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Abstract: In this paper, we investigate secure communication for a dual-hop multiuser relay network,
where a source communication with N (N ≥ 1) destinations via an untrusted variable gains relay.
To exploit multiuser diversity while protecting source’s confidential message, we first propose
a joint destination-based jamming and opportunistic scheduling (DJOS) scheme. Then, we derive
closed-form approximated and asymptotic expressions of the secrecy outage probability (SOP) for
the considered system with DJOS. Furthermore, we determine an asymptotical optimal power
allocation (OPA), which minimizes the asymptotic SOP, to further improve the secrecy performance.
Our analytical results show that the achievable secrecy diversity order in terms of SOP with fixed
power allocation is min(1, N

2 ), whereas, with OPA, the achievable secrecy diversity order can be
improved up to min(1, 2N

N+2 ). This interesting result reveals that OPA can improve the secrecy
diversity order of the single-user network. This is intuitive since full diversity order of 1 cannot be
achieved when N = 1, thus leaving some space for OPA to improve the diversity order. Nevertheless,
for N ≥ 2, the effect of OPA is to increase the secrecy array gain rather than the secrecy diversity
order since full diversity order 1 has been achieved by the OS scheme. Finally, simulation results are
presented to validate our analysis.

Keywords: amplify-and-forward; secrecy outage probability; destination-based jamming; multiuser
untrusted relay network; opportunistic scheduling

1. Introduction

1.1. Background

Recently, the applications of physical layer security (PLS) techniques in cooperative relaying
networks have gained considerable attention. In particular, there are extensive works aimed at enhancing
the secrecy performance of cooperative relaying networks by exploiting various PLS approaches,
such as diversity techniques and/or cooperative jamming. Specifically, diversity techniques, such as
multiple-input multiple-output (MIMO) [1], cooperative diversity (i.e., cooperative relaying) [2],
and multiuser diversity [3,4], aim at increasing the capacity of the main channel while degrading that
of the wiretap channel. As such, the system security can be significantly improved. On the other hand,
cooperative jamming (CJ) [5–10], which exploits artificial noise to confuse external eavesdroppers,
can reduce the leakage rate to the eavesdroppers to improve the system security. In particular,
in CJ, artificial noise can be sent from a friendly jammer [5], the source [6,10], the relay [7], or the
destination [8–10]. Furthermore, more recent works have been devoted to further enhance the PLS by
combining diversity strategies and/or CJ scheme [11]. Besides, power allocation technique was also
investigated in [12,13] to further improve the secrecy performance.
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1.2. Related Works

Common to the aforementioned works is that all relays are assumed to be trusted, and the
eavesdroppers are external nodes. Another feasible scenario is that relay(s) might belong to
a heterogeneous network with a different security clearance. In this context, the relay(s) can
be untrusted, and it is desirable to keep confidential messages from the untrusted relay(s),
despite the help of the relay(s)’ [14–16]. The research on untrusted relay networks was pioneered
by He and Yener [16]. A destination-based jamming (DJ) scheme was proposed in [16] to realize
positive secrecy rate in dual-hop relay networks with an untrusted amplify-and-forward (AF) relay.
Due to its excellent performance, several works focused on analyzing the performance of DJ in various
untrusted relay channels, including the ergodic secrecy capacity (SEC) [17–21], and the secrecy outage
probability (SOP) [22–26]. Although these works have proven that secure transmission is feasible
in untrusted AF relay networks with DJ, it is worth noting that the existence of untrusted relay(s)
brings fundamental changes to the system (secure) capacity and outage performance, as compared to
the conventional AF channels with trusted relay(s). More specifically, in [17,18], the authors proved
that the SEC of multi-untrusted AF networks degrades as the number of untrusted relay increases,
which is in contrast with conventional AF networks with multiple trusted relays. On the other hand,
as an alternative secrecy criterion, the SOP of AF networks with DJ was recently investigated for
the single-untrusted-relay case [22] and the multi-untrusted-relay case [26]. Their analysis showed
that the existence of relay’s eavesdropping resulted in a smaller (secrecy) diversity order in terms
of SOP. In particular, in [26], the asymptotic SOP expression of multi-untrusted-relay networks with
variable gain relaying (VGR) was derived, from which the secrecy diversity order in terms of SOP
was shown to be limited to one, rather than the relay number M achieved in conventional trusted
AF networks. However, this conclusion only holds for “moderate” number of relays scenario as
presented by Theorems 3 and 4 in [26]. This can be attributed to the key approximation based on
the law of large numbers (i.e., larger value of M) in [26]. Moreover, Figure 8 in [26] showed that the
slop of the simulated SOP curve for M = 3 is actually smaller than that of the asymptotic SOP whose
diversity order is 1. Therefore, both the derivation method and the conclusion in [26] cannot be directly
extended to the case of small number of relays, especially for the typical single-relay case M = 1.
In [22], the SOP of fixed-gain relaying (FGR) for the typical M = 1 case was obtained in an integral
form. However, we cannot directly obtain the secrecy diversity order from the integral form of SOP
in [22] (a diversity order of 1/2 in terms of SOP can be conjectured from the simulation in Figure 1
in [22] for the single-relay case). Motivated by this key observation, recent work [24] explicitly proved
that obtained secrecy diversity order in the single-user and single-untrusted-relay scenario with FGR
was limited to 1/2.

To alleviate the impact of untrusted relay, optimal power allocation (OPA) can be used to improve
the secrecy performance [21,27–29]. For DJ-based untrusted AF relay networks, where the source and
destinations were equipped with large-scale antennas while the untrusted relay was equipped with
a single antenna, an OPA scheme was proposed to maximize the instantaneous secure rate (ISR) [27].
Similarly, OPA was investigated in [28] for maximizing the ISR of large-scale antenna system with
single-antenna untrusted relay. The authors in [21] considered a DJ-based MIMO untrusted relay
system and proposed an iterative power allocation algorithm to jointly design the source, relay,
and destination precoding for maximizing the achievable ISR. Very recently, an OPA scheme was
proposed in [29] to maximize the ISR in energy harvesting relay network. Noting that all these works
focused on maximizing the ISR with OPaA.

1.3. Motivation and Contributions

A major limitation of the aforementioned works [17–23,25–29] is that most were limited to single
user scenario, and, thus, the impact of multiuser diversity (MUD) on system secrecy performance
has not been considered. In fact, very little work on the secure communication in multiuser relay
networks has been reported. In [30], the authors investigated the secure issue in multiuser relay



Information 2018, 9, 84 3 of 20

networks, where the undesired users who were not selected for data reception was treated as potential
eavesdroppers. An optimal user selection scheme was proposed for the considered system, which was
optimal in the sense of maximizing the secrecy rate. Still, the relay in [30] was assumed to be trusted.
In recent work [24], the authors focused on the multiuser untrusted relay networks with FGR and
proposed a novel joint destination-based jamming and opportunistic scheduling scheme to improve
the system SOP. In particular, the results in [24] explicitly revealed that the proposed scheme can
improve the secrecy diversity order from 1/2 in single-user networks up to full secrecy diversity order
of 1 in multiuser relay networks. However, OPA between the source and the destination still has
not been considered. To the best of our knowledge, no work has yet analyzed the utilization of OPA
strategy to minimize the SOP of DJ-based multiuser untrusted relay networks.

In this paper, we aim to enhance the security of a multiuser untrusted AF relay network without
expending additional resources. Based on the joint destination-based jamming and opportunistic
scheduling (DJOS) scheme in [24], we optimize the power allocation between the source and the
destination between source and destination under a total power constraint to further improve the
secrecy outage performance. Unlike the previous work in [24], where FGR protocol is employed at the
relay, we consider VGR protocol in this paper because VGR achieves better performance than FGR in
general. Note that the main channel (source-relay-destination) and the wiretap channel (source-relay)
in untrusted relay networks are intuitively correlated with each other, which makes the analysis for
deriving the closed-form SOP expression difficult by mathematical treatment. Moreover, compared to
the FGR scheme as in [24], the SOP of multiuser untrusted relay networks with VGR scheme is more
difficult to analyze. In this regard, it is not easily tractable to get the exact closed-form SOP expressions
of VGR scheme, even for the single-user untrusted relay scenario. To tackle this problem, on the
premise of large signal-to-noise ratio (SNR), we resort to a number of approximations to obtain the
SOP expressions in closed-form.

Compared to closely previous related works [24] and [26], our main contributions are summarized
as follows:

• To harvest the MUD while satisfying the security constraint, we propose to apply the DJOS scheme
in the considered multiuser untrusted AF relay networks with VGR. Under Rayleigh fading
channels, we first derive a new closed-form approximated SOP expression for the considered
system with DJOS. Note that an analytical SOP expression for multiple untrusted relay networks
with VGR scheme has already derived in [26]. However, as we explained before, both the
derivation method and the conclusion in [26] cannot be directly extended to the single-user and
single-untrusted-relay case which has been included and studied in this paper.

• To gain further insights, we then present the asymptotic SOP expression and prove that the
achievable secrecy order is min(1, N/2), where N denotes the number of destinations (users)
(In this paper, the diversity order only mathematically indicates the curve slope of the outage
performance metric studied at high SNRs. Prior works [8,20,24,26] have confirmed that the
(secrecy) diversity order behavior in terms of SOP in cooperative relaying networks with security
requirement is very different from the diversity order behavior in terms of connection outage
probability (COP) in scenarios without security requirement). That is, for the single-user network
(N = 1), the achievable secrecy diversity order in terms of SOP is 1/2, while with DJOS, the secrecy
diversity order in multiuser networks (N ≥ 2) can be improved from 1/2 up to full secrecy
diversity order of 1. Thus, MUD has been harvested by the OS strategy. It is worth noting
that our rigorous mathematical analyses explicitly show that the obtained secrecy diversity
order for the the typical single-untrusted-relay network with VGR is actually 1/2, rather than 1
as revealed in the multi-untrusted-relay case [26]. Therefore, our theoretical analysis on the
single-untrusted-relay network supplements and complements the results in [26].

• Finally, we propose an asymptotically OPA scheme to minimize the asymptotic SOP. Interestingly,
with the proposed OPA scheme, we find that the system secrecy diversity order can be
improved from min(1, N

2 ) (without OPA) to min(1, 2N
N+2 ). This conclusion provides some new
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findings that allow us to understand the impact of power allocation on the SOP performance.
Specifically, for the N = 1 case, our OPA scheme can help to improve the secrecy diversity order
from 1/2 up to 2/3. It is well-known that the application of OPA in conventional trusted relay
networks can only help to improve the array gain rather than the diversity gain/order [31]. This is
because full diversity order of 1 is already obtained there even without OPA. However, our work
explicitly show that, in the untrusted relay case, the effect of OPA is to increase the secrecy
diversity order. It is intuitive that the diversity order deterioration due to eavesdropping has
left some space for OPA to improve the diversity order. Moreover, when N ≥ 2, we prove that
OPA does not affect the secrecy diversity order. This is because full secrecy diversity order of 1 is
already obtained by the OS scheme even without OPA. However, as we will show in Section 5,
the effect of OPA is to increase the secrecy array gain and hence significantly reduces the SOP.

The rest of this paper is organized as follows. Section 2 presents the system model and the
DJOS scheme. Section 3 analyzes the tight approximated secrecy outage probability, as well as the
high-SNR asymptotic secrecy outage probability. Section 4 studies the optimal power allocation,
which minimizes the secrecy outage probability. Section 5 presents numerical and simulation results
to verify our theoretical analysis. Finally, Section 6 concludes the paper.

2. System Model

As shown in Figure 1, we consider a downlink cooperative cellular network where one source
S communicates with N destination users Dn (n = 1, ..., N) via the help of an untrusted AF relay R.
Each node is equipped with a single antenna and operates in a time-division half-duplex mode. It is
assumed that all channels are reciprocal and quasi-static over each transmission. Moreover, no direct
links exists between the source and the destinations, due to the long distance or significant
obstacle [17,18,20,22,26]. In this setting, although S has to rely on R to transmit its information,
it does not trust R and would like to keep its confidential information secret from R. This model
can find application in many practical scenarios such as renting a satellite relay from a third party to
forward source’s confidential information [20].

1h
2,nh

Figure 1. System Model for the multiuser untrusted AF relay networks with joint destination-based
jamming and opportunistic scheduling (DJOS).

To achieve both the benefits of MUD and DJ schemes, we apply the DJOS scheme in [24]
for the considered multiuser untrusted relay network. Specifically, before each data transmission,
only the “best” destination out of the N candidates is selected to access the channel, using a specific
security optimal opportunistic scheduling (OS) strategy whose details will be given later. As will
be demonstrated later, MUD can be obtained by the proposed user scheduling strategy. After this,
a two-phase transmission starts. In particular, the DJ approach is adopted in Phase 1 to prevent
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eavesdropping at the untrusted relay R. Note that this DJ-based two-phase transmission is similar to
the physical layer network coding (PNC) or analog network coding (ANC) as illustrated in [32,33],
respectively. (It is well-known that both PNC and ANC can achieve full diversity order of 1 in terms of
COP [34]. In this context, the (secrecy) diversity order deterioration in single-user AF network with DJ,
as demonstrated in Section 4, is not due to the application of DJ in untrusted AF networks.) The data
transmission process is detailed as follows.

In Phase 1, S transmits xs with power αP and at the same time, the nth destination (i.e., Dn)
transmits a Gaussian interference signal xd,n with power (1− α)P to the relay. Here, P denotes a fixed
total transmission power budget (P also denotes the system SNR herein) and α ∈ (0, 1) is the power
allocation ratio [17]. Hence, the superimposed signal received at R is given by

yR =
√

αPh1xs +
√
(1− α)Ph2,nxd,n + nR, (1)

where h1 ∼ CN (0, λ−1
1 ) and h2,n ∼ CN (0, λ−1

2,n) denote the instantaneous channel coefficient of S→ R
and R→ Dn links, respectively, and nR ∼ CN (0, 1) is additive white Gaussian noise (AWGN) at the
relay. Then, under Rayleigh fading channels, |h1|2 and |h2,n|2 are independent exponential random
variables with parameters λ1 and λ2,n, respectively. Moreover, we assume that all the users are located
in close proximity to each other with λ2,n = λ2 for simplicity. Based on Equation (1), the received
signal-to-interference-plus-noise ratio (SINR) at the relay R is given by

γR =
αP|h 1|2

(1− α)P|h2,n|2 + 1
. (2)

In Phase 2, R simply amplifies the received signal yR with a scaling gain applied, denoted by G,
and then retransmits it to Dn. The received signal at Dn is written as

yDn = h2,nG(
√

αPh1xs +
√
(1− α)Ph2,nxd,n + nR) + nDn , (3)

where nDn ∼ CN (0, 1) is AWGN at Dn. Since xd,n is the transmitted signal of Dn in the first phase,
Dn can subtract the term h2,nG

√
(1− α)Ph2,nxd,n from yDn and decodes the source message based on

the remainder signal ỹDn , which is given by

ỹDn = h2,nG(
√

αPh1xs + nR) + nDn . (4)

When a variable gain relay is employed, the variable-gain relaying factor is selected as
G=
√

P
αP|h1|2+(1−α)P|h2,n |2+1 . Plugging the expression of G into ỹDn and after some algebraic

manipulations, we can express the SINR at Dn as

γDn =
αP|h1|2 × P|h2,n|2

αP|h1|2 + (2− α)P|h2,n|2 + 1
(5)

According to Equations (2) and (5), the achievable instantaneous secrecy rate at the nth destination
Dn is calculated by [26]

CS,n =

[
1
2

log(1 + γDn)−
1
2

log(1 + γR)

]+

=

1
2

log

1 + αP|h1|2·P|h2,n |2
αP|h1|2+(2−α)P|h2,n |2+1

1 + αP|h1|2
(1−α)P|h2,n |2+1



+

,

(6)

where [x]+ = max{0, x}.
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3. Opportunistic Scheduling Scheme

We now describe the opportunistic scheduling scheme, which aims at exploiting the multiuser
diversity inherent in the considered multiuser relay networks as well as guaranteeing the system to
achieve the optimal secrecy performance. In this regard, the user scheduling criterion is to select such
a destination/user Dn∗ that satisfies

n∗ = arg max
1≤n≤N

CS,n. (7)

In this criterion, at a time, only the destination with the highest instantaneous secrecy rate out
of N destinations is scheduled for transmitting jamming signal in Phase 1 and receiving the relay’s
signal in Phase 2. Furthermore, it is not difficult to verify that the instantaneous secrecy rata CS,n in
Equation (6) is an increasing function of |h2,n|2, so a user maximizing the instantaneous secrecy rate is
identical to a user with the largest instantaneous channel gain of the second hop. Thus, the scheduling
policy in Equation (7) can be formulated equivalently as

hM = max
1≤n≤N

|h2,n|2, (8)

where hM denotes the instantaneous channel gain of the scheduled destination D∗n.
It should be noted that Equation (8) reveals that the opportunistic scheduling strategy in

conventional multiuser relay networks without security requirement [35] can be applied directly in the
multiuser untrusted relay networks. Specifically, the scheduling scheme presented in Equation (8) is
implemented at the relay, which is assumed to have perfect knowledge of the relay-destination links
of all the N destinations (This is a common assumption in multiuser relay networks [35–37]. In practice,
the channel state informations (CSIs) of the links can be estimated at the relay by employing reciprocity
to estimate forward channels from the reverse channels. Generally speaking, the CSI estimation
could be very accurate if the training period is sufficiently long [36]). At the beginning of each
scheduling period, the relay broadcasts a destination synchronization message, which contains the
synchronization information and the pilot signaling transmission order. Then, the relay identifies and
selects the strongest user. Finally, the relay feeds back the index of the strongest user to the source.

The relay has perfect channel state information (CSI) of each link.

4. Secrecy Outage Performance Analysis

In this section, we will derive an analytical expression for the SOP with large transmit power
first. Then, we provide an high-SNR asymptotic SOP expression to characterize the asymptotic secrecy
outage performance of the system, i.e., secrecy diversity order and secrecy array gain. Finally, based on
the asymptotic SOP expression, we determine an asymptotic power allocation to further boost the
system secrecy performance.

4.1. Approximated Secrecy Outage Probability

SOP is defined as the probability that the instantaneous secrecy rate is less than a given target
secrecy rate Rs > 0 [26]. Mathematically, according to Equations (6) and (8), the SOP can be
formulated as

Psop = Pr {CS,M < RS}

= Pr

1 + αP|h1|2·P|hM |2
αP|h1|2+(2−α)P|hM |2+1

1 + αP|h1|2
(1−α)P|hM |2+1

< 22RS

.
(9)

Unfortunately, it is not easily tractable to get exact closed-form expression of Equation (9).
To tackle this, we resort to some approximations to facilitate our analysis. First, we apply the
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well-known and widely used inequality xy
1+x+y < xy

x+y ≤ min(x, y) to tightly upper bound γD as

γD < P min
{

α
2−α |h 1|2, |h M|2

}
. Moreover, to guarantee the secure transmission, we consider the

worst-case, where the noise at the relay is zero. Note that this assumption is reasonable when SNR
is high and it further facilitates the analysis, which is also taken into considered in [27]. That is,

we have γR ≈
α|h 1|2

(1−α)|h M |2
in high SNR regime. Then, the system SOP with selected destination D∗n in

Equation (9) can be approximated as follows

Psop ≈ Pr

1+P min
{

α
2−α |h 1|2, |h M|2

}
1 + α|h 1|2

(1−α)|h M |2
< 22RS

 . (10)

In the following theorem, we provide an analytical expression for Psop in Equation (10).

Theorem 1. The secrecy outage probability of the multiuser untrusted relay networks with DJOS can be
approximately expressed by:

Psop ≈ 1− J1 + J2, (11)

where J1 and J2 are, respectively, given by

J1 =
N

∑
n=1

(
N
n

)
(−1)n−1 λ2n

P
e−

λ1θ1+λ2θ0n
P

∞

∑
j=0

(−1)jQ′

j!

(
λ1θ0θ1

Q′P

)j
Ej

(
Q′λ2n

P

)
, (12)

J2 =
N

∑
n=1

(
N
n

)
(−1)n−1λ2n

√
θ2π

4λ1P
e

θ2
4λ1P

(
λ2n− λ1Q′

θ2

)2

erfc

((
λ2n− λ1Q′

θ2

)√
θ2

4λ1P
+

Q′ + θ0√
θ2P/λ1

)
, (13)

with Q = 22RS , Q′ = Q− 1, θ0 = Q(2−α)
1−α , θ1 = (Q−1)(2−α)

α , and θ2 = αQ
1−α . Moreover, En(x)=

∫ ∞
1

e−xt

tn dt
in Equation (12) is the exponential integral function and erfc(·) in Equation (13) is the complementary error
function [38].

Proof of Theorem 1. Please see Appendix A for the proof.

4.2. Asymptotic Secrecy Outage Probability

In the following, we introduce simple expression for the asymptotic SOP in the high SNR regimes,
which is useful in demonstrating the system secrecy diversity order and secrecy array gain.

Theorem 2. The asymptotic high-SNR SOP of the considered system is given by

Psop ≈


v
P + Au

B
√

P
− A2u2

2BP (1 + ω) , N = 1
b N

2 c
∑

n=1

(−1)n+1

n!

(
λ1θ1

P

)n
+ Θ(N)uN

P
N
2

, N ≥ 2,
(14)

where A = 1.98, B = 1.135, u = λ2

√
θ2

4λ1
, ω = λ1(Q′+2θ0)

λ2θ2
, and v = λ1θ1 + λ2θ0 + λ2Q′. In (14), when N

is an odd number, Θ(N) = AN!
B( N

2 −
1
2 )!

, while when N is an even number, Θ(N) = A2 N!
2B( N

2 −1)!
. Besides, b·c in

Equation (14) represents the rounding-down operation.

Proof of Theorem 2. Please see Appendix B for the proof.

Equation (14) implies that the achievable secrecy diversity order and the secrecy array gain of the
considered system, for a fixed power allocation (FPA) factor α, can be respectively written as
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GFPA
d = min

(
1,

N
2

)
=

{
1/2 , N = 1

1 , N ≥ 2
(15)

GFPA
c =


( Aλ2

√
θ2

2B )−2 , N = 1

(λ 1θ1 +
A2λ2

2θ2
4Bλ 1

)−1 , N = 2
(λ 1θ1)

−1 , N ≥ 3

(16)

Remark 1. Recall that, when the relay is trusted, full diversity of 1 can be achieved for the single-user scenario
(N = 1) and the diversity order for multiuser scenario (N ≥ 2) is unaffected by opportunistic scheduling
(OS) [35]. However, when the relay is untrusted, those observations no longer exist.

First, when N = 1, as it is revealed in Equation (15), the AF system with untrusted variable gain
relay achieves a secrecy diversity order of 1

2 in terms of SOP, which is in contrast to full diversity
order of 1 in terms of connection outage probability (COP) achieved in trusted AF systems [35].
This result reveals that the existence of relay’s eavesdropping will cause some loss of the diversity
order (as clarified in Section 2, it is not the application of DJ in untrusted AF networks that results in
such a diversity order loss). Intuitively, the diversity order difference between COP and SOP lies in
discrepancy between their definitions. Specifically, the concept of SOP jointly characterizes the security
and reliability performance, while the COP only evaluate the reliability performance. When the relay is
untrusted, the diversity loss becomes the price to satisfy the system secrecy requirement, i.e., avoiding
source information intercepted by the untrusted relay. Mathematically, according to Equation (A9) in
Appendix A, the external condition X > P

θ2
Y2 − Q′

θ2
Y in J2 of Equation (A9) will result in a diversity

order of 1/2, presenting the probability of not achieving perfect secrecy ( i.e., there is some information
leakage to untrusted relay R ) in single untrusted VGR system.

Furthermore, for the multiuser AF networks (i.e., N ≥ 2) with OS, the diversity order has been
improved from 1/2 up to 1, which implies that the loss of diversity order can be compensated by the
OS approach. In particular, the results in Equations (15) and (16) demonstrate the performance gains
of employing OS in multiuser untrusted AF relay networks, which is harvested in form of security
outage performance improvement, i.e., increased secrecy diversity gain as well as secrecy array gain.

Remark 2. Besides, we can see from Equation (16), although the effect of OS is to increase the array gain
as the number of destinations N increases, the array gain becomes saturated, when N increases to a certain
extent (i.e., N ≥ 3). This is because, as N increases, the link quality between the relay and the scheduled user
becomes much better than that of the source-relay link. In such case, the secrecy performance will be primarily
limited by the quality of the source-relay link. Moreover, while it is generally known that further increasing N
leads to array gain saturation (noting that this array gain saturated phenomenon is ubiquitous in conventional
trusted multiuser relaying networks when N ≥ 2 (see [35,39] and references therein)) [35,39] when N = 2 in no
secrecy constraint scenario, our results in Equation (16) demonstrate that the array gain enhancement in secrecy
constraint scenario is marginal when N ≥ 3.

4.3. Asymptotic Optimal Power Allocation

We investigate the optimum power allocation in this subsection. For analytical tractability,
we choose the asymptotic SOP in Equation (14) as a target function, and, hence, the optimum power
allocation aims to minimize the asymptotic SOP by optimally allocating power between the source
and the scheduled destination under a total power constraint of P. The asymptotic optimal power
ratio α∗ is presented in the following lemma.
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Theorem 3. For sufficiently large SNR (i.e., P→ ∞), the asymptotic optimal power allocation factor α∗ that
minimizes SOP is given by:

α∗ ≈ 1

1 + Ξ(N)2P
2−N
2+N

, (17)

where Ξ(N) =

(
NΘ(N)βN

2
2β1

) 1
N+2

with β1=2λ1Q′ and β2=
λ2
2

√
Q
λ1

.

With the asymptotical OPA derived in Equation (17), the corresponding minimum SOP is given by

Psop(α
∗) ≈ β1

2P
+

(
β1Ξ(N)2 + Θ(N)

(
β2

Ξ(N)

)N
)

1

P
2N

N+2
. (18)

As can be observed by Equation (18), the secrecy diversity and array gains of the system with OPA are,
respectively, given by

GOPA
d = min

(
1,

2N
N + 2

)
=

{
2/3 , N = 1

1 , N ≥ 2
(19)

and

GOPA
c =



(
β2Θ(1)

Ξ(1)

)− 3
2 , N = 1(

β1
2 + β1Ξ(2)2 + Θ(2)

(
β2

Ξ(2)

)2
)−1

, N = 2(
β1
2

)−1
, N ≥ 3.

(20)

Proof of Theorem 3. Please see Appendix C.

Remark 3. Note that, in trusted relay systems, OPA scheme does not affect the diversity order, rather it increase
only the array gain [31]. Nevertheless, as revealed in Equation (19), the OPA scheme has an impact on the
diversity gain of single-user (N = 1) untrusted relay systems. Specifically, by using our proposed OPA scheme,
the obtained diversity order can be improved from 1/2 up to 2/3. Thus, significantly secrecy performance
improvement can be achieved, as shown in Section 5. Moreover, for multiuser scenario (N ≥ 2), the result in
Equation (20) confirms that OPA has no impact on the diversity gain due to bottleneck of the source-relay link.
Nevertheless, by inspecting Equation (20), we observe that the effect of OPA is to increase the secrecy array gain.

5. Numerical Results and Discussions

In this section, we present some numerical and simulation results to verify our previous theoretical
analysis. The simulation results are obtained by performing 5× 106 random channel realizations.
Moreover, the analytical curves obtained by Equation (12) is truncated by the first five terms.

Figure 2 shows the system SOP versus P for different values of N. The curves are plotted for
α = 0.5, λ1 = 0.5 and λ2 = 1. We can see that the analytical approximate SOP results are very close
to the simulation results even at low SNR regions, and the asymptotic values match well with the
simulations at high SNR regimes. In Figure 2, the achievable secure diversity order of the considered
system can be verified to be equal to min(1, N/2). As a result, we can see that the MUD gain is
harvested in the form of decreased SOP and increased secrecy diversity order, as N increases from
1 to 2. Furthermore, we observe that increasing N from 2 to 3 leads to a moderate performance
enhancement. This is because, when N ≥ 2, opportunistic scheduling has no effect on the secrecy
diversity order but improves the secrecy array gain. However, as revealed in Equation (16), increasing
N beyond 3 does not provide an additional array gain. Thus, we can that the curves for N = 3, 4
(N ≥ 3) overlap each other at sufficiently high SNR. This observation is also demonstrated in Figure 3,
from which we can see that the secrecy outage behavior in high SNR regime is stabilized over N or λ2

when N ≥ 3, while it is only dependent on λ1, thus validating the result in Equation (16). However,
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for N = 1, 2, we can see in Figure 3 that the secrecy outage performance is determined by both hops,
as revealed in Equation (16).
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Figure 2. Secrecy outage probability versus P for Rs = 0.1, α = 0.5, λ1 = 0.5 and λ2 = 1.
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Figure 3. The impact of user number N and channel gains (λ1, λ2) on the secrecy outage probability
when Rs = 0.1, α = 0.5, P = 40 dB.

Assuming that λ1 = λ2 = 1, Figure 4 provides comparisons between the optimal power allocation
factor α∗ via exhaustive search (minimizing the simulation results of the SOP) and α∗ provided by the
closed-form expression in Equation (17).

It is clear that the optimal power allocations obtained via exhaustive search match well with
those via analytical results, especially in the high SNR region. Moreover, as predicted in Equation (17),
we observe that α∗ is monotonically decreasing and increasing in P for N = 1 and N ≥ 3, respectively,
while α∗ tends to be a constant (i.e., α∗ ≈ 0.5 for the considered setting) regardless of P for N = 2.
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With the α∗ obtain in Figure 4, we proceed to compare our proposed OPA scheme with the
traditional equal PA (EPA) scheme, i.e., α = 0.5, as shown in Figure 5. This figure confirms that the
OPA scheme has an obvious SNR advantage over the EPA scheme. For instance, when N = 1 and
Pout = 10−3, OPA provides a significant performance gain as high as 12 dB compared to EPA. This is
because the secrecy diversity order is improved from 1/2 (with EPA) to 2/3 (wit OPA). When N ≥ 2,
OPA brings marginal benefits to the array gain. This is because, due to the bottleneck of the first hop,
both OPA and EPA schemes achieve the same secrecy diversity order of 1. In particular, the advantage
of OPA over EPA in the secrecy outage performance diminishes when N ≥ 3, as explicitly indicated
by the array gain expression in Equation (20).
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Figure 4. Comparison between optimal power allocation α∗ via exhaustive search and analytical results
when Rs = 0.5, λ1 = λ2 = 1.
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6. Conclusions

In this paper, we study the secrecy outage probability (SOP) of multiuser relay networks with
an untrusted variable-gain relay. The joint destination-based jamming and opportunistic scheduling
(DJOS) scheme is employed to harvest multiuser diversity and satisfying security requirement.
The performance of the system is evaluated by deriving the SOP approximation as well as its asymptotic
expression in closed-form. Analysis of the secrecy diversity order and the impact of number of
users provides valuable insights into practical system designs. In particular, we demonstrate that the
diversity order loss in single-user untrusted AF networks can be fully compensated by the opportunistic
scheduling strategy. Moreover, optimal power allocation (OPA) that minimizes the asymptotic SOP is
studied. We prove that OPA can result in a significant performance improvement compared to the
conventional equal power allocation scheme without expending external resources.
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Appendix A. Proof of Theorem 1

To simplify notation, we define X = |h 1|2, Y = |hM|2. Then, we can rewrite Equation (10)
as follows

Psop ≈ Pr

{
1 + P min

{
α

2−α X, Y
}

1 + αX
(1−α)Y

< Q

}
. (A1)

Considering two cases, i.e., αX
2−α ≤ Y and αX

2−α > Y, and performing some algebraic manipulations,
we obtain

Psop ≈Pr
{(

αP
2− α

− Qα

(1− α)Y

)
X < Q− 1, X ≤ 2− α

α
Y
}

︸ ︷︷ ︸
I1

+ Pr
{

X >
P(1− α)

αQ

(
Y2 − Q− 1

P
Y
)

, X >
2− α

α
Y
}

︸ ︷︷ ︸
I2

.
(A2)

Since the first condition
(

αP
2−α −

Qα
(1−α)Y

)
X < Q− 1 of I1 in Equation (A2) is always satisfied for

Y < Q(2−α)
P(1−α)

, I1 can be divided into the following two parts:

I1 = Pr
{

X ≤ 2− α

α
Y, Y ≤ Q(2− α)

P(1− α)

}
+ Pr

{
X < min

(
f (Y),

2− α

α
Y
)

, Y >
Q(2− α)

P(1− α)

}
,

(A3)

where f (Y) = (Q− 1)
/(

αP
2−α −

Qα
(1−α)Y

)
.

Moreover, it can be shown that

min
(

f (Y), 2−α
α Y

)
=


2−α

α Y, Q(2−α)
P(1−α)

< Y ≤ Q−1
P + Q(2−α)

P(1−α)

f (Y), Y > Q−1
P + Q(2−α)

P(1−α)
.

(A4)
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For convenience, let θ0 = Q(2−α)
1−α , θ1 = (Q−1)(2−α)

α and Q′ = Q − 1. Then, substituting
Equation (A4) into Equation (A3) yields

I1 = Pr
{

Y ≤ Q′ + θ0

P
, X ≤ 2− α

α
Y
}

+ Pr
{

Y >
Q′ + θ0

P
, X < f (Y) =

θ1Y
PY− θ0

}
.

(A5)

Similarly, I2 in Equation (A2) can be rewritten as

I2 = Pr
{

X > max
(

g(Y),
2− α

α
Y
)}

. (A6)

where g(Y) = P(1−α)
αQ

(
Y2 − Q′

P Y
)

.
It can be deduced that

max
(

g(Y),
2− α

α
Y
)
=

{
2−α

α Y, 0 < Y ≤ Q′+θ0
P

g(Y), Y > Q′+θ0
P .

(A7)

Denoting θ2 = αQ
1−α and substituting Equation (A7) into Equation (A6) yields

I2 = Pr
{

Y ≤ Q′ + θ0

P
, X >

2− α

α
Y
}

+ Pr
{

Y >
Q′ + θ0

P
, X >

P
θ2

Y2 − Q′

θ2
Y
}

.
(A8)

Substituting Equations (A5) and (A8) into Equation (A2), and after some involved simplifications,
we arrive at

Psop ≈ 1− Pr
{

Y ≥ Q′ + θ0

P
, X ≥ θ1Y

PY− θ0

}
︸ ︷︷ ︸

J1

+ Pr
{

Y ≥ Q′ + θ0

P
, X >

P
θ2

Y2 − Q′

θ2
Y
}

︸ ︷︷ ︸
J2

(A9)

In the following, we will use Equation (A9) to derive the approximate SOP expression in
closed-form, which will significantly reduce the computational complexity, as compared to solve
Equations (A5) and (A8) separately. More importantly, this simplification will greatly reduce the
complexity in the asymptotic analysis for the SOP in high SNR regions. For Rayleigh fading, X and Y
are independent random variables with the probability density functions (PDFs) given, respectively,

by fX(x) = λ1e−λ1x and fY(y) =
N
∑

n=1
(N

n )(−1)n−1λ2ne−λ2ny. In the following, we focus on deriving the

exact expressions of J1 and J2 in Equation (A9), respectively.

Appendix A.1. Derivation of J1 in Equation (12):

Since X and Y are independent exponential random variables, J1 in Equation (A9) can be
calculated by:
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J1 =
N

∑
n=1

(
N
n

)
(−1)n−1λ 2n

∫ ∞

Q−1+θ0
P

e−λ2ny− λ1θ1y
Py−θ0 dy

(a)
=

N

∑
n=1

(
N
n

)
(−1)n−1 λ2n

P
e−

λ 2θ0n+λ1θ1
P

∫ ∞

Q′
P

e−
λ2n

P t− λ1θ0θ1
Pt dt,

(A10)

where Step (a) is obtained by making the change of variable t = Py− θ0 within the integral. Then,

after using the Taylor series expression for e−
λ1θ0θ1

Pt in Equation (A10), and along with the help of
Equation 5.1.4 in [38], we get J1 as in Equation (12).

Appendix A.2. Derivation of J2 in Equation (13):

Similarly, we can evaluate J2 in Equation (A9) as

J2 =
N

∑
n=1

(
N
n

)
(−1)n−1λ 2n

∞∫
Q′+θ0

P

e−λ2ny− λ1P
θ2

(
y2− Q′

P y
)

dy

=
N

∑
n=1

(
N
n

)
(−1)n−1λ2ne

θ2
4λ1P

(
λ2n− λ1Q′

θ2

)2

×
∞∫

Q′+θ0
P

e
− λ1P

θ2

(
y+ θ2

2λ1P

(
λ2n− λ1Q′

θ2

))2

dy.

(A11)

By setting y + θ2
2λ1P

(
λ2n− λ1(Q−1)

θ2

)
= t, using Equation 3.322.1 in [38], and then after some

mathematical manipulations, we get J2 as presented in Equation (13).

Appendix B. Proof of Theorem 2

To proceed, we put forth the following three properties for the sums of binomial coefficients,
which play key roles in our derivation. Specifically, with the binomial theorem and the help of
Equation 0.154 in [38], it is not difficult to obtain the following three properties for the sums of
binomial coefficients:

N

∑
n=1

(
N
n

)
(−1)n−1(n + a)k =

{
ak , 1 ≤ k < N

aN + (−1)N−1N! , k = N ,
(A12)

N

∑
n=1

(
N
n

)
(−1)n−1(n + a)knj =

{
0 , 1 ≤ k + j < N, j ≥ 1

(−1)N−1N! , k + j = N ,
(A13)

N

∑
n=1

(
N
n

)
(−1)n−1n(n + a)k(n + a)j =

{
0 , 1 ≤ k + j + 1 ≤ N − 1

(−1)N−1N! , k + j + 1 = N.
(A14)

As shown in Equation (11), the SOP can be expressed as Psop = 1− J1 + J2. In the following,
the asymptotic studies of J1 in Equation (12) and J2 in Equation (13) are carried out individually.
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Appendix B.1. Asymptotic analysis of J1 in Equation (12)

By applying series expansion of exponential functions, J1 in Equation (12) can be rewritten
as follows:

J1 =
∞

∑
i=0

∞

∑
j=0

(−1)i+jλ2(λ1θ1 + λ2θ0)
i(λ1θ0θ1)

j

i!j!Q′ j−1Pi+j+1

×
N

∑
n=1

(
N
n

)
(−1)n−1En

(
Q′λ2n

P

)
.

(A15)

To facilitate the asymptotic analysis, we further separate J1 in Equation (A15) into a sum of three
terms, i.e., J1 = J11 + J12 + J13, where J1i, i = 1, 2, 3 are defined as follows.

Specifically, when i = 0, j = 0, we have

J11 =
N

∑
n=1

(
N
n

)
(−1)n−1 λ2nQ′

P
E0

(
λ2Q′n

P

)
. (A16)

When j = 0, i ≥ 1, we have

J12 =
∞

∑
i=1

(−1)iλ 2Q′

i!Pi+1

N

∑
n=1

(
N
n

)
(−1)n−1n

× (λ2θ0n + λ1θ1)
iE0

(
λ 2Q′n

P

)
.

(A17)

When i ≥ 0, j ≥ 1, we have

J13 =
∞

∑
i=0

∞

∑
j=1

(−1)i+j(λ1θ0θ1)
jλ 2

i!j!Q′ j−1Pi+j+1

N

∑
n=1

(
N
n

)
(−1)n−1

× (λ2θ0n + λ1θ1)
iEj

(
λ 2Q′n

P

)
.

(A18)

(i) For J11, using the fact that E0 (z) = e−z/z and the Taylor series expression of exponential
function within E0 (z): exp(−z) = ∑∞

r=0(−1)rzr/r!, J11 can be approximated as

J11 =1 +
∞

∑
r=1

(−1)r(λ 2Q′)r

r!Pr

N

∑
n=1

(
N
n

)
(−1)n−1nr

(a)
≈1− (λ 2Q′)N

PN ,

(A19)

where Step (a) is carried out by using Equation (A12) and discarding the higher order terms of P−N in
the first equation of Equation (A19).

(ii) For J12, taking the similar steps as the approximation for J11, we can rewrite J12 as follows

J12 =
∞

∑
i=1

(−1)i(λ2θ0)
i

i!Pi+1

N

∑
n=1

(
N
n

)
(−1)n−1(n +

λ1θ1

λ2θ0
)

i

+
∞

∑
i=1

∞

∑
r=1

(−1)i+r(λ2θ0)
i(λ 2Q′)r

i!r!Pi+r

N

∑
n=1

(
N
n

)
(−1)n−1(n +

λ1θ1

λ2θ0
)inr.

(A20)

Applying the properties in Equations (A12) and (A13) for the first and the second terms
of Equation (A20), respectively, and discarding the higher order terms with P−(N+1), we can
approximated J12 as follows
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J12 ≈
N

∑
i=1

(−1)i(λ1θ1)
i

i!Pi − (λ2θ0 + λ 2(Q− 1))N

PN . (A21)

(iii) For J13, consider the following infinite series expansions: Ej (z) can be expanded as

Ej (z) =
(−1)j−1zj−1

(j−1)! [ϕ(j)− ln(z)]−
∞
∑

k=0,k 6=j−1

(−z)k

(k−j+1)k! for j ≥ 1 [40], and ln(x) = ∑∞
r=1 (−1)k−1(x− 1)k/k

for 0 < x < 1, where ϕ(·) is the digmama function [38]. Then, we can expand J13 as follows

J13 =
∞

∑
i=0

∞

∑
j=1

(−1)i+j(λ1θ1)
j(λ2θ0)

i+j ϕ(j)
i!j!(j− 1!)Pi+j+1

×
N

∑
n=1

(
N
n

)
(−1)n−1(n+

λ1θ1

λ2θ0
)inj

−
∞

∑
i=0

∞

∑
j=1

∞

∑
r=1

r

∑
s=0

(
r
s

)
(−1)i+2j+2r−s(λ1θ1)

j

i!j!(j− 1)!r

× (λ2θ0)
i+j(λ2Q′)s−1

Pi+j+s+1

N

∑
n=1

(
N
n

)
(−1)n−1(n+

λ1θ1

λ2θ0
)inj+s

−
∞

∑
i=0

∞

∑
j=1

∞

∑
k=0,
k 6=j−1

(−1)i+j+k(λ1θ1)
j(λ2θ0)

i+j

i!j!k!(k− j + 1)Pi+j+k+1

×
N

∑
n=1

(
N
n

)
(−1)n−1(n +

λ1θ1

λ2θ0
)ink+1.

(A22)

Compared with the expression of J13 in Equation (A18), the expanded form of J13 shown in
Equation (A22) is more complicated. However, with the help of Equation (A22), we can easily
determine the highest order of J13. Specifically, utilizing the properties in Equations (A12) and (A13)
again, we can conclude that all three terms in Equation (A22) are at the order of P−(N+1) at high SNR
regimes and hence the following conclusion can be obtained

J13 → P−(N+1). (A23)

Finally, combining Equations (A19), (A21) and (A23), J1 in Equation (12) can be approximated
as follows:

J1 ≈ 1 +
N

∑
i=1

(−1)i(λ1θ1)
i

i!Pi −
λN

2 (Q′N + (θ0 + Q′)N)

PN . (A24)

Appendix B.2. Asymptotic analysis of J2 in Equation (13)

For ease of exposition, let u = λ2

√
θ2

4λ1
, υ = λ1Q′

λ2θ2
, and ω = λ1(Q′+2θ0)

λ2θ2
. Then, we rewrite

Equation (13) as

J2 =
N

∑
n=1

(
N
n

)
(−1)n−1 n

√
πu√
P

e
u2
P (n−υ)2

erfc
(

u√
P
(n + ω)

)
. (A25)

Using the tight approximation efrc(x) ≈ (1−e−Ax)e−x2

B
√

πx [41] with A = 1.98, B = 1.135,

and by applying series expansion of exponential functions, we get efrc(x) ≈ A(1− Ax
2 )

B
√

π
. Using this

approximation for erfc(x) and the series expansion of e
u2
P (n−v)2

in Equation (A25), J2 in Equation (A25)
can be approximated, after some careful manipulations, as
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J2 = J21 − J22, (A26)

where

J21 =
A
B

∞

∑
i=0

u2i+1

i!Pi+1/2

N

∑
n=1

(
N
n

)
(−1)n−1n(n− υ)2i, (A27)

J22 =
A2

2B

∞

∑
i=0

u2i+2

i!Pi+1

N

∑
n=1

(
N
n

)
(−1)n−1n(n+ !)(n− υ)2i. (A28)

For N = 1, we have

J2
(a)
≈ Au

B
√

P
− A2u2

2BP
(1 + ω), (A29)

where Step (a) is carried out by substituting i = 0 into the expressions for J21 and J22, respectively,
and then discarding the higher order terms of P−1.

For N ≥ 2, we should consider two cases: (1) N is an odd number; and (2) N is an even
number. First, consider the case when N is an even number. Utilizing the properties in Equations (A12)
and (A13), we can see that the dominant factor in J21 is the term with i = N−1

2 , which implies

J21 → P−
N+1

2 . On the other hand, when N is an odd number, the dominant factor of J21 is at the order
of P−

N
2 . Noting these facts, we can asymptotically express J21 as follows:

J21 ≈


A(−1)N−1 N!uN

B( N
2 −

1
2 )!P

N
2

, N is an odd number

1

P
N
2 + 1

2
+ o( 1

P
N
2 + 1

2
), N is an even number.

(A30)

Similarly, using Equation (A14), we can approximate J22 as follows

J22 ≈


1

P
N
2 +1

+ o( 1

P
N
2 +1

), N is an odd number

A2(−1)N−1 N!uN

2B( N
2 −1)!P

N
2

, N is an even number.
(A31)

Combining Equations (A30) and (A31), and discarding the higher order terms of P−
N
2 ,

the asymptotic expression of J2 for N ≥ 2 can be obtained as

J2 ≈


A(−1)N−1 N!uN

B( N
2 −

1
2 )!P

N
2

, N is an odd number

A2(−1)N−1 N!uN

2B( N
2 −1)!P

N
2

, N is an even number.

(A32)

Finally, substituting Equations (A24), (A29) and (A32) into Equation (11), we can obtain the
asymptotic SOP expression as in Equation (14).

Appendix C. Proof of Theorem 3

By applying the change of variable α = 1
1+t2 (t ≥ 0) and after performing some manipulations,

we rewrite Equation (14) as
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Psop(t)≈



β1
P t2 +

(
β2√

P

)N Θ(N)
tN + ∆1

P
1
t2 +

∆2
P , N = 1

β1
P t2 +

(
β2√

P

)N Θ(N)
tN + β1

2P , N = 2, 3

β1
P t2 +

(
β2√

P

)N Θ(N)
tN + β1

2P +
b N

2 c
∑

n=2

(−1)n+1

n!

(
β1
2P

)n
(2t2 + 1)n , N ≥ 4

(A33)

where ∆1 = Qλ2

(
1− A2λ2

8Bλ1
− A2

4B

)
and ∆2 = λ2Q + (λ2 − λ1) Q′ + A2λ2

8B (λ2Q− (3Q− 1)).
Unfortunately, it is still difficult to obtain a closed-form solution for the optimal value of t, i.e., t∗,

that minimizes the asymptotic SOP in Equation (A33). Rather than resort to the numerical method to
obtain t∗, we present a simple closed-form suboptimal solution for t∗ (i.e., α∗) in the following. To do
this, we further simplify the asymptotic SOP in Equation (A33) as follows:

Psop(t) ≈
β1

P
t2 + Θ(N)

(
β2√

P

)N 1
tN +

ξ

P
, for N ≥ 1, (A34)

where ξ = ∆2 for N = 1, otherwise, ξ = β1/2 (i.e., for N ≥ 2). The rationality for Equation (A34) runs
as follows.

We notice from Equation (A33) that Psop(t)
P→∞≈ Θ(1)β2√

P
1
t for N = 1, which decreases monotonically

with t. In this context, to minimize Psop(t) for N = 1 in Equation (A33), we should let t∗ → ∞
(i.e., α∗ → 0), which implies

lim
P→∞
t∗2→∞

∆1
P

1
t∗2

β1
P t∗2

= lim
t∗→∞

∆1

β1t∗4 = 0. (A35)

Equation (A35) demonstrates that, when solving the the optimal value of t (t∗) to minimize the
SOP of N = 1 in Equation (A33), the third term ∆1

P
1
t2 in Equation (A33) has little impact on t∗ as

compared to the first term β1
P t2 when P→ ∞, thus it can be ignored. Similarly, when N ≥ 4, we notice

from Equation (A33) that Psop(t) ≈ β1
2P t2 + β1

2P , which increase monotonically with t. Therefore, we have
t∗ → 0 (i.e., α∗ → 1), which is also verified in Figure 4. Therefore, the fourth term in Equation (A33)

with N ≥ 4, i.e.,
b N

2 c
∑

n=2

(−1)n+1

n!

(
β1
2P

)n
(2t2 + 1)n can be ignored as compared to the first term and the

second term in Equation (A33) with N ≥ 4. With the above facts, the SOP in Equation (A33) can be
further simplified by an unified form, as shown in Equation (A34).

In the following, we use Equation (A34) to determine the asymptotic OPA. Since the term ξ in
Equation (A34) is not a function of t, it is sufficient to minimize the following function G(t) to optimize
the asymptotic SOP

G(t) =
β1

P
t2 + Θ(N)

(
β2√

P

)N 1
tN . (A36)

By setting the first order derivation of Equation (A36) as zero, i.e., ∂G(t)
∂t = 2β1

P t−
(

β2√
P

)N NΘ[N]
tN+1 = 0,

we get t∗ = Ξ[N]P
2−N

2(2+N) , where Ξ[N] is given in Equation (17). Using α = 1
1+t2 , we can obtain

the closed-form expression for α∗ as in Equation (17). Moreover, substituting Equation (17) into
Equation (A33), and performing algebraic manipulations, the asymptotical minimum SOP can be
derived as in Equation (18).
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