing order with the different coefficients of decision mechanism λ, are obtained as follows:

Q(Ai) = λ
S(Ai)− S+

S− − S+
+ (1− λ)

R(Ai)− R+

R− − R+
.

When there is variation in the coefficients of decision mechanism λ, the rankings of the alternatives
change, as shown in Table 5.

Table 5. The rankings of all design alternatives.

λ Ranking Best Design Alternative

0.1 A4 > A2 > A1 > A3 A4
0.2 A4 > A2 > A1 > A3 A4
0.3 A4 > A2 > A1 > A3 A4
0.4 A4 > A2 > A1 > A3 A4
0.5 A4 > A2 > A1 > A3 A4
0.6 A4 > A2 > A1 > A3 A4
0.7 A4 > A2 > A1 > A3 A4
0.8 A2 > A4 > A1 > A3 A2
0.9 A2 > A4 > A1 > A3 A2
1.0 A2 > A4 > A1 > A3 A2

From the comparison analysis, we can conclude that the proposed approach is effective, feasible,
and rational, as both the results of the triangular intuitionistic fuzzy aggregation operator proposed by
Li [35] and the extended VIKOR method of TIFNs by Wan et al. [29] are in agreement with our proposed
method. The main advantage of the proposed new method is that it is straightforward and with less
computational steps and formulae, unlike the other methods. The GTIFOWGA operator allows for
more attitudinal information and flexibility of the DMs to be expressed and is used in accordance
with the different interests or preferences in solving MCDM problems, since it is a multi-measure of
neutralism, pessimism, and the optimistic characteristics of DMs rather than one single measure as
shown in Table 4.
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5. Conclusions

Triangular intuitionistic fuzzy numbers (TIFNs), which are a more generalized platform
for expressing imprecise, incomplete, and inconsistent information when solving multi-criteria
decision-making problems and for reflecting the evaluation information in different dimensions, has
been applied in this study by developing a new triangular intuitionistic fuzzy geometric aggregation
operator that is the generalized triangular intuitionistic fuzzy ordered weighted geometric averaging
(GTIFOWGA) operator and defining some triangular intuitionistic fuzzy geometric aggregation
operators, including the triangular intuitionistic fuzzy weighted geometric averaging (TIFWGA)
operator, ordered weighted geometric averaging (TIFOWGA) operator and the hybrid geometric
averaging (TIFHWGA) operator.

Based on these operators, a new approach has been proposed for effectively solving multicriteria
decision-making problems when the weight information are fixed and the performance rating
information are expressed in TIFNs. From the perspective of the aggregation operators, the generalized
aggregation (GTIFOWGA) operator developed in this study allows the values of coefficients of decision
mechanism λ to be variables (parameters) rather than fixed numbers, and allows for more attitudinal
information and flexibility of the DMs to be expressed and used in accordance with the different
interests or preferences in solving MAGDM problems, since it is a multi-measure of neutralism,
pessimism and the optimistic characteristics of DMs rather than one single measure.

Finally, an illustrative example was provided to show the applicability and rationality of the
presented method and it was followed by a comparative analysis using similar existing computational
approaches. The results shows that, the proposed method is effective, feasible, and rational, as it was in
total agreement with both the results of triangular intuitionistic fuzzy aggregation operator proposed
by Li [35] and the extended VIKOR method of TIFNs proposed by Wan et al. [29]. In the future, we
will consider other applications of the new method, specifically for real-life case studies, where the
computational cost of the new aggregation operators will be determined using the computational
complexity analysis approach.
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