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Abstract: Single-valued neutrosophic sets (SVNSs) handling the uncertainties characterized by truth,
indeterminacy, and falsity membership degrees, are a more flexible way to capture uncertainty. In this
paper, some new types of distance measures, overcoming the shortcomings of the existing measures,
for SVNSs with two parameters are proposed along with their proofs. The various desirable relations
between the proposed measures have also been derived. A comparison between the proposed and
the existing measures has been performed in terms of counter-intuitive cases for showing its validity.
The proposed measures have been illustrated with case studies of pattern recognition as well as
medical diagnoses, along with the effect of the different parameters on the ordering of the objects.
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1. Introduction

The classical measure theory has been widely used to represent uncertainties in data.
However, these measures are valid only for precise data, and hence they may be unable to give
accurate judgments for data uncertain and imprecise in nature. To handle this, fuzzy set (FS) theory,
developed by Zadeh [1], has received much attention over the last decades because of its capability of
handling uncertainties. After this, Atanassov [2] proposed the concept of an intuitionistic fuzzy set
(IFS), which extends the theory of FSs with the addition of a degree of non-membership. As IFS theory
has widely been used by researchers [3–16] in different disciplines for handling the uncertainties in data,
hence its corresponding analysis is more meaningful than FSs’ crisp analysis. Nevertheless, neither the
FS nor IFS theory are able to deal with indeterminate and inconsistent information. For instance, we
take a person giving their opinion about an object with 0.5 being the possibility that the statement is
true, 0.7 being the possibility that the statement is false and 0.2 being the possibility that he or she is not sure.
To resolve this, Smarandache [17] introduced a new component called the “indeterminacy-membership
function” and added the “truth membership function” and “falsity membership function”, all which are
independent components lying in ]0−, 1+[, and hence the corresponding set is known as a neutrosophic
set (NS), which is the generalization of the IFS and FS. However, without specification, NSs are difficult
to apply to real-life problems. Thus, a particular case of the NS called a single-valued NS (SVNS) has
been proposed by Smarandache [17], Wang et al. [18].

After this pioneering work, researchers have been engaged in extensions and applications
to different disciplines. However, the most important task for the decision-maker is to rank the
objects so as to obtain the desired object(s). For this, researchers have made efforts to enrich the
concept of information measures in neutrosophic environments. Broumi and Smarandache [19]
introduced the Hausdorff distance, while Majumdar [20] presented the Hamming and Euclidean
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distance for comparing the SVNSs. Ye [21] presented the concept of correlation for single-valued
neutrosophic numbers (SVNNs). Additionally, Ye [22] improved the concept of cosine similarity for
SVNSs, which was firstly introduced by Kong et al. [23] in a neutrosophic environment. Nancy and
Garg [24] presented an improved score function for ranking the SVNNs and applied them to solve the
decision-making problem. Garg and Nancy [25] presented the entropy measure of order α and applied
them to solve decision-making problems. Recently, Garg and Nancy [26] presented a technique for
order preference by similarity to ideal solution (TOPSIS) method under an interval NS environment
to solve decision-making problems. Aside from these, various authors have incorporated the idea
of NS theory into the similarity measures [27,28], distance measures [29,30], the cosine similarity
measure [19,22,31], and aggregation operators [22,31–40].

Thus, on the basis of the above observations, it has been observed that distance or similarity
measures are of key importance in a number of theoretical and applied statistical inference and
data processing problems. It has been deduced from studies that similarity, entropy and divergence
measures could be induced by the normalized distance measure on the basis of their axiomatic
definitions. On the other hand, SVNSs are one of the most successful theories to handle the uncertainties
and certainties in the system, but little systematic research has explored these problems. The gap in
the research motivates us to develop some families of the distance measures of the SVNS to solve
the decision-making problem, for which preferences related to different alternatives are taken in the
form of neutrosophic numbers. The main contributions of this work are summarized as follows:
(i) to highlight the shortcomings of the various existing distance measures under the single-valued
neutrosophic information through illustrative examples; (ii) to overcome the shortcomings of the
existing measures, this paper defines some new series of biparametric distance measures between
SVNSs, which depend on two parameters, namely, p and t, where p is the Lp norm and t identifies
the level of uncertainty. The various desirable relations between these have been investigated in
detail. Then, we utilized these measures to solve the problem of pattern recognition as well as medical
diagnosis and compared their performance with that of some of the existing approaches.

The rest of this paper is organized as follows. Section 2 briefly describes the concepts of
NSs, SVNSs and their corresponding existing distance measures. Section 3 presents a family of
the normalized and weighted normalized distance measures between two SVNSs. Some of their
desirable properties have also been investigated in detail, while generalized distance measures have
been proposed in Section 4. The defined measures are illustrated, by an example in Section 5, using the
field of pattern recognition and medical diagnosis for demonstrating the effectiveness and stability of
the proposed measures. Finally, a concrete conclusion has been drawn in Section 6.

2. Preliminaries

An overview of NSs and SVNSs is addressed here on the universal set X.

2.1. Basic Definitions

Definition 1 ([17,41]). A neutrosophic set (NS) A in X is defined by its truth membership function (TA(x)),
an indeterminacy-membership function (IA(x)) and a falsity membership function (FA(x)), where all are
subsets of ]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x); thus 0− ≤ sup TA(x) +
sup IA(x) + sup FA(x) ≤ 3+ for all x ∈ X. Here, sup represents the supremum of the set.

Wang et al. [18], Smarandache [41] defined the SVNS, which is an instance of a NS.

Definition 2 ([18,41]). A single-valued neutrosophic set (SVNS) A is defined as

A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X}
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where TA : X → [0, 1], IA : X → [0, 1] and FA : X → [0, 1] with TA(x) + IA(x) + FA(x) ≤ 3 for all x ∈ X.
The values TA(x), IA(x) and FA(x) denote the truth-membership degree, the indeterminacy-membership degree
and the falsity-membership degree of x to A, respectively. The pairs of these are called single-valued neutrosophic
numbers (SVNNs), which are denoted by α = 〈µA, ρA, νA〉, and class of SVNSs is denoted by Φ(X).

Definition 3. Let A = 〈µA, ρA, νA〉 and B = 〈µB, ρB, νB〉 be two single-valued neutrosophic sets (SVNSs).
Then the following expressions are defined by [18]:

(i) A ⊆ B if and only if (iff) µA(x) ≤ µB(x), ρA(x) ≥ ρB(x) and νA(x) ≥ νB(x) for all x in X;
(ii) A = B iff A ⊆ B and B ⊆ A;
(iii) Ac = {〈νA(x), 1− ρA(x), µA(x) | x ∈ X〉};
(iv) A ∩ B = 〈min(µA(x), µB(x)), max(ρA(x), ρB(x)), max(νA(x), νB(x))〉;
(v) A ∪ B = 〈max(µA(x), µB(x)), min(ρA(x), ρB(x)), min(νA(x), νB(x))〉.

2.2. Existing Distance Measures

Definition 4. A real function d : Φ(X)×Φ(X)→ [0, 1] is called a distance measure [19], where d satisfies
the following axioms for A, B, C ∈ Φ(X):

(P1) 0 ≤ d(A, B) ≤ 1;
(P2) d(A, B) = 0 iff A = B;
(P3) d(A, B) = d(B, A);
(P4) If A ⊆ B ⊆ C, then d(A, C) ≥ d(A, B) and d(A, C) ≥ d(B, C).

On the basis of this, several researchers have addressed the various types of distance
and similarity measures between two SVNSs A = 〈xi, µA(xi), ρA(xi), νA(xi)|xi ∈ X〉 and
B = 〈xi, µB(xi), ρB(xi), νB(xi)|xi ∈ X〉, i = 1, 2, ..., n, which are given as follows:

(i) The extended Hausdorff distance [19]:

DH(A, B) =
1
n

n

∑
i=1

max
{
|µA(xi)− µB(xi)|, |ρA(xi)− ρB(xi)|, |νA(xi)− νB(xi)|

}
(1)

(ii) The normalized Hamming distance [20]:

DNH(A, B) =
1

3n

n

∑
i=1

{
|µA(xi)− µB(xi)|+ |ρA(xi)− ρB(xi)|+ |νA(xi)− νB(xi)|

}
(2)

(iii) The normalized Euclidean distance [20]:

DNE(A, B) =

(
1

3n

n

∑
i=1

{
(µA(xi)− µB(xi))

2 + (ρA(xi)− ρB(xi))
2 + (νA(xi)− νB(xi))

2
})1/2

(3)

(iv) The cosine similarities [22]:

SCS1(A, B) =
1
n

n

∑
i=1

cos

[
π
(
|µA(xi)− µB(xi)| ∨ |ρA(xi)− ρB(xi)| ∨ |νA(xi)− νB(xi)|

)
2

]
(4)

and

SCS2(A, B) =
1
n

n

∑
i=1

cos

[
π
(
|µA(xi)− µB(xi)|+ |ρA(xi)− ρB(xi)|+ |νA(xi)− νB(xi)|

)
6

]
(5)

and their corresponding distances denoted by DCS1 = 1− SCS1 and DCS2 = 1− SCS2.
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(v) The tangent similarities [42]:

ST1(A, B) = 1− 1
n

n

∑
i=1

tan

[
π
(
|µA(xi)− µB(xi)| ∨ |ρA(xi)− ρB(xi)| ∨ |νA(xi)− νB(xi)|

)
4

]
(6)

and

ST2(A, B) = 1− 1
n

n

∑
i=1

tan

[
π
(
|µA(xi)− µB(xi)|+ |ρA(xi)− ρB(xi)|+ |νA(xi)− νB(xi)|

)
12

]
(7)

and their corresponding distances denoted by DT1 = 1− ST1 and DT2 = 1− ST2.

2.3. Shortcomings of the Existing Measures

The above measures have been widely used; however, simultaneously they have some drawbacks,
which are illustrated with the numerical example that follows.

Example 1. Consider two known patterns A and B, which are represented by SVNSs in a universe X given by
A = 〈x, 0.5, 0.0, 0.0 | x ∈ X〉, B = 〈x, 0.0, 0.5, 0.0 | x ∈ X〉. Consider an unknown pattern C ∈ SVNSs(X),
which is recognized where C = 〈x, 0.0, 0.0, 0.5 | x ∈ X〉; then the target of this problem is to classify the pattern
C in one of the classes A or B. If we apply the existing measures [19,20,22,42] defined in Equations (1)–(7)
above, then we obtain the following:

Pair DH DNH DNE DCS1 DCS2 DT1 DT1

(A,C) 0.5 0.3333 0.4048 0.2929 0.1340 0.4142 0.2679
(B,C) 0.5 0.3333 0.4048 0.2929 0.1340 0.4142 0.2679

Thus, from this, we conclude that these existing measures are unable to classify the pattern C with A and
B. Hence these measures are inconsistent and unable to perform ranking.

Example 2. Consider two SVNSs defined on the universal set X given by A = 〈x, 0.3, 0.2, 0.3 | x ∈ X〉 and
B = 〈x, 0.4, 0.2, 0.4 | x ∈ X〉. If we replace the degree of falsity membership of A (0.3) with 0.4, and that of B
(0.4) with 0.3, then we obtain new SVNSs as C = 〈x, 0.3, 0.2, 0.4 | x ∈ X〉 and D = 〈x, 0.4, 0.2, 0.3 | x ∈ X〉.
Now, by using the distance measures defined in Equations (1)–(7), we obtain their corresponding values
as follows:

Pair DH DNH DNE DCS1 DCS2 DT1 DT1

(A,B) 0.1 0.066 0.077 0.013 0.006 0.078 0.052
(C,D) 0.1 0.066 0.077 0.013 0.006 0.078 0.052

Thus, it has been concluded that by changing the falsity degree of SVNSs and keeping the other
degrees unchanged, the values of their corresponding measures remain the same. Thus, there is no
effect of the degree of falsity membership on the distance measures. Similarly, we can observe the
same for the degree of the truth membership functions.

This seems to be worthless to calculate distance using the measures mentioned above. Thus, there
is a need to build up a new distance measure that overcomes the shortcomings of the existing measures.

3. Some New Distance Measures between SVNSs

In this section, we present the Hamming and the Euclidean distances between SVNSs, which can
be used in real scientific and engineering applications.

Letting Φ(X) be the class of SVNSs over the universal set X, then we define the distances for
SVNSs, A = 〈µA(xi), ρA(xi), νA(xi) | xi ∈ X〉 and B = 〈µB(xi), ρB(xi), νB(xi) | xi ∈ X〉, by considering
the uncertainty parameter t, as follows:
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(i) Hamming distance:

d1(A, B) =
1

3(2 + t)

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣
 (8)

(ii) Normalized Hamming distance:

d2(A, B) =
1

3n(2 + t)

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣
 (9)

(iii) Euclidean distance:

d3(A, B) =

 1
3(2 + t)2

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

(10)

(iv) Normalized Euclidean distance:

d4(A, B) =

 1
3n(2 + t)2

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

(11)

where t ≥ 3 is a parameter.

Then, on the basis of the distance properties as defined in Definition 4, we can obtain the
following properties:

Proposition 1. The above-defined distance d2(A, B), between two SVNSs A and B, satisfies the following
properties (P1)–(P4):

(P1) 0 ≤ d2(A, B) ≤ 1, ∀A, B ∈ Φ(X);
(P2) d2(A, B) = 0 iff A = B;
(P3) d2(A, B) = d2(B, A);
(P4) If A ⊆ B ⊆ C, then d2(A, C) ≥ d2(A, B) and d2(A, C) ≥ d2(B, C).

Proof. For two SVNSs A and B, we have

(P1) 0 ≤ µA(xi), µB(xi) ≤ 1, 0 ≤ ρA(xi), ρB(xi) ≤ 1 and 0 ≤ νA(xi), νB(xi) ≤ 1. Thus, | µA(xi)−
µB(xi) |≤ 1, | ρA(xi) − ρB(xi) |≤ 1, | νA(xi) − νB(xi) |≤ 1 and | t(µA(xi) − µB(xi)) |≤ t.
Therefore,

| (tµA(xi)− νA(xi)− ρA(xi))− (tµB(xi)− νB(xi)− ρB(xi)) |≤ (2 + t)

| (tρA(xi) + νA(xi)− µA(xi))− (tρB(xi) + νB(xi)− µB(xi)) |≤ (2 + t)

| (tνA(xi) + ρA(xi)− µA(xi))− (tνB(xi) + ρB(xi)− µB(xi)) |≤ (2 + t)

Hence, by the definition of d2, we obtain 0 ≤ d2(A, B) ≤ 1.
(P2) Firstly, we assume that A = B, which implies that µA(xi) = µB(xi), ρA(xi) = ρB(xi), and

νA(xi) = νB(xi) for i = 1, 2, .., n. Thus, by the definition of d2, we obtain d2(A, B) = 0.
Conversely, assuming that d2(A, B) = 0 for two SVNSs A and B, this implies that
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| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|
+ | − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|
+ | − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

 = 0

or

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))| = 0

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))| = 0

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))| = 0

After solving, we obtain µA(xi)− µB(xi) = 0, ρA(xi)− ρB(xi) = 0 and νA(xi)− νB(xi) = 0,
which implies µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi). Therefore, A = B. Hence
d2(A, B) = 0 iff A = B.

(P3) This is straightforward from the definition of d2.
(P4) If A ⊆ B ⊆ C, then µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi) and νA(xi) ≥

νB(xi) ≥ νC(xi), which implies that µA(xi) − µB(xi) ≥ µA(xi) − µC(xi), νA(xi) − νB(xi) ≤
νA(xi)− νC(xi), and ρA(xi)− ρB(xi) ≤ ρA(xi)− ρC(xi).

Therefore,

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|
≤ | − t(µA(xi)− µc(xi)) + (ρA(xi)− ρC(xi)) + (νA(xi)− νC(xi))|

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|
≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) + (µA(xi)− µC(xi))|

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|
≤ | − t(νA(xi)− νC(xi))− (ρA(xi)− ρC(xi)) + (µA(xi)− µC(xi))|

By adding, we obtain d2(A, B) ≤ d2(A, C). Similarly, we obtain d2(B, C) ≤ d2(A, C).

Proposition 2. Distance d4 as defined in Equation (11) is also a valid measure.

Proof. For two SVNSs A and B, we have

(P1) 0 ≤ µA(xi), µB(xi) ≤ 1, 0 ≤ ρA(xi), ρB(xi) ≤ 1 and 0 ≤ νA(xi), νB(xi) ≤ 1.
Thus, | µA(xi) − µB(xi) |≤ 1, | ρA(xi) − ρB(xi) |≤ 1, | νA(xi) − νB(xi) |≤ 1 and
| t(µA(xi)− µB(xi)) | ≤ t. Therefore,

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2 ≤ (2 + t)2

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

Hence, by the definition of d4, we obtain 0 ≤ d4(A, B) ≤ 1.
(P2) Assuming that A = B implies that µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi) for

i = 1, 2, . . . , n, and hence using Equation (11), we obtain d4(A, B) = 0. Conversely, assuming
that d4(A, B) = 0 implies

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2 = 0

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2 = 0

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2 = 0
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After solving these, we obtain µA(xi)− µB(xi) = 0, ρA(xi)− ρB(xi) = 0 and νA(xi)− νB(xi) = 0;
that is, µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi) for t ≥ 3. Hence A = B.
Therefore, d4(A, B) = 0 iff A = B.

(P3) This is straightforward from the definition of d4.
(P4) If A ⊆ B ⊆ C, then µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi), and νA(xi) ≥

νB(xi) ≥ νC(xi). Therefore

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2

≤ | − t(µA(xi)− µc(xi)) + (ρA(xi)− ρC(xi)) + (νA(xi)− νC(xi))|2

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2

≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) + (µA(xi)− µC(xi))|2

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2

≤ | − t(νA(xi)− νC(xi))− (ρA(xi)− ρC(xi)) + (µA(xi)− µC(xi))|2

Hence by the definition of d4, we obtain d4(A, B) ≤ d4(A, C). Similarly, we obtain d4(B, C) ≤
d4(A, C).

Now, on the basis of these proposed distance measures, we conclude that this successfully
overcomes the shortcomings of the existing measures as described above.

Example 3. If we apply the proposed distance measures d2 and d4 on the data considered in Example 1 to classify
the pattern C, then corresponding to the parameter t = 3, we obtain d2(A, C) = 0.3333, d2(B, C) = 0.1333,
d4(A, C) = 0.3464 and d4(B, C) = 0.1633. Thus, the pattern C is classified with the pattern B and hence is
able to identify the best pattern.

Example 4. If we utilize the proposed distances d2 and d4 for the above-considered Example 2, then their
corresponding values are d2(A, B) = 0.0267, d2(C, D) = 0.0667, d4(A, B) = 0.0327 and d4(C, D) = 0.6930.
Therefore, there is a significant effect of the change in the falsity membership on the measure values and hence
consequently on the ranking values.

Proposition 3. Measures d1 and d3 satisfy the following properties:

(i) 0 ≤ d1 ≤ n;
(ii) 0 ≤ d3 ≤ n1/2.

Proof. We can easily obtain that d1(A, B) = nd2(A, B), and thus by Proposition 1, we obtain
0 ≤ d1(A, B) ≤ n. Similarly, we can obtain 0 ≤ d3(A, B) ≤ n1/2.

However, in many practical situations, the different sets may have taken different weights,
and thus weight ωi(i = 1, 2, . . . , n) of the element xi ∈ X should be taken into account. In the
following, we develop a weighted Hamming distance and the normalized weighted Euclidean distance
between SVNSs.

(i) The normalized weighted Hamming distance:

d5(A, B)

=
1

3n(2 + t)

n

∑
i=1

ωi


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣
 (12)



Information 2017, 8, 162 8 of 20

(ii) The normalized weighted Euclidean distance:

d6(A, B)

=


1

3n(2 + t)2

n

∑
i=1

ωi


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

(13)

where t ≥ 3 is a parameter.

It is straightforward to check that the normalized weighted distance dk(A, B)(k = 5, 6) between
SVNSs A and B also satisfies the above properties (P1)–(P4).

Proposition 4. Distance measures d2 and d5 satisfy the relation d5 ≤ d2.

Proof. Because ωi ≥ 0, ∑n
i=1 ωi = 1, then for any two SVNSs A and B, we have d5(A, B) =

1
3n(2+t) ∑n

i=1 ωi

{(
| − t(µA(xi) − µB(xi)) + (ρA(xi) − ρB(xi)) + (νA(xi) − νB(xi))| + | − t(ρA(xi) −

ρB(xi)) − (νA(xi) − νB(xi)) + (µA(xi) − µB(xi))| + | − t(νA(xi) − νB(xi)) − (ρA(xi) − ρB(xi)) +

(µA(xi) − µB(xi))|
)}
≤ 1

3n(2+t) ∑n
i=1

(
| − t(µA(xi) − µB(xi)) + (ρA(xi) − ρB(xi)) + (νA(xi) −

νB(xi))|+ | − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|+ | − t(νA(xi)− νB(xi))−
(ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

)
; that is, d5(A, B) ≤ d2(A, B).

Proposition 5. Let A and B be two SVNSs in X; then d5 and d6 are the distance measures.

Proof. Because ωi ∈ [0, 1] and
n
∑

i=1
ωi = 1 then we can easily obtain 0 ≤ d5(A, B) ≤ d2(A, B).

Thus, d5(A, B) satisfies (P1). The proofs of (P2)–(P4) are similar to those of Proposition 1. Similar is
true for d6.

Proposition 6. The distance measures d4 and d6 satisfy the relation d6 ≤ d4.

Proof. The proof follows from Proposition 4.

Proposition 7. The distance measures d2 and d4 satisfy the inequality d4 ≤
√

d2.

Proof. For two SVNSs A and B, we have

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2 ≤ (2 + t)2

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2 ≤ (2 + t)2

which implies that∣∣∣−t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

2 + t

∣∣∣2 ≤ 1∣∣∣−t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2 ≤ 1∣∣∣−t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2 ≤ 1
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For any a ∈ [0, 1], we have a2 ≤ a. Therefore,∣∣∣−t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

2 + t

∣∣∣2
≤
∣∣∣−t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

2 + t

∣∣∣∣∣∣−t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2
≤
∣∣∣−t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣
and

∣∣∣−t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣2
≤
∣∣∣−t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

2 + t

∣∣∣
By adding these inequalities and by the definition of d4, we have

d4(A, B) = 1
3n(2 + t)2

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣2
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣2
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣2



1/2

≤

 1
3n(2 + t)

n

∑
i=1


∣∣− t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))

∣∣
+
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣
+
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))

∣∣



1/2

≤ (d2(A, B))1/2

As A and B are arbitrary SVNSs, thus we obtain d4 ≤
√

d2.

Proposition 8. Measures d6 and d5 satisfy the inequality d6 ≤
√

d5.

Proof. The proof follows from Proposition 7.

The Hausdroff distance between two non-empty closed and bounded sets is a measure of the
resemblance between them. For example, we consider A = [x1, x2] and B = [y1, y2] in the Euclidean
domain R; the Hausdroff distance in the additive set environment is given by the following [8]:

H(A, B) = max
{
| x1 − y1 |, | x2 − y2 |

}
Now, for any two SVNSs A and B over X = {x1, x2, . . . , xn}, we propose the following utmost

distance measures:

• Utmost normalized Hamming distance:

dH
1 (A, B)

=
1

3n(2 + t)

n

∑
i=1

max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,
| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|,
| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

 (14)
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• Utmost normalized weighted Hamming distance:

dH
2 (A, B)

=
1

3n(2 + t)

n

∑
i=1

ωi max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,
| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|,
| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

 (15)

• Utmost normalized Euclidean distance:

dH
3 (A, B)

=


1

3n(2 + t)2

n

∑
i=1

max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2,

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2




1/2

(16)

• Utmost normalized weighted Euclidean distance:

dH
4 (A, B)

=


1

3n(2 + t)2

n

∑
i=1

ωi max
i


| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|2,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|2,

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|2




1/2

(17)

Proposition 9. The distance dH
1 (A, B) defined in Equation (14) for two SVNSs A and B is a valid

distance measure.

Proof. The above measure satisfies the following properties:

(P1) As A and B are SVNSs, so | µA(xi) − µB(xi) |≤ 1, | ρA(xi) − ρB(xi) |≤ 1 and | νA(xi) −
νB(xi) |≤ 1. Thus,

| (tµA(xi)− νA(xi)− ρA(xi))− (tµB(xi)− νB(xi)− ρB(xi)) |≤ (2 + t)

| (tρA(xi) + νA(xi)− µA(xi))− (tρB(xi) + νB(xi)− µB(xi)) |≤ (2 + t)

| (tνA(xi) + ρA(xi)− µA(xi))− (tνB(xi) + ρB(xi)− µB(xi)) |≤ (2 + t)

Hence, by the definition of dH
1 , we obtain 0 ≤ dH

1 (A, B) ≤ 1.
(P2) Similar to the proof of Proposition 1.
(P3) This is clear from Equation (14).
(P4) Let A ⊆ B ⊆ C, which implies µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi) and

νA(xi) ≥ νB(xi) ≥ νC(xi). Therefore, | − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)−
νB(xi))| ≤ | − t(µA(xi) − µc(xi)) + (ρA(xi) − ρC(xi)) + (νA(xi) − νC(xi))|, | − t(ρA(xi) −
ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))| ≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) +

(µA(xi) − µC(xi))| and | − t(νA(xi) − νB(xi)) − (ρA(xi) − ρB(xi)) + (µA(xi) − µB(xi))| ≤
| − t(νA(xi) − νC(xi)) − (ρA(xi) − ρC(xi)) + (µA(xi) − µC(xi))|, which implies that max

i

(
| −

t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|, | − t(ρA(xi)− ρB(xi))− (νA(xi)−
νB(xi)) + (µA(xi)− µB(xi))|, | − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

)
≤ max

i

(
| − t(µA(xi)−µc(xi))+ (ρA(xi)− ρC(xi))+ (νA(xi)− νC(xi))|, | − t(ρA(xi)− ρC(xi))−

(νA(xi) − νC(xi)) + (µA(xi) − µC(xi))| and | − t(νA(xi) − νC(xi)) − (ρA(xi) − ρC(xi)) +

(µA(xi)− µC(xi))|
)
. Hence dH

1 (A, B) ≤ dH
1 (A, C). Similarly, we obtain dH

1 (B, C) ≤ dH
1 (A, C).

Proposition 10. For A, B ∈ Φ(X), dH
2 , dH

3 and dH
4 are the distance measures.



Information 2017, 8, 162 11 of 20

Proof. The proof follows from the above proposition.

Proposition 11. The measures dH
2 and dH

1 satisfy the following inequality: dH
2 ≤ dH

1 .

Proof. Because wi ∈ [0, 1], therefore

dH
2 (A, B) =

1
3n(2 + t)

n

∑
i=1

wi

(
max

i

(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|, | − t(νA(xi)

−νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|
))

≤ 1
3n(2 + t)

n

∑
i=1

max
i

(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|,

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|, | − t(νA(xi)

−νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|
)

= dH
1 (A, B)

Hence, dH
2 ≤ dH

1 .

Proposition 12. The measures dH
3 and dH

4 satisfy the inequality dH
4 (A, B) ≤ dH

3 (A, B).

Proof. The proof follows from Proposition 11.

Proposition 13. The measures dH
3 and dH

1 satisfy the inequality dH
3 ≤

√
dH

1 .

Proof. Because for any a ∈ [0, 1], a2 ≤ a ≤ a1/2, the remaining proof follows from Proposition 7.

Proposition 14. The measures dH
4 and dH

2 satisfy the inequality dH
4 ≤

√
dH

2 .

Proof. The proof follows from Proposition 13.

Proposition 15. The measures dH
1 and d2 satisfy the following inequality:

dH
1 ≤ d2

.Proof. For positive numbers ai, i = 1, 2, ..., n, we have max
i
{ai} ≤

n
∑

i=1
ai. Thus, for any two

SVNSs A and B, we have dH
1 (A, B) = 1

3n(2+t) ∑n
i=1 maxi

(
| − t(µA(xi)− µB(xi)) + (ρA(xi) −ρB(xi)) +

(νA(xi) − νB(xi))|, | − t(ρA(xi) − ρB(xi)) −(νA(xi) − νB(xi)) + (µA(xi) − µB(xi))|, | − t(νA(xi) −
νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|

)
≤ 1

3n(2+t) ∑n
i=1 | − t(µA(xi)− µB(xi)) + (ρA(xi)−

ρB(xi)) + (νA(xi) − νB(xi)) + | − t(ρA(xi) − ρB(xi)) − (νA(xi) − νB(xi)) + (µA(xi) − µB(xi))| + | −
t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))| = d2(A, B). Hence dH

1 ≤ d2.

Proposition 16. The measures dH
3 and d4 satisfy the following inequality:

dH
3 ≤ d4

Proof. The proof follows from Proposition 15.

Proposition 17. The measures d2, d5 and dH
1 satisfy the following inequalities:
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(i) d2 ≥
d5+dH

1
2 ;

(ii) d2 ≥
√

d5 · dH
1 .

Proof. Because d2 ≥ d5 and d2 ≥ dH
1 , by adding these inequalities, we obtain d2 ≥

d5 + dH
1

2 . On the

other hand, by multiplying these, we obtain d2 ≥
√

d5 · dH
1 .

4. Generalized Distance Measure

The above-defined Hamming and Euclidean distance measures are generalized for the two SVNSs
A and B on the universal set X as follows:

dp(A, B) =

{
1

3n(2 + t)p

n

∑
i=1

(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|p

+| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|p (18)

+| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|p
)}1/p

where p ≥ 1 is an Lp norm and t ≥ 3 represents the uncertainty index parameters.
In particular, if p = 1 and p = 2, then the above measure, given in Equation (18), reduces to

measures d2 and d4 defined in Equations (9) and (11), respectively.

Proposition 18. The above-defined distance dp(A, B), between SVNSs A and B, satisfies the following
properties (P1)–(P4):

(P1) 0 ≤ dp(A, B) ≤ 1, ∀A, B ∈ Φ(X);
(P2) dp(A, B) = 0, iff A = B;
(P3) dp(A, B) = dp(B, A);
(P4) If A ⊆ B ⊆ C, then dp(A, C) ≥ dp(A, B) and dp(A, C) ≥ dp(B, C).

Proof. For p ≥ 1 and t ≥ 3, we have the following:

(P1) For SVNSs, | µA(xi)− µB(xi) |≤ 1, | ρA(xi)− ρB(xi) |≤ 1 and | νA(xi)− νB(xi) |≤ 1. Thus, we
obtain

−(2 + t) ≤ t(µA(xi)− µB(xi))− (νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) ≤ (2 + t)

−(2 + t) ≤ −t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi)) ≤ (2 + t)

−(2 + t) ≤ −t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi))− µB(xi) ≤ (2 + t)

which implies that

0 ≤
∣∣t(µA(xi)− µB(xi))− (νA(xi)− νB(xi))− (ρA(xi)− ρB(xi))

∣∣p ≤ (2 + t)p

0 ≤
∣∣− t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))

∣∣p ≤ (2 + t)p

0 ≤
∣∣− t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi))− µB(xi)

∣∣p ≤ (2 + t)p

Thus, by adding these inequalities, we obtain 0 ≤ dp(A, B) ≤ 1.
(P2) Assuming that A = B ⇔ µA(x) = µB(xi), ρA(xi) = ρB(xi), and νA(x) = νB(xi),

thus, dp(A, B) = 0.
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Conversely, assuming that dp(A, B) = 0 implies that

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))| = 0

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))| = 0

| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))| = 0

and hence, after solving, we obtain µA(xi) = µB(xi), ρA(xi) = ρB(xi) and νA(xi) = νB(xi).
Thus, A = B.

(P3) This is straightforward.
(P4) Let A ⊆ B ⊆ C; then µA(xi) ≤ µB(xi) ≤ µC(xi), ρA(xi) ≥ ρB(xi) ≥ ρC(xi) and νA(xi) ≥

νB(xi) ≥ νC(xi). Thus, µA(xi)− µB(xi) ≥ µA(xi)− µC(xi), ρA(xi)− ρB(xi) ≤ ρA(xi)− ρC(xi)

and νA(xi)− νB(xi) ≤ νA(xi)− νC(xi). Hence, we obtain

| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|p

≤ | − t(µA(xi)− µc(xi)) + (ρA(xi)− ρC(xi)) + (νA(xi)− νC(xi))|p

| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|p

≤ | − t(ρA(xi)− ρC(xi))− (νA(xi)− νC(xi)) + (µA(xi)− µC(xi))|p

and | − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|p

≤ | − t(νA(xi)− νC(xi))− (ρA(xi)− ρC(xi)) + (µA(xi)− µC(xi))|p

Thus, we obtain dp(A, B) ≤ dp(A, C). Similarly, dp(B, C) ≤ dp(A, C).

If the weight vector ωi, (i = 1, 2, . . . , n) of each element is considered such that ωi ∈ [0, 1]
and ∑i ωi = 1, then a generalized parametric distance measure between SVNSs A and B takes the
following form:

dp
w(A, B) =

(
1

3n(2 + t)p

n

∑
i=1

ωi

{(
| − t(µA(xi)− µB(xi)) + (ρA(xi)− ρB(xi)) + (νA(xi)− νB(xi))|p

+| − t(ρA(xi)− ρB(xi))− (νA(xi)− νB(xi)) + (µA(xi)− µB(xi))|p

+| − t(νA(xi)− νB(xi))− (ρA(xi)− ρB(xi)) + (µA(xi)− µB(xi))|p
)})1/p

(19)

In particular, if p = 1 and p = 2, Equation (19) reduces to Equations (12) and (13), respectively.

Proposition 19. Let ω = (ω1, ω2, . . . , ωn)T be the weight vector of xi, (i = 1, 2, . . . , n) with ωi ≥ 0

and
n
∑

i=1
ωi = 1; then the generalized parametric distance measure between the SVNSs A and B defined by

Equation (19) satisfies the following:

(P1) 0 ≤ dp
w(A, B) ≤ 1, ∀A, B ∈ Φ(X);

(P2) dp
w(A, B) = 0 iff A = B;

(P3) dp
w(A, B) = dp

w(B, A);
(P4) A ⊆ B ⊆ C then dp

w(A, C) ≥ dp
w(A, B) and dp

w(A, C) ≥ dp
w(B, C).

Proof. The proof follows from Proposition 18.

5. Illustrative Examples

In order to illustrate the performance and validity of the above-proposed distance measures, two
examples from the fields of pattern recognition and medical diagnosis have been taken into account.
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5.1. Example 1: Application of Distance Measure in Pattern Recognition

Consider three known patterns A1, A2 and A3, which are represented by the following SVNSs in
a given universe X = {x1, x2, x3, x4}:

A1 = {〈x1, 0.7, 0.0, 0.1〉, 〈x2, 0.6, 0.1, 0.2〉, 〈x3, 0.8, 0.7, 0.6〉, 〈x4, 0.5, 0.2, 0.3〉}
A2 = {〈x1, 0.4, 0.2, 0.3〉, 〈x2, 0.7, 0.1, 0.0〉, 〈x3, 0.1, 0.1, 0.6〉, 〈x4, 0.5, 0.3, 0.6〉}
A3 = {〈x1, 0.5, 0.2, 0.2〉, 〈x2, 0.4, 0.1, 0.2〉, 〈x3, 0.1, 0.1, 0.4〉, 〈x4, 0.4, 0.1, 0.2〉}

Consider an unknown pattern B ∈ SVNS(X), which will be recognized where

B = {〈x1, 0.4, 0.1, 0.4〉, 〈x2, 0.6, 0.1, 0.1〉, 〈x3, 0.1, 0.0, 0.4〉, 〈x4, 0.4, 0.4, 0.7〉}

Then the target of this problem is to classify the pattern B in one of the classes A1, A2 or A3. For this,
proposed distance measures, d1, d2, d3, d4, dH

1 and dH
3 , have been computed from B to Ak(k = 1, 2, 3)

corresponding to t = 3, and the results are given as follows:

d1(A1, B) = 0.5600; d1(A2, B) = 0.2932; d1(A3, B) = 0.4668

d2(A1, B) = 0.1400; d2(A2, B) = 0.0733; d2(A3, B) = 0.1167

d3(A1, B) = 0.3499; d3(A2, B) = 0.1641; d3(A3, B) = 0.3120

d4(A1, B) = 0.1749; d4(A2, B) = 0.0821; d4(A3, B) = 0.1560

dH
1 (A1, B) = 0.0633; dH

1 (A2, B) = 0.0300; dH
1 (A3, B) = 0.0567

dH
3 (A1, B) = 0.1252; dH

3 (A2, B) = 0.0560; dH
3 (A3, B) = 0.1180

Thus, from these distance measures, we conclude that the pattern B belongs to the pattern
A2. On the other hand, if we assume that the weights of x1, x2, x3 and x4 are 0.3, 0.4, 0.2 and 0.1,
respectively, then we utilize the distance measures d5, d6, dH

2 and dH
4 for obtaining the most suitable

pattern as follows:

d5(A1, B) = 0.0338; d5(A2, B) = 0.0162; d5(A3, B) = 0.0233

d6(A1, B) = 0.0861; d6(A2, B) = 0.0369; d6(A3, B) = 0.0604

dH
2 (A1, B) = 0.0148; dH

2 (A2, B) = 0.0068; dH
2 (A3, B) = 0.0117

dH
4 (A1, B) = 0.0603; dH

4 (A2, B) = 0.0258; dH
4 (A3, B) = 0.0464

Thus, the ranking order of the three patterns is A2, A3 and A1, and hence A2 is the most desirable
pattern to be classified with B. Furthermore, it can be easily verified that these results validate the
above-proposed propositions on the distance measures.

Comparison of Example 1 Results with Existing Measures

The above-mentioned measures have been compared with some existing measures under a NS
environment for showing the validity of the approach whose results are summarized in Table 1.
From these results, it has been shown that the final ordering of the pattern coincides with the proposed
measures, and hence it shows the conservative nature of the measures.
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Table 1. Ordering value of Example 1.

Methods Measure Value of B from Ranking OrderA1 A2 A3

DH (defined in Equation (1)) [19] 0.3250 0.1250 0.2500 A2 � A3 � A1
Correlation coefficient [19] 0.7883 0.9675 0.8615 A2 � A3 � A1
DNE (defined in Equation (3)) [20] 0.5251 0.7674 0.6098 A1 � A3 � A2
SCS1 (defined in Equation (4)) [22] 0.8209 0.9785 0.8992 A2 � A3 � A1
SCS2 (defined in Equation (5)) [22] 0.8949 0.9911 0.9695 A2 � A3 � A1
ST1 (defined in Equation (6)) [42] 0.7275 0.9014 0.7976 A2 � A3 � A1
ST2 (defined in Equation (7)) [42] 0.9143 0.9673 0.9343 A2 � A3 � A1

5.2. Example 2: Application of Distance Measure in Medical Diagnosis

Consider a set of diseases Q = {Q1(Viral fever), Q2(Malaria), Q3(Typhoid), Q4(Stomach Problem),
Q5 (Chest problem)} and a set of symptoms S = {s1 (Temperature), s2 (HeadAche), s3 (Stomach Pain),
s4 (Cough), s5 (Chest pain)}. Suppose a patient, with respect to all the symptoms, can be represented
by the following SVNS:

P(Patient) = {(s1, 0.8, 0.2, 0.1), (s2, 0.6, 0.3, 0.1), (s3, 0.2, 0.1, 0.8), (s4, 0.6, 0.5, 0.1), (s5, 0.1, 0.4, 0.6)}

and each diseases Qk(k = 1, 2, 3, 4, 5) is as follows:

Q1(Viral fever) = {(s1, 0.4, 0.6, 0.0), (s2, 0.3, 0.2, 0.5), (s3, 0.1, 0.3, 0.7), (s4, 0.4, 0.3, 0.3), (s5, 0.1, 0.2, 0.7)}

Q2(Malaria) = {(s1, 0.7, 0.3, 0.0), (s2, 0.2, 0.2, 0.6), (s3, 0.0, 0.1, 0.9), (s4, 0.7, 0.3, 0.0), (s5, 0.1, 0.1, 0.8)}

Q3(Typhoid) = {(s1, 0.3, 0.4, 0.3), (s2, 0.6, 0.3, 0.1), (s3, 0.2, 0.1, 0.7), (s4, 0.2, 0.2, 0.6), (s5, 0.1, 0.0, 0.9)}

Q4(Stomach problem) = {(s1, 0.1, 0.2, 0.7), (s2, 0.2, 0.4, 0.4), (s3, 0.8, 0.2, 0.0), (s4, 0.2, 0.1, 0.7), (s5, 0.2, 0.1, 0.7)}

Q5(Chest problem) = {(s1, 0.1, 0.1, 0.8), (s2, 0.0, 0.2, 0.8), (s3, 0.2, 0.0, 0.8), (s4, 0.2, 0.0, 0.8), (s5, 0.8, 0.1, 0.1)}

Now, the target is to diagnose the disease of patient P among Q1, Q2, Q3, Q4 and Q5. For this,
proposed distance measures, d1, d2, d3, d4, dH

1 and dH
3 , have been computed from P to Qk(k = 1, 2, . . . , 5)

and are given as follows:

d1(Q1, P) = 0.6400; d1(Q2, P) = 0.9067; d1(Q3, P) = 0.6333; d1(Q4, P) = 1.4600; d1(Q5, P) = 1.6200

d2(Q1, P) = 0.1280; d2(Q2, P) = 0.1813; d2(Q3, P) = 0.1267; d2(Q4, P) = 0.2920; d2(Q5, P) = 0.3240

d3(Q1, P) = 0.3626; d3(Q2, P) = 0.4977; d3(Q3, P) = 0.4113; d3(Q4, P) = 0.7566; d3(Q5, P) = 0.8533

d4(Q1, P) = 0.1622; d4(Q2, P) = 0.2226; d4(Q3, P) = 0.1840; d4(Q4, P) = 0.3383; d4(Q5, P) = 0.3816

dH
1 (Q1, P) = 0.0613; dH

1 (Q2, P) = 0.0880; dH
1 (Q3, P) = 0.0627; dH

1 (Q4, P) = 0.1320; dH
1 (Q5, P) = 0.1400

dH
3 (Q1, P) = 0.1175; dH

3 (Q2, P) = 0.1760; dH
3 (Q3, P) = 0.1373; dH

3 (Q4, P) = 0.2439; dH
3 (Q5, P) = 0.2661

Thus, from these distance measures, we conclude that the patient P suffers from the disease Q3.
On the other hand, if we assign weights 0.3, 0.2, 0.2, 0.1 and 0.2 corresponding to

Qk(k = 1, 2, . . . , 5), respectively, then we utilize the distance measures d5, d6, dH
2 and dH

4 for obtaining
the most suitable pattern as

d5(Q1, P) = 0.0284; d5(Q2, P) = 0.0403; d5(Q3, P) = 0.0273; d5(Q4, P) = 0.0625; d5(Q5, P) = 0.0684

d6(Q1, P) = 0.0795; d6(Q2, P) = 0.1101; d6(Q3, P) = 0.0862; d6(Q4, P) = 0.1599; d6(Q5, P) = 0.1781

dH
2 (Q1, P) = 0.0135; dH

2 (Q2, P) = 0.0200; dH
2 (Q3, P) = 0.0129; dH

2 (Q4, P) = 0.0276; dH
2 (Q5, P) = 0.0289

dH
4 (Q1, P) = 0.0572; dH

4 (Q2, P) = 0.0885; dH
4 (Q3, P) = 0.0636; dH

4 (Q4, P) = 0.1139; dH
4 (Q5, P) = 0.1226

Thus, on the basis of the ranking order, we conclude that the patient P suffers from the disease Q3.
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Comparison of Example 2 Results with Existing Approaches

In order to verify the feasibility of the proposed decision-making approach based on the distance
measure, we conducted a comparison analysis based on the same illustrative example. For this,
various measures as presented in Equations (1)–(7) were taken, and their corresponding results are
summarized in Table 2, which shows that the patient P suffers from the disease Q1.

Table 2. Comparison of diagnosis result using existing measures.

Approach Ranking Order

DH (defined in Equation (1)) [19] Q1 � Q3 � Q2 � Q4 � Q5
Correlation [19] Q1 � Q2 � Q3 � Q4 � Q5

Distance measure [27]
p = 1 Q3 � Q1 � Q2 � Q4 � Q5
p = 2 Q1 � Q3 � Q2 � Q4 � Q5
p = 3 Q1 � Q3 � Q2 � Q4 � Q5
p = 5 Q1 � Q3 � Q2 � Q4 � Q5

DNH (defined in Equation (2)) [20] Q3 � Q1 � Q2 � Q4 � Q5
DNH (defined in Equation (3)) [20] Q1 � Q3 � Q2 � Q4 � Q5

SCS1 (defined in Equation (4)) [22] Q1 � Q3 � Q2 � Q4 � Q5
SCS1 (defined in Equation (5)) [22] Q1 � Q2 � Q3 � Q4 � Q5
ST1 (defined in Equation (6)) [42] Q1 � Q3 � Q2 � Q4 � Q5
ST1 (defined in Equation (7)) [42] Q1 � Q3 � Q2 � Q4 � Q5

5.3. Effect of the Parameters p and t on the Ordering

However, in order to analyze the effect of the parameters t and p on the measure values, an
experiment was performed by taking different values of p (p = 1, 1.5, 2, 3, 5, 10) corresponding to a
different value of the uncertainty parameter t (t = 3, 5, 7). On the basis of these different pairs of
parameters, distance measures were computed, and their results are summarized in Tables 3 and 4,
respectively, for Examples 1 and 2 corresponding to different criterion weights.

From these, the following have been computed:

(i) For a fixed value of p, it has been observed that the measure values corresponding to each
alternative increase with the increase in the value of t. On the other hand, by varying the value of
t from 3 to 7, corresponding to a fixed value of p, this implies that values of the distance measures
of each diagnosis from the patient P increase.

(ii) It has also been observed from this table that when the weight vector has been assigned to each
criterion weight, then the measure values are less than that of an equal weighting case.

(iii) Finally, it is seen from the table that the measured values corresponding to each alternative
Qk(k = 1, 2, 3, 4, 5) are conservative in nature.

For each pair, the measure values lie between 0 and 1, and hence, on the basis of this, we
conclude that the patient P suffers from the Q1 disease. The ranking order for the decision-maker is
shown in the table as (13245), which indicates that the order of the different attributes is of the form
Q1 � Q3 � Q2 � Q4 � Q5. Hence Q1 is the most desirable, while Q5 is the least desirable for different
values of t and p.
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Table 3. Results of classification of given sample using proposed distance measure.

When Equal Importance Is given to Each Criteria When Weight Vector (0.3, 0.4, 0.2, 0.1)T Is Taken

p t dp(A1, B) dp(A2, B) dp(A3, B) Ranking dp
w(A1, B) dp

w(A2, B) dp
w(A3, B) Ranking

1
3 0.1400 0.0733 0.1167 A2 � A3 � A1 0.0338 0.0162 0.0233 A2 � A3 � A1
5 0.1667 0.0762 0.1214 A2 � A3 � A1 0.0387 0.0170 0.0248 A2 � A3 � A1
7 0.1815 0.0778 0.1241 A2 � A3 � A1 0.0414 0.0175 0.0256 A2 � A3 � A1

1.5
3 0.1598 0.0783 0.1374 A2 � A3 � A1 0.0620 0.0277 0.0426 A2 � A3 � A1
5 0.1924 0.0817 0.1437 A2 � A3 � A1 0.0723 0.0293 0.0452 A2 � A3 � A1
7 0.2116 0.0838 0.1480 A2 � A3 � A1 0.0784 0.0304 0.0469 A2 � A3 � A1

2
3 0.1749 0.0821 0.1560 A2 � A3 � A1 0.0861 0.0369 0.0604 A2 � A3 � A1
5 0.2137 0.0859 0.1646 A2 � A3 � A1 0.1021 0.0392 0.0644 A2 � A3 � A1
7 0.2374 0.0885 0.1705 A2 � A3 � A1 0.1120 0.0408 0.0671 A2 � A3 � A1

3
3 0.1970 0.0880 0.1875 A2 � A3 � A1 0.1229 0.0507 0.0927 A2 � A3 � A1
5 0.2469 0.0929 0.02012 A2 � A3 � A1 0.1497 0.0543 0.1000 A2 � A3 � A1
7 0.2785 0.0962 0.2098 A2 � A3 � A1 0.1672 0.0566 0.1046 A2 � A3 � A1

5
3 0.2240 0.0967 0.2314 A2 � A1 � A3 0.1680 0.0689 0.1469 A2 � A3 � A1
5 0.2902 0.1041 0.2526 A2 � A3 � A1 0.2128 0.0749 0.1605 A2 � A3 � A1
7 0.3326 0.1087 0.2650 A2 � A3 � A1 0.2426 0.0786 0.1685 A2 � A3 � A1

10
3 0.2564 0.1107 0.2830 A2 � A1 � A3 0.2203 0.0939 0.2248 A2 � A1 � A3
5 0.3421 0.1231 0.3131 A2 � A3 � A1 0.2915 0.1047 0.2487 A2 � A3 � A1
7 0.3942 0.1304 0.3301 A2 � A3 � A1 0.3356 0.1109 0.2622 A2 � A3 � A1

Table 4. Diagnosis result on basis of proposed distance measure.

When Equal Importance Is Given to Each Criteria When Weight Vector (0.3, 0.2, 0.2, 0.1, 0.2)T is Taken

p t dp(Q1, P) dp(Q2, P) dp(Q3, P) dp(Q4, P) dp(Q5, P) dp
w(Q1, P) dp

w(Q2, P) dp
w(Q3, P) dp

w(Q4, P) dp
w(Q5, P)

1
3 0.1280 0.1813 0.1267 0.2920 0.3240 0.0284 0.0403 0.0273 0.0625 0.0684
5 0.1410 0.1867 0.1457 0.3076 0.3400 0.0304 0.0413 0.0300 0.0643 0.0700
7 0.1481 0.1896 0.1563 0.3178 0.3489 0.0315 0.0419 0.0315 0.0656 0.070

1.5
3 0.1465 0.2023 0.1600 0.3175 0.3574 0.0553 0.0768 0.0579 0.1154 0.1282
5 0.1612 0.2131 0.1794 0.3364 0.3778 0.0598 0.0808 0.0628 0.1202 0.1334
7 0.1711 0.2205 0.1916 0.3492 0.3913 0.0630 0.0836 0.0658 0.1237 0.1369

2
3 0.1622 0.2226 0.1840 0.3383 0.3816 0.0795 0.1101 0.0862 0.1599 0.1781
5 0.1787 0.2391 0.2038 0.3609 0.4052 0.0867 0.1183 0.0928 0.1686 0.1872
7 0.1895 0.2501 0.2168 0.3760 0.4211 0.0914 0.1238 0.0972 0.1744 0.1933

3
3 0.1870 0.2601 0.2163 0.3715 0.4142 0.1182 0.1662 0.1312 0.2276 0.2509
5 0.2061 0.2876 0.2376 0.4004 0.4421 0.1297 0.1842 0.1409 0.2436 0.2666
7 0.2175 0.3047 0.2516 0.4185 0.4601 0.1365 0.1954 0.1475 0.2535 0.2765

5
3 0.2185 0.3187 0.2531 0.4170 0.4504 0.1675 0.2471 0.1892 0.3127 0.3354
5 0.2405 0.3625 0.2782 0.4531 0.4826 0.1841 0.2817 0.2045 0.3384 0.3588
7 0.2529 0.3877 0.2940 0.4740 0.5023 0.1934 0.3016 0.2145 0.3532 0.3729

10
3 0.2519 0.3980 0.2969 0.4731 0.4896 0.2215 0.3524 0.2599 0.4095 0.4235
5 0.2771 0.4586 0.3271 0.5170 0.5252 0.2434 0.4063 0.2840 0.4464 0.4547
7 0.2912 0.4624 0.3451 0.5420 0.5466 0.2556 0.4363 0.2981 0.4675 0.4730

5.4. Advantages of the Proposed Method

According to the above comparison analysis, the proposed method for addressing
decision-making problems has the following advantages:

(i) The distance measure under the IFS environment can only handle situations in which the
degree of membership and non-membership is provided to the decision-maker. This kind of
measure is unable to deal with indeterminacy, which commonly occurs in real-life applications.
Because SVNSs are a successful tool in handling indeterminacy, the proposed distance measure in
the neutrosophic domain can effectively be used in many real applications in decision-making.

(ii) The proposed distance measure depends upon two parameters p and t, which help in adjusting
the hesitation margin in computing data. The effect of hesitation will be diminished or almost
neglected if the value of t is taken very large, and for smaller values of t, the effect of hesitation
will rise. Thus, according to requirements, the decision-maker can adjust the parameter to handle
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incomplete as well as indeterminate information. Therefore, this proposed approach is more
suitable for engineering, industrial and scientific applications.

(iii) As has been observed from existing studies, various existing measures under NS environments
have been proposed by researchers, but there are some situations that cannot be distinguished by
these existing measures; hence their corresponding algorithm may give an irrelevant result. The
proposed measure has the ability to overcome these flaws; thus it is a more suitable measure to
tackle problems.

6. Conclusions

SVNSs are applied to problems with imprecise, uncertain, incomplete and inconsistent
information existing in the real world. Although several measures already exist to deal with such kinds
of information systems, they have several flaws, as described in the manuscript. Here in this article,
we overcome these flaws by proposing an alternative way to define new generalized distance measures
between the two SVNNs. Further, a family of normalized and weighted normalized Hamming and
Euclidean distance measures have been proposed for the SVNSs. Some desirable properties and their
relations have been studied in detail. Finally, a decision-making method has been proposed on the
basis of these distance measures. To demonstrate the efficiency of the proposed coefficients, numerical
examples of pattern recognition as well as medical diagnosis have been taken. A comparative study,
as well as the effect of the parameters on the ranking of the alternative, will support the theory and
hence demonstrate that the proposed measures are an alternative way to solve the decision-making
problems. In the future, we will extend the proposed approach to the soft set environment [43–45], the
multiplicative environment [46–48], and other uncertain and fuzzy environments [7,49–53].
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