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Abstract: In order to estimate traffic densities in a large-scale urban freeway network in an accurate
and timely fashion when traffic sensors do not cover the freeway network completely and thus only
local measurement data can be utilized, this paper proposes a decentralized state observer approach
based on a macroscopic traffic flow model. Firstly, by using the well-known cell transmission
model (CTM), the urban freeway network is modeled in the way of distributed systems. Secondly,
based on the model, a decentralized observer is designed. With the help of the Lyapunov function
and S-procedure theory, the observer gains are computed by using linear matrix inequality (LMI)
technique. So, the traffic densities of the whole road network can be estimated by the designed
observer. Finally, this method is applied to the outer ring of the Beijing’s second ring road and
experimental results demonstrate the effectiveness and applicability of the proposed approach.

Keywords: urban freeway network; traffic densities estimation; decentralized state observer;
Lyapunov function; S-procedure

1. Introduction

As one of the most important parameters of traffic flow and a key index to identify traffic state,
traffic density estimation remains one of the major concerns in urban traffic networks. In recent
years, various strategies have been proposed for tackling related problems in traffic density estimation.
Most of these methods are based on the use of a macroscopic traffic flow model, since Daganzo
proposed the well-known cell transmission model (CTM) [1,2]. Muñoz and Sun et al. presented the
switching mode model (SMM) based on the CTM which is well suited for model-based traffic density
estimation [3], and they further applied a semi-automated method to the California Freeway [4].
Nevertheless, this approach has two major drawbacks. Firstly, it requires an accurate road network
model and a precise initial state; if the two key points cannot be met, it will result in an unacceptable
estimated error. Secondly, the model itself is not robust, so once the traffic network is disturbed by
noise, the estimated results are still inaccurate. Therefore, other approaches were studied based on
the dynamic model, as the efficient practical tools, based-model state observer and Kalman filter were
utilized in traffic state estimation. Alvarez-Icaza et al. [5] adopted the adaptive observer to estimate
vehicle densities. Canudas-de-Wit et al. [6] proposed the graph constrained-CTM observer and applied
it to reconstruct the densities of the Grenoble south ring, and in [7] they further introduced a robust
mode selector for the uncertain graph constrained switching mode model and applied it to highway
traffic densities estimation via a switched state observer. Chen and Guo et al. [8,9] deduced a piecewise
affine linear system (PWALS) by combining the cell transmission model (CTM) with the dynamic
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graph hybrid automata (DGHA), and then based on the model designed switched state observer to
estimate traffic densities. In addition, Wang and Papageorgiou [10] proposed a general stochastic
macroscopic traffic flow model of freeway stretches, and based on this model the extended Kalman
filter was designed to estimate traffic state in freeway stretches. Juan and Alexandre [11] presented a
new algorithm to integrate GPS data in flow models, and compared it to an application of Kalman
filtering for the specific problem of interest.

However, the high computational complexity and intolerable delay limit those centralized
observers mentioned above cannot be effectively applied to large-scale road networks. Consequently,
we must consider another estimated strategy. To the best of our knowledge, decentralized estimation
algorithm is a practical tool to solve the estimation problem of the large-scale system, and a larger
amount of literature is available on decentralized observer for state estimation. In reference [12,13],
a decentralized state observer was presented to solve the state estimation problem for a class of
norm-bounded nonlinear systems. In reference [14–16], decentralized observers were applied to
large-scale continuous interconnected systems. Unfortunately, although such methods were widely
adopted in different large-scale systems, they cannot be applied directly in our urban freeway network
because they were based on a continuous system.

In this paper, our goal is to design a decentralized state observer based on the dynamic model
to estimate traffic densities for a large-scale urban freeway network. By introducing the S-procedure
and the Lyapunov function approach for the estimation error system, the corresponding observer gain
matrices can be computed. This is also one of the most significant contributions of this paper.

On the other hand, it is important to note that the observability problem on the traffic network
setting is the pre-step of the estimation problem. Unless establishing that the road network system
is observable, estimation problem should not be approached. This problem is closely related to
the traffic sensors placement in the road network. Contreras et al. [17] proposed a solution to the
observability problem in a dynamical setting on a straight road segment. Agarwal et al. [18] extended
the methodology to complex traffic networks using the complex modeling framework proposed in
reference [19]. Contreras et al. [20] further explored the quality of traffic observability and state
estimation on Highways in a Lagrangian setting.

The rest of the paper is organized as follows. In Section 2, we provide some relevant background
material and state the problem. In Section 3, the decentralized state observer is designed based on the
urban freeway network model. In Section 4, we illustrate the obtained results by applying them to the
outer ring of Beijing’s second ring road. The paper is concluded in Section 5.

2. Preliminaries and Problem Formula

The macroscopic traffic flow model of an urban freeway network has been proposed by combining
the dynamic graph hybrid automata (DGHA) with the cell transmission model (CTM), and as a result,
the traffic flow network can be deduced a centralized piecewise affine linear system (PWALS) in our
previous work [9]. The detailed modeling process can be seen in reference [9].

x (t + 1) = Aσ(t)x (t) + Bσ(t)u(t) + Fσ(t)

y (t) = Cx (t)

(1)

where x = [ρ1, . . . , ρn]T ∈ Rn denotes the traffic density vector of the road network, the input vector
u ∈ Rm is added to the traffic demand of the road network, y(t) ∈ Rp is the measured output vector of
the traffic sensors, Aσ and Bσ are the system matrix and input matrix, respectively. C is the output
matrix depending on the type number and location of the sensors. Fσ is a vector consisting of the
parameters in the fundamental diagrams of all the road segments. σ : [0,+∞) → {1, 2, . . . , k} is the
switching function that maps the index time stage into an index set {1, 2, . . . , k}, and each of the indices
corresponds to a different mode of the system.



Information 2017, 8, 95 3 of 13

In the model, the triangular fundamental diagram (Figure 1) is used to approximately describe
the relationship between traffic flow and density of road segment (cell), where ρi is the traffic density
(vpkm), qi is the traffic flow (vph), Ci is the traffic capacity (vph), Vi is the free flow speed (kmph),
Wi is the traffic wave speed (kmph), ρ0

i is the critical density (vpkm), and ρm
i is the maximum/jam

density (vpkm).
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Figure 1. The triangular fundamental diagram.

In reference [9], based on model (1), the following centralized state observer was designed to
estimate the traffic densities:

x̂ (t + 1) = Aσ(t) x̂ (t) + Bσ(t)u (t) + Fσ(t) + Kσ(t) [y (t)− Cx̂ (t)]

ŷ (t) = Cx̂ (t)

(2)

where x̂ (t) ∈ Rn denotes the estimated density vector, ŷ (t) ∈ Rp is the output vector of the observer,
and Kσ is the gain matrix of the observer.

The estimation error dynamic system can be obtained by combining Equation (1) with
Equation (2):

e (t + 1) =
(

Aσ(t) − Kσ(t)C
)

e (t) (3)

For the system (1), if the pair (Aσ, C) is observable or detectable, then the matrix Kσ can be
designed so that the matrix

(
Aσ(t) − Kσ(t)C

)
is Hurwitz and the e(t) is convergent with time.

However, the state observer (2) is inherently centralized, and it cannot be applied effectively in
a large-scale freeway network for the following reasons:

(i) The estimated state x̂(t) is of high dimension, causing complicated computational effort and
intolerable delay; (ii) Local problems will cause paralysis of the entire dynamic network system because
of its centralized structure; (iii) The requirement of global information communication; (iv) Real-time
continuous communication of all measurements to a central processor is required.

Consequently, this paper proposes a decentralized observer design strategy to solve the estimated
problem of a large-scale urban freeway network.

3. Decentralized State Observer Design

To the best of our knowledge, the decentralized state observer is an effective practical tool and can
fill in the gap of density estimation for large-scale freeway networks. In this paper, we only consider
the situation of fixed mode (without switching case). We assume that an urban freeway can be divided
into N sections, that each one can be seen a subsystem, and the dynamics of the i-th one is described
as follows:
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
xi (t + 1) = Aixi (t) + Biui (t) + ∑

j∈Ni

Aijxj (t) + Fi

yi (t) = Cixi (t) , i = 1, . . . , N

(4)

where xi ∈ Rni is the traffic density vector of the subsystem i, xj ∈ Rnj is the density vector of all
the neighbors of subsystem i, the input vector ui ∈ Rmi is added to represent the traffic demand
of the subsystem i, yi ∈ Rpi is the measured output vector of the sensors in subsystem i, and
Ai, Bi, and Ci are the system matrix, the input matrix, and the output matrix with appropriate
dimension, respectively. Fi is the affine item. Ni= Nin

i +Nout
i , Nin

i =
{

j ∈ (1, . . . , N) \ {i} : A(ij)σ(t)
6= 0

}
denotes the in-neighbors of subsystem i, and Nout

i =
{

j ∈ (1, . . . , N) \ {i} : A(ji)σ(t)
6= 0

}
denotes the

out-neighbors of subsystem i.
Here we denote hi (t, x) = ∑

j∈Ni

Aijxj (t).

So, Equation (4) can be written as follows:
xi (t + 1) = Aixi (t) + Biui (t) + Fi + hi (t, x)

yi (t) = Cixi (t)
(5)

where the hi (t, x) denotes the interconnected terms illustrating the nonlinearity of the i-th subsystem.
The compact form of the overall system can then be written as follows:

x (t + 1) = Ax (t) + Bu (t) + F + h (t, x)

y (t) = Cx (t)
(6)

where x = [ρ1
T , . . . , ρN

T ]T , u = [uT
1 , . . . , uT

N ]
T and y = [yT

1 , . . . , yT
N ]

T are the state vector, the input
vector and the measured output vector of the global system, respectively. h (t, x) = h =

[
hT

1 , hT
2 , . . . hT

N
]

is the interconnected term between the adjacent subsystem. A = diag (Ai), B = diag (Bi),
C = diag (Ci), F = diag (Fi).

The interconnected term h (t, x) satisfies the following quadratic inequality

hT (t, x) h (t, x) 6 λ2xT HT Hx (7)

where λ is positive constant and H is a constant matrix.
The state observer of subsystem i is as follows:

x̂i (t + 1) = Ai x̂i (t) + Biui (t) + Fi + Ki (yi (t)− ŷi (t))

ŷi (t) = Ci x̂i (t) , i = 1, . . . , N
(8)

where Ki is the local observer gain matrix to be designed in the following.
The observer of the global system can be designed in the following form:

x̂ (t + 1) = Ax̂ (t) + Bu (t) + F + K (y (t)− ŷ (t))

ŷ (t) = Cx̂ (t)
(9)

where x̂T =
[
x̂T

1 , . . . , x̂T
N
]

is the estimated traffic density vector, ŷ is the observer output vector,
and K = blkdig (K1, . . . , KN) is the observer gain matrix to be computed in the following.
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The error dynamics between the real state and the estimated one, e = x− x̂, can be described by
the following difference equation

e (t + 1) = (A− KC) e (t) + h (t, x) (10)

As we all know, in order to reconstruct the actual traffic densities of a road network by using the
designed state observer, the error dynamic system e(t + 1) must be convergent. On the other hand,
if the pair (A, C) is observable or detectable, we can find a gain matrix K such that the matrix A−KC is
Hurwitz. However, the stability of the error system (10) cannot be guaranteed, due to the existence of
the interconnected item h(t, x). We can solve the problem for the large-scale interconnected systems by
employing the S-procedure approach [21], and thus the decentralized observer design is transformed
into the feasible solution of the linear matrix inequality (LMI). Eventually, the observer gain can be
computed by using the LMI technique [22].

First of all, for (10) to be asymptotically stable, a Lyapunov function V(e) = eT Pe should exist
such that ∆V(e) < 0. So, the following Inequality (11) is satisfied:

∆V(e) = Ve(t+1) −Ve(t)

= [(A− KC)e + h]T P[(A− KC)e + h]− eT Pe

= eT
[
(A− KC)T P (A− KC)− P

]
e + eT(A− KC)T Ph

+ hT P (A− KC) e + hT Ph

< 0

(11)

where P is a symmetric positive definite matrix.
Furthermore, we can obtain a constraint from Inequality (7):

λ2xHT Hx− hT (t, x) h (t, x) > 0 (12)

Next, by introducing S-procedure and combining (11) with (12), there must exist a nonnegative
constant µ so that the Inequality (13) is satisfied:

eT
[
(A− KC)T P (A− KC)− P

]
e + eT(A− KC)T Ph + hT P (A− KC) e + hT Ph

+µ
[
λ2xHT Hx− hT (t, x) h (t, x)

]
< 0

(13)

Therefore, Equation (13) can be written as follows:

[
xT eT hT

]  µλ2HT H 0 0
0 W (A− KC)T P
0 P (A− KC) P− µI


 x

e
h

 < 0 (14)

Namely:  µλ2HT H 0 0
0 W (A− KC)T P
0 P (A− KC) P− µI

 < 0 (15)

where W = (A− KC)T P (A− KC)− P.
Notice that the Inequality (15) is not a linear matrix inequality because it contains the bilinearities,

but can be made so by employing the change of variable, where G = PK, Q = KG. The transformed
problem is now of LMI variety. Eventually, the observer gain matrix can be calculated by K = P−1G.
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Remark 1. The stability of the error system (10) can be transformed into the feasible solution of the linear
matrix inequality (LMI) (15); thus, if a feasible solution of (15) exists, then the stability of the error system (10)
is guaranteed.

4. Experimental Results and Analysis

4.1. Data Collection and Parameter Settings

In this section, we will take the outer ring of Beijing’s second ring road (Figure 2) as an application
to verify the performance of the proposed approach. The outer ring is approximately 33 km long and
includes 37 on-ramps and 53 off-ramps. According to the homogeneous rule of cell division [8], the
outer ring freeway can be divided into 100 cells, and the whole road network was partitioned into
4 sections. Each one can be seen as one subsystem which contains 25 cells, and the cell lengths are
listed in Appendix A.

The first step for preparing the experiment was the development of a microscopic model for the
outer ring road using the traffic simulator VISSIM. After achieving the correct freeway architecture,
we proceeded with the identification of the macroscopic characteristics (e.g., split ratio and demand
flows) necessary to tune the whole microscopic simulator. Additionally, we obtained the real traffic
state of the outer ring (on 10 December 2016) from the Beijing Collaborative Innovation Center for
Metropolitan Transportation. Therefore, by using the road network model of the outer ring road built
by VISSIM, we further mimicked the traffic flow evolution from about 22:00 p.m. to 04:00 a.m.

A

B

Curve

Curve
Curve

Curve

Curve

Curve

Curve

Curve

Curve

Curve

Curve

Figure 2. The outer ring of Beijing’s second ring freeway (from Google Maps). The points A and B
are marked as the first on-ramp and the first off-ramp, respectively. The segment between A and B is
labeled as cell 1 (Note: the Chinese words in this map are just the name of some buildings and will not
affect the meaning of this image).

Moreover, according to the difference of turning radius, we classed the roads (cells) into the various
curves which are marked in blue boxes in Figure 2, and further fitted the flow-density relationship of
road segments with an off-line identification process by using a least square approximation approach
with the help of the VISSIM simulator and obtained the fundamental parameters; the results are listed
in Table 1.
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Table 1. Road segment fundamental parameters.

Cell V W C ρ0 ρm

2, 9 63 18 6230 105 535
11 66 18 6505 95 580
25 60 18 5980 95 585

36, 40 61 17 6200 102 550
57 63 19 6135 99 568
59 61 17 6158 103 505
73 66 18 6250 105 560

99, 100 65 20 6000 102 550
Others 75 19 6500 115 582

The corresponding matrices As = [ai,j] and Bs = [bi,j], s = 1, 2, 3, 4, are listed in Appendix B.
Here the sample time period T = 5s such that the condition ViT ≤ Li, i = 1, 2 . . . 100, is satisfied.

4.2. Traffic Sensor Placement

As the pre-step of estimation problem, the observability problem is closely related with the study
of the traffic sensor placement problem. The observability problem of a given network determines
how many, where, and what types of sensors would be required to completely estimate all the states of
the given road network system. Hence, it is extremely essential to analyze the observability problem
in traffic networks.

The measurement output matrix C in Equation (6) is used to identify different sensor placements.
We will use this to analyze the observability problem on the outer ring of Beijing’s second ring freeway.
To the best of our knowledge, different types of sensor technologies can be applied widely to collect
traffic data, including floating vehicle, loop detector, microwave, video, etc. Different source data
can provide different measurement outputs, and thus one gets different types of matrix C in the
measurement output equation. One can even utilize the fused data or multi-dimensional data of
several types of sensors at the same time.

In this paper, to ensure that each subsystem is observable, the virtual loop detectors in VISSIM
installed in cells 1, 3, 5, 7, 11, 13, 15, 20, 23, and 25 were used to collect traffic densities. Hence,
corresponding to these detectors, csi,j , s = 1, 2, 3, 4 is a 10× 25 matrix with entries cs1,1 = cs2,3 = cs3,5 =

cs4,7 = cs5,11 = cs6,13 = cs7,15 = cs8,20 = cs9,23 = cs10,25 = 1 and csi,j = 0 for the other i, j. Moreover, one can
verify that the pair (As, Cs) is observable for all s = 1, 2, 3, 4 by calculating the observability matrix.

Meanwhile, we collect traffic densities by using loop detectors which are set in each cell
(validation purposes) of Beijing’s second ring freeway built by VISSIM mentioned above, and we call
these densities the simulated ones.

4.3. Analysis of Results

The experimental results for the outer ring freeway are shown in Figures 3 and 4 in the form of
time-space diagrams, where Figure 3 is the simulated densities from 22:00 p.m. to 04:00 a.m. and
Figure 4 presents the estimated densities obtained by the designed observer. It is clear that the densities
of all road segments are smaller than the critical ones after about 22:00, and the traffic flows gradually
decreased with time. Especially, there are almost no vehicles on the road after about 24:00.

In order to further demonstrate the estimated effect of the observer, cells 6, 41, 70, and 88 are
presented to exhibit the density comparison in more detail (see Figure 5). From Figures 4 and 5,
we can see that the decentralized observer is feasible, and the estimated densities can approximate the
simulated ones.
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Figure 3. Simulated densities. (a) Subsystem 1; (b) Subsystem 2; (c) Subsystem 3; (d) Subsystem 4.
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Figure 4. Cont.
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Figure 4. Estimated densities. (a) Subsystem 1; (b) Subsystem 2; (c) Subsystem 3; (d) Subsystem 4.
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Figure 5. Experimental results. (a) Cell 6; (b) Cell 41; (c) Cell 70; (d) Cell 88.

The performance indicator of the state observer is given by using the mean square error (MSE),
which is defined by Equation (16); Table 2 shows the mean value of MSE for each subsystem.
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MSE =

√√√√√ n
∑

i=1
(ρ̂i − ρi)

2

n
(16)

From Table 2, we can further calculate that the mean value of the overall freeway network is
approximately 13.115%. The results indicate that the designed decentralized state observer has a good
estimated performance.

Table 2. Mean value of mean square error (MSE) for each subsystem.

Subsystem 1 2 3 4

MSE 0.1295 0.1326 0.1332 0.1293

5. Conclusions and Future Work

In this paper, based on the macroscopic traffic flow model, we have designed a decentralized
state observer to estimate the traffic densities of a large-scale urban freeway network. The LMI
techniques and S-procedure method were both used to compute the observer gain matrices. Moreover,
experimental results of the outer ring of Beijing’s second ring freeway exhibited the estimated densities,
and the simulated densities obtained from the VISSIM traffic simulator agree closely. We have shown
that the traffic densities of the road segments not equipped with sensors can be reconstructed by using
the designed observer.

However, it should be noted that the developed urban freeway network model and the simulated
data in this paper have some limitations which need to be improved upon in future research.

Firstly, we only considered the fixed mode case; so, in future research, the switched-type traffic
model and decentralized observer are both required. Secondly, in the application example, we only
used the simulation data obtained by VISSIM to justify the performance of the designed observer; in
future research, we need to collect real traffic data for the practical application to further verify our
proposed approach.
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Appendix A

Table A1. Cell length of Beijing’s second ring road.

Number Length Number Length Number Length Number Length

1 215 m 26 661 m 51 318 m 76 133 m
2 700 m 27 112 m 52 232 m 77 337 m
3 170 m 28 726 m 53 260 m 78 368 m
4 382 m 29 607 m 54 185 m 79 158 m
5 182 m 30 356 m 55 185 m 80 330 m
6 456 m 31 445 m 56 270 m 81 358 m
7 423 m 32 445 m 57 296 m 82 283 m
8 288 m 33 406 m 58 301 m 83 347 m
9 370 m 34 277 m 59 336 m 84 306 m
10 204 m 35 505 m 60 160 m 85 391 m
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Table A1. Cont.

Number Length Number Length Number Length Number Length

11 339 m 36 467 m 61 136 m 86 288 m
12 132 m 37 477 m 62 108 m 87 370 m
13 240 m 38 160 m 63 100 m 88 305 m
14 450 m 39 418 m 64 96 m 89 125 m
15 236 m 40 421 m 65 265 m 90 651 m
16 123 m 41 415 m 66 135 m 91 127 m
17 753 m 42 130 m 67 185 m 92 426 m
18 508 m 43 270 m 68 393 m 93 146 m
19 508 m 44 336 m 69 475 m 94 231 m
20 198 m 45 336 m 70 363 m 95 308 m
21 608 m 46 211 m 71 195 m 96 421 m
22 150 m 47 290 m 72 237 m 97 240 m
23 845 m 48 316 m 73 396 m 98 329 m
24 278 m 49 561 m 74 429 m 99 317 m
25 435 m 50 411 m 75 168 m 100 223 m

Appendix B

Subsystem 1:

A1 = [ai,j], a1,1 = 0.6123, a2,1 = 0.1191, a2,2 = 0.8809, a3,2 = 0.4903, a3,3 = 0.5097, a4,3 = 0.2182,
a4,4 = 0.7818, a5,4 = 0.4580, a5,5 = 0.5420, a6,5 = 0.1828, a6,6 = 0.8172, a7,6 = 0.1970, a7,7 = 0.8030,
a8,7 = 0.2894, a8,8 = 0.7106, a9,8 = 0.2253, a9,9 = 0.7747, a10,9 = 0.4086, a10,10 = 0.5914, a11,10 = 0.2459,
a11,11 = 0.7541, a12,11 = 0.6314, a12,12 = 0.3686, a13,12 = 0.3473, a13,13 = 0.6527, a14,13 = 0.1852,
a14,14 = 0.8148, a15,14 = 0.3532, a15,15 = 0.6468, a16,15 = 0.6776, a16,16 = 0.3224, a17,16 = 0.1107,
a17,17 = 0.8893, a18,17 = 0.1641, a18,18 = 0.8359, a19,18 = 0.1641, a19,19 = 0.8359, a20,19 = 0.4210,
a20,20 = 0.5790, a21,20 = 0.1371, a21,21 = 0.8629, a22,21 = 0.5557, a22,22 = 0.4443, a23,22 = 0.0986,
a23,23 = 0.9014, a24,23 = 0.2998, a24,24 = 0.7002, a25,24 = 0.1916, a25,25 = 0.8084.
For the subsystem 1 with 12 on-ramps the matrix B1 = [bi,j] is a constant matrix with the entries
b1,1 = 0.02326, b3,2 = 0.02941, b5,3 = 0.02747,b7,4 = 0.01748, b9,5 = 0.01351, b11,6 = 0.01475,
b14,7 = 0.01111, b15,8 = 0.02112, b17,9 = 0.01489, b20,10 = 0.02525, b22,11 = 0.0333, b25,12 = 0.01149, and
bi,j = 0 for the other entries in B1.

Subsystem 2:

A2 = [ai,j], a1,1 = 0.8739, a2,1 = 0.7442, a2,2 = 0.2558, a3,2 = 0.1148, a3,3 = 0.8852, a4,3 = 0.1373,
a4,4 = 0.8627, a5,4 = 0.2341, a5,5 = 0.7659, a6,5 = 0.1873, a6,6 = 0.8127, a7,6 = 0.1873, a7,7 = 0.8127,
a8,7 = 0.2053, a8,8 = 0.7947, a9,8 = 0.3009, a9,9 = 0.6991, a10,9 = 0.1650, a10,10 = 0.8350, a11,10 = 0.1785,
a11,11 = 0.8215, a12,11 = 0.1747, a12,12 = 0.8253, a13,12 = 0.5209, a13,13 = 0.4791, a14,13 = 0.1994,
a14,14 = 0.8006, a15,14 = 0.1980, a15,15 = 0.8020, a16,15 = 0.2008, a16,16 = 0.7992, a17,16 = 0.6412,
a17,17 = 0.3588, a18,17 = 0.3087, a18,18 = 0.6913, a19,18 = 0.2481, a19,19 = 0.7519, a20,19 = 0.2481,
a20,20 = 0.7519, a21,20 = 0.3950, a21,21 = 0.6050, a22,21 = 0.2874, a22,22 = 0.7126, a23,22 = 0.2638,
a23,23 = 0.7362, a24,23 = 0.1486, a24,24 = 0.8514, a25,24 = 0.2028, a25,25 = 0.7972.
For the subsystem 2 with 8 on-ramps the matrix B2 = [bi,j] is a constant matrix with the entries
b2,1 = 0.04464, b5,2 = 0.01404, b8,3 = 0.01231,b11,4 = 0.01071, b15,5 = 0.01188, b21,6 = 0.02370,
b23,7 = 0.01582, b24,8 = 0.00891, and bi,j = 0 for the other entries in B1.

Subsystem 3:

A3 = [ai,j], a1,1 = 0.7379, a2,1 = 0.3593, a2,2 = 0.6407, a3,2 = 0.3206, a3,3 = 0.6794, a4,3 = 0.4505,
a4,4 = 0.5495, a5,4 = 0.4505, a5,5 = 0.5495, a6,5 = 0.3087, a6,6 = 0.6913, a7,6 = 0.2816, a7,7 = 0.7184,
a8,7 = 0.2769, a8,8 = 0.7231, a9,8 = 0.2481, a9,9 = 0.7519, a10,9 = 0.5209, a10,10 = 0.4791, a11,10 = 0.6129,



Information 2017, 8, 95 12 of 13

a11,11 = 0.3871, a12,11 = 0.7718, a12,12 = 0.2282, a13,12 = 0.8335, a13,13 = 0.1665, a14,13 = 0.8682,
a14,14 = 0.1318, a15,14 = 0.3145, a15,15 = 0.6855, a16,15 = 0.6174, a16,16 = 0.3826, a17,16 = 0.4505,
a17,17 = 0.5495, a18,17 = 0.2121, a18,18 = 0.7879, a19,18 = 0.1755, a19,19 = 0.8245, a20,19 = 0.2296,
a20,20 = 0.7704, a21,20 = 0.4274, a21,21 = 0.5726, a22,21 = 0.3517, a22,22 = 0.6483, a23,22 = 0.2105,
a23,23 = 0.7895, a24,23 = 0.1943, a24,24 = 0.8057, a25,24 = 0.4961, a25,25 = 0.5039.
For the subsystem 3 with 8 on-ramps the matrix B3 = [bi,j] is a constant matrix with the entries
b3,1 = 0.01923, b5,2 = 0.02702, b11,3 = 0.03676,b12,4 = 0.04630, b15,5 = 0.01887, b17,6 = 0.02702,
b19,7 = 0.01377, b21,8 = 0.02564, and bi,j = 0 for the other entries in B1.

Subsystem 4:

A4 = [ai,j], a1,1 = 0.3733, a2,1 = 0.2473, a2,2 = 0.7527, a3,2 = 0.2265, a3,3 = 0.7735, a4,3 = 0.5275,
a4,4 = 0.4725, a5,4 = 0.2526, a5,5 = 0.7474, a6,5 = 0.2328, a6,6 = 0.7672, a7,6 = 0.2945, a7,7 = 0.7055,
a8,7 = 0.2402, a8,8 = 0.7598, a9,8 = 0.2724, a9,9 = 0.7276, a10,9 = 0.2132, a10,10 = 0.7868, a11,10 = 0.2894,
a11,11 = 0.7106, a12,11 = 0.2253, a12,12 = 0.7747, a13,12 = 0.2733, a13,13 = 0.7267, a14,13 = 0.6668,
a14,14 = 0.3332, a15,14 = 0.1280, a15,15 = 0.8720, a16,15 = 0.6563, a16,16 = 0.3437, a17,16 = 0.1957,
a17,17 = 0.8043, a18,17 = 0.5709, a18,18 = 0.4291, a19,18 = 0.3608, a19,19 = 0.6392, a20,19 = 0.2706,
a20,20 = 0.7294, a21,20 = 0.1980, a21,21 = 0.8020, a22,21 = 0.3473, a22,22 = 0.6527, a23,22 = 0.2533,
a23,23 = 0.7467, a24,23 = 0.2629, a24,24 = 0.7371, a25,24 = 0.3738, a25,25 = 0.6262.
For the subsystem 4 with 9 on-ramps the matrix B4 = [bi,j] is a constant matrix with the entries
b2,1 = 0.01484, b4,2 = 0.03165, b7,3 = 0.01767, b9,4 = 0.01634, b12,5 = 0.01351, b14,6 = 0.04000,
b17,7 = 0.01174, b19,8 = 0.02165, b22,9 = 0.02083, and bi,j = 0 for the other entries in B1.
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