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Abstract: Several financial instruments have been thoroughly calculated via the price of an underlying
asset, which can be regarded as a solution of a stochastic differential equation (SDE), for example
the moment swap and its exotic types that encourage investors in markets to trade volatility on
payoff and are especially beneficial for hedging on volatility risk. In the past few decades, numerous
studies about conditional moments from various SDEs have been conducted. However, some existing
results are not in closed forms, which are more difficult to apply than simply using Monte Carlo
(MC) simulations. To overcome this issue, this paper presents an efficient closed-form formula
to price generalized swaps for discrete sampling times under the inhomogeneous Heston model,
which is the Heston model with time-parameter functions. The obtained formulas are based on the
infinitesimal generator and solving a recurrence relation. These formulas are expressed in an explicit
and general form. An investigation of the essential properties was carried out for the inhomogeneous
Heston model, including conditional moments, central moments, variance, and skewness. Moreover,
the closed-form formula obtained was numerically validated through MC simulations. Under this
approach, the computational burden was significantly reduced.

Keywords: closed-form formula; discrete sampling; Heston model; inhomogeneous Heston model;
conditional moment; log price

MSC: 91G20

1. Introduction

The Heston model [1] is a diffusion model that consists of two stochastic processes,
where the dynamics of the first process involve the instantaneous variance process, namely
the Cox–Ingersoll–Ross (CIR) process [2]. The model can be applied to basic derivative
products with various prices and allows the instantaneous variance to be the CIR process
having its mean reversion. The Heston model appears in a wide variety of real-world
applications in different branches of mathematical science; see [1,3–6] for more details. For
example, a well-known application of the Heston model is the variance swap pricing
based on log prices; see [7–11]. The model can be also applied to the energy industry as
financial applications; see [12–14] for more details. In the variance swap context observed
by Zhu and Lian [9], two main types of swap valuation approaches exist, numerical and
analytical methods. However, the numerical method increases the computational burden.
In contrast, the analytical method is poorly studied in general. Investigating the Heston
model’s properties is still challenging.

Commonly, the CIR process is applied to describe the dynamics of the interest rates
or instantaneous variance in the Heston model of the stochastic interest rate or stochastic
volatility models. In practice, strong empirical evidence shows that the movements in
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practice tend to involve time; see [15–19]; thus, the dynamics of the processes are usually
governed by time parameters. In the case of the CIR process, it becomes the extended
CIR (ECIR) process [16], which has been investigated in numerous research works such
as [16,17], who studied an extension of the CIR process that is more suitable for the data
than the CIR process. In 2011, Grzelak and Oosterlee [20] discussed an extension of the
Heston model by replacing the constant interest rate by a stochastic environment. However,
the properties of the process, such as conditional moments, central moments, and variance,
are rarely investigated. In this study, we call the Heston model with time-parameter
functions the inhomogeneous Heston model. Unlike the Heston model, the conditional
moments and properties of the inhomogeneous Heston model cannot be derived directly by
using the transition probability density function (PDF) due to the arbitrary time-parameter
functions in the process that make the transition PDFs unknown.

Under sufficient conditions, this research provides a closed-form formula for the
conditional moments of log prices under the inhomogeneous Heston model. Based on a
partial differential equation (PDE) according to the infinitesimal generator [21], a recursive
coefficient function was obtained. The obtained formula was derived by solving the PDE
without requiring any knowledge of the transition PDFs. The presented formula is more
general in terms of time-dependent parameters than other approaches in the literature.
Some essential properties of the inhomogeneous Heston model are observed, which can be
beneficial for statistical applications, such as for calculating the variance swap valuation,
which is also more general in terms of the time-dependent parameters than Zhu and Lian’s
results [9].

The rest of the paper is organized as follows: Section 2 provides a brief overview of the
Heston model and the inhomogeneous Heston model. Section 3 mentions the main method-
ology to address the relevant concepts for our proposed results, which are closed-form
formulas for the conditional moments of the inhomogeneous Heston model. Section 4 pro-
vides the essential properties of the closed-form formula. Section 5 experimentally validates
our proposed formulas for the inhomogeneous Heston model for time-inhomogeneous
cases via Monte Carlo (MC) simulations. Section 6 concludes the paper.

2. Inhomogeneous Heston Model

The original Heston model was first introduced by Heston [1] for application to option
pricing, which satisfies the dynamics of the following stochastic differential
equations (SDEs): {

dSt = rSt dt +
√

vtSt dW̃S
t ,

dvt = κ(θ − vt) dt + σ
√

vt dW̃v
t ,

(1)

where St is the price of the asset at time t, r is a constant interest rate of the asset, vt is a
stochastic instantaneous variance, θ is the long-term average of variance of the price, κ is
the rate of reverting to θ, σ is the volatility of volatility, and dW̃S

t and dW̃v
t are two Winner

processes. The stochastic instantaneous variance in the Heston model can be represented
by the CIR process [2].

In 2011, Grzelak and Oosterlee [20] discussed an extension of the Heston model, replacing
constant interest rate r by time-dependent interest rate r(t). In addition, References [16–18]
studied an extension of the CIR process, which is more suitable for the data than the CIR
process. Consequently, we considered an extended Heston model by using r(t) and a
general form of the ECIR that appeared in [18] to describe the stochastic instantaneous
variance and having a general form as follows:{

dSt = r(t)St dt +
√

vtSt dW̃S
t ,

dvt = κ(t)(θ(t)− vt) dt + σ(t)
√

vt dW̃v
t ,

(2)

where θ(t) and κ(t) are smooth and bounded time-dependent parameter functions; dW̃S
t

and dW̃v
t are correlated Winner processes with correlation coefficient ρ based on a filtered
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probability space (Ω,Ft, {Ft}0≤t≤T , Q) generated by an adapted the Brownian motion W̃S
t

and W̃v
t , where Ω is a sample space, Q is a risk-neutral measure, and the family {Ft}0≤t≤T

of the σ-field on Ω parametrized over t ∈ [0, T] is a filtration. By applying Itô’s lemma [21]
with xt := ln St for all t ≥ 0 to the first equation of (2), the process for the log price can be
rewritten as:

dxt =
dSt

St
− 1

2

(
dSt

St

)2
=

(
r(t)− 1

2
vt

)
dt +

√
vt dW̃S

t .

Then, the system (2) becomes:
dxt =

(
r(t)− 1

2
vt

)
dt +

√
vt dW̃S

t ,

dvt = κ(t)(θ(t)− vt) dt + σ(t)
√

vt dW̃v
t .

dW̃S
t dW̃v

t = ρ dt.

(3)

To obtain a dynamical system with mutually independent Winner processes WS
t

and Wv
t , by applying the Cholesky decomposition method [22] with the system (3), the

system (3) can be rewritten as:[
dxt

dvt

]
=

[
r(t)− 1

2 vt

κ(t)(θ(t)− vt)

]
dt + Σ C

[
WS

t
Wv

t

]
,

where matrices Σ and C are defined by:

Σ =

[√
vt 0

0 σ(t)
√

vt

]
and C =

[
1 0
ρ
√

1− ρ2

]
satisfying CC> =

[
1 ρ
ρ 1

]
,

and Winner processes WS
t and Wv

t are mutually independent under Q satisfying:[
dW̃S

t

dW̃v
t

]
= C

[
dWS

t
dWv

t

]
.

Finally, the dynamical system (3) becomes:
dxt =

(
r(t)− 1

2
vt

)
dt +

√
vt dWS

t ,

dvt = κ(t)(θ(t)− vt) dt + ρσ(t)
√

vt dWS
t + σ(t)

√
vt

√
1− ρ2 dWv

t .
(4)

To ensure that a pathwise unique strong solution exists for the ECIR process vt given
in (4) and to avoid zero a.s. with respect to the measure Q for all t ∈ [0, T], the two assump-
tions below proposed by Maghsoodi [17], Rogers and Williams [23], and Ekström et al. [24]
are required.

Assumption 1. The functions θ(t), κ(t), and σ(t) in the ECIR process vt given in (4) are strictly
positive, smooth, and continuous time-dependent functions on [0, T]. Moreover, the ECIR process
vt holds the inequality 2κ(t)θ(t) > σ(t)2.

According to Assumption 1, this paper defines the parameter function space of the
inhomogeneous Heston model (4) as follows:{

(r(t), κ(t), θ(t), σ(t), τ, ρ) ∈
(
R+
)5 × [−1, 1] | 2κ(t)θ(t) > σ(t)2

}
(5)

for all t ∈ [0, T] where τ = T − t ≥ 0.
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Under Assumption 1 and the parameter space (5), this study proposes a closed-form
formula for log prices on the basis of the inhomogeneous Heston model (4), where the
parameters depend on time, in the form:

EQ[xn
T | Ft] = EQ[xn

T | (xt = x, vt = v)] := EQ
t [x

n
T ], 0 ≤ t ≤ T, (6)

for the degree n ∈ N. The idea of our results relies on a solution of the PDE given in the
infinitesimal generator for a two-dimensional diffusion process [21], which corresponds
to the solution of (6). Roughly speaking, by expressing the solution of the PDE as a
polynomial expression, we can solve its coefficients to obtain a closed-form formula directly.
The motivation for the form of conditional moments, that is a solution to the PDE, is based
on [25–29]; considering that both SDEs in the inhomogeneous Heston model (4) have linear
drift and linear squared diffusion coefficients, the infinitesimal generator maps polynomials
to polynomials; see more details in [25,26,30,31].

3. Main Results

This section presents a closed-form formula for the conditional moments correspond-
ing to the two-factor model (4) based on the solution of the PDE according to the infinites-
imal generator for the two-dimensional diffusion process [21]. The formula is provided
in Theorem 1 as function u(n)(x, v, τ) := EQ

t
[
xn

T
]
. Next, we derive a formula for the first

conditional moment of log price xt as a consequence of Theorem 1, which is represented in
Corollary 1.

Theorem 1. Suppose that n ≥ 2 is an integer and St follows the dynamics described by the
inhomogeneous Heston model (4), then:

u(n)(x, v, τ) =
n

∑
j=0

j

∑
`=0

A(n)
j,` (τ)x`vj−`, (7)

where τ = T − t ≥ 0, (x, v) ∈ R×R+, and A(n)
j,` (τ) can be obtained by solving the system of

recursive ordinary differential equations (ODEs), for all 0 ≤ ` ≤ j ≤ n,

d
dτ

A(n)
n,n(τ) = 0, (8)

d
dτ

A(n)
n,b (τ) = −

1
2
(b + 1)A(n)

n,b+1(τ)− κ(T − τ)(n− b)A(n)
n,b (τ) for 0 ≤ b ≤ n− 1, (9)

d
dτ

A(n)
a,a (τ) = r(T − τ)(a + 1)A(n)

a+1,a+1(τ) + κ(T − τ)θ(T − τ)A(n)
a+1,a(τ) for 1 ≤ a ≤ n− 1, (10)

d
dτ

A(n)
a,b (τ) =

1
2
(b + 2)(b + 1)A(n)

a+1,b+2(τ)

+

(
1
2

σ2(T − τ)((a + 1)− b)(a− b) + κ(T − τ)θ(T − τ)((a + 1)− b)
)

A(n)
a+1,b(τ)

+ (ρσ(T − τ)(b + 1)(a− b) + r(T − τ)(b + 1))A(n)
a+1,b+1(τ)−

1
2
(b + 1)A(n)

a,b+1(τ)

− κ(T − τ)(a− b)A(n)
a,b (τ), for 1 ≤ b + 1 ≤ a ≤ n− 1, and (11)

d
dτ

A(n)
0,0 (τ) = r(T − τ)A(n)

1,1 (τ) + κ(T − τ)θ(T − τ)A(n)
1,0 (τ) (12)

subject to the initial conditions A(n)
n,n(0) = 1 and A(n)

a,b (0) = 0 for 0 ≤ b ≤ a ≤ n− 1.
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Proof. From Appendix A of Rujivan and Zhu [32], we obtain the PDE associated with the
Heston model (2) when xt = ln St as follows:

−∂u(n)

∂τ
+

1
2

v
∂2u(n)

∂x2 +
1
2

σ2(t)v
∂2u(n)

∂v2 + ρσ(t)v
∂2u(n)

∂x∂v

+

(
r(t)− 1

2
v
)

∂u(n)

∂x
+ κ(t)(θ(t)− v)

∂u(n)

∂v
= 0 (13)

which are subject to the terminal condition:

u(n)(x, v, 0) = xn (14)

for all (x, v) ∈ R×R+. Let τ = T − t > 0. We solve the PDE (13) subject to the terminal
condition (14) by assuming that the solution can be written in the form:

u(n)(x, v, t) =
n

∑
j=0

j

∑
`=0

A(n)
j,` (τ)x`vj−` (15)

where A(n)
j,` (τ) is the function depending on τ for 0 ≤ ` ≤ j ≤ n. Calculating all par-

tial derivatives of u(n) in (13) by using the solution form (15) and shifting index gives
the relations:

∂u(n)

∂τ
=

dA(n)
0,0

dτ
+

n−1

∑
j=1

j−1

∑
`=0

x`vj−`
dA(n)

j,`

dτ
+

n−1

∑
j=1

xj
dA(n)

j,j

dτ
+

n−1

∑
`=0

x`vn−` dA(n)
n,`

dτ
+ xn dA(n)

n,n
dτ

, (16)

1
2

v
∂2u(n)

∂x2 =
n−1

∑
j=1

j−1

∑
`=0

1
2
(`+ 2)(`+ 1)x`vj−`A(n)

j+1,`+2, (17)

1
2

σ2(T − τ)v
∂2u(n)

∂v2 =
n−1

∑
j=1

j−1

∑
`=0

1
2

σ2(T − τ)((j + 1)− `)(j− `)x`vj−`A(n)
j+1,`, (18)

ρσ(T − τ)v
∂2u(n)

∂x∂v
vj−(`+1)A(n)

j,` =
n−1

∑
j=1

j−1

∑
`=0

ρσ(T − τ)(`+ 1)(j− `)x`vj−`A(n)
j+1,`+1, (19)

r(T − τ)
∂u(n)

∂x
= r(T − τ)A(n)

1,1 +
n−1

∑
j=1

j−1

∑
`=0

r(T − τ)(`+ 1)x`vj−`A(n)
j+1,`+1

+
n−1

∑
j=1

r(T − τ)(j + 1)xj A(n)
j+1,j+1, (20)

1
2

v
∂u(n)

∂x
=

n−1

∑
j=1

j−1

∑
`=0

1
2
(`+ 1)x`vj−`A(n)

j,`+1 +
n−1

∑
`=0

1
2
(`+ 1)x`vn−`A(n)

n,`+1, (21)

κ(T − τ)θ(T − τ)
∂u(n)

∂v
= κ(T − τ)θ(T − τ)A(n)

1,0

+
n−1

∑
j=1

j−1

∑
`=0

κ(T − τ)θ(T − τ)((j + 1)− `)x`vj−`A(n)
j+1,` +

n−1

∑
j=1

κ(T − τ)θ(T − τ)xj A(n)
j+1,j, (22)

and:

κ(T − τ)v
∂u(n)

∂v
=

n−1

∑
j=1

j−1

∑
`=0

κ(T − τ)(j− `)x`vj−`A(n)
j,` +

n−1

∑
`=0

κ(T − τ)(n− `)x`vn−`A(n)
n,` . (23)

Substituting (16)–(23) in (13) and comparing the coefficients of x`vj−` for 0 ≤ ` ≤ j ≤ n
provide the system of recursive ODEs shown in (8)–(12), as required.
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Corollary 1. Suppose that St follows the dynamics described by the inhomogeneous Heston
model (4), then:

u(1)(x, v, τ) =
1

∑
j=0

j

∑
`=0

A(1)
j,` (τ)x`vj−` (24)

where τ = T − t ≥ 0, (x, v) ∈ R×R+, and A(n)
j,` (τ) can be obtained by solving the system of

recursive ODEs, for all 0 ≤ ` ≤ j ≤ n,

d
dτ

A(1)
1,1 (τ) = 0,

d
dτ

A(1)
1,0 (τ) = −

1
2

A(1)
1,1 (τ)− κ(T − τ)A(1)

1,0 (τ),

d
dτ

A(1)
0,0 (τ) = r(T − τ)A(1)

1,1 (τ) + κ(T − τ)θ(T − τ)A(1)
1,0 (τ)

(25)

which are subject to the initial conditions A(1)
1,1 (0) = 1 and A(1)

1,0 (0) = A(1)
0,0 (0) = 0.

Proof. We can follow the proof of Theorem 1 when n = 1 and use the fact that:

∂2u(1)

∂x2 =
∂2u(1)

∂v2 =
∂2u(1)

∂x∂v
= 0

to complete the proof.

Note that our proposed results in this section are more general than other results in the
existing literature [7–11,33,34]. Unlike the methods proposed in [7–11,33,34], our method
is based on the PDE generated from the infinitesimal generator for the two-dimensional
diffusion process, which attempts to assume the solution of the infinitesimal generator in
the form of a combination of polynomial expansions between xt and vt.

One primary concern when we work with the inhomogeneous Heston model (4)
is that (8)–(12) and (25) may be indirectly evaluated as exact solutions. Therefore, the
conditional moment (7) cannot be expressed as an exact formula. To overcome this issue,
a numerical integration method is required, for example, the simple and well-known
methods, such as the trapezoidal rule and Simpson’s rule, or higher accuracy methods,
such as the Chebyshev integration method [35–37], which has been illustrated to produce a
much higher accuracy than the other mentioned integration methods when using the same
discretizing nodes.

4. Mathematical Properties

This section provides the benefits of all our results in Section 3, such as the first
and second conditional moments, conditional variance, conditional central moments, and
conditional skewness for the log price xt of the two-factor model (4) with piecewise constant
parameters. Then, we can solve the system of recursive ODEs; see more details in [38].

4.1. First Conditional Moment

By applying Corollary 1, the first conditional moment of the log price based on the
Heston model, (4) with κ(t) = k, θ(t) = θ, and σ(t) = σ, can be expressed as:

EQ
t [xT ] = u(1)(x, v, τ) = A(1)

0,0 (τ) + A(1)
1,0 (τ)v + A(1)

1,1 (τ)x,
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where τ = T − t, and solving the initial value problem given in Theorem 1 yields:

A(1)
1,1 (τ) = 1,

A(1)
1,0 (τ) = −

1
2κ

e−κτ(eκτ − 1),

A(1)
0,0 (τ) = −

1
2κ

e−κτ(θ − θeκτ − 2rκτeκτ + θκτeκτ).

Remark 1. The recursive coefficient functions of the first conditional moment in our result agree
with the result in Proposition 2.3 of Rujivan and Zhu [32] by comparing A(1)

0,0 and A(1)
1,0 with A1

and A2 in their work, respectively.

4.2. Conditional Variance and Central Moments

The nth moment about the mean (the nth central moment) is expressed as:

µn
t := EQ

t

[(
xT − EQ

t [xT ]
)n]

=
n

∑
k=0

(−1)n−k
(

n
k

)(
EQ

t

[
xk

T

])(
EQ

t [xT ]
)n−k

,

where the zeroth conditional moment is equal to 1. The first few well-known conditional
central moments have intuitive interpretations: µ0

t , known as the conditional zeroth central
moment, is equal to 1; the first central conditional moment µ1

t is equal to 0; the second
conditional central moment µ2

t is called conditional variance; higher orders, such as the
third and fourth conditional central moments, are used to define conditional standardized
moments, well known as the skewness and kurtosis, respectively.

In the case of conditional variance µ2
t , it can be calculated by the first and second

conditional moments by using the following formula:

VarQ
t [xT ] := VarQ[xT | Ft] = EQ

[
x2

T | Ft

]
−
(

EQ
t [xT ]

)2
.

By applying the recurrent formula given in Theorem 1, the second conditional moment of
the log price based on the Heston model can be expressed as:

EQ
t

[
x2

T

]
= u(2)(x, v, τ)

= A(2)
0,0 (τ) + A(2)

1,0 (τ)v + A(2)
1,1 (τ)x + A(2)

2,0 (τ)v
2 + A(2)

2,1 (τ)xv + A(2)
2,2 (τ)x2,

where we use (8)–(12) to obtain the following system of ODEs:

d
dτ

A(2)
2,2 (τ) = 0,

d
dτ

A(2)
2,1 (τ) = −A(2)

2,2 (τ)− κA(2)
2,1 (τ),

d
dτ

A(2)
2,0 (τ) = −

1
2

A(2)
2,1 (τ)− 2κA(2)

2,0 (τ),

d
dτ

A(2)
1,1 (τ) = 2rA(2)

2,2 (τ) + κθA(2)
2,1 ,

d
dτ

A(2)
1,0 (τ) = A(2)

2,2 (τ) +
(

σ2 + 2κθ
)

A(2)
2,0 (τ) + (ρσ + r)A(2)

2,1 (τ)−
1
2

A(2)
1,1 (τ)− κA(2)

1,0 (τ),

d
dτ

A(2)
0,0 (τ) = rA(2)

1,1 (τ) + κθA(2)
1,0 (τ).
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Then, we use a symbolic package, namely Dsolve, in Mathematica for solving the initial
value problem given in Theorem 1 when n = 2. The solutions can be expressed as:

A(2)
2,2 (τ) = 1,

A(2)
2,1 (τ) = −

1
κ

e−κτ(eκτ − 1),

A(2)
2,0 (τ) =

1
4κ2 e−2κτ(eκτ − 1)2,

A(2)
1,1 (τ) = −

1
κ

e−κτ(θ − θeκτ − 2rκτeκτ + θκτeκτ),

A(2)
1,0 (τ) =

1
4κ3 e−2κτ

(
− 2κθ + 4κθeκτ − 2κθe2κτ − 4κ2eκτ + 4κ2e2κτ + 4rκ2τeκτ

− 4rκ2τe2κτ − 2θκ2τeκτ + 2θκ2τe2κτ + 4ρσκeκτ − 4ρσκe2κτ

+ 4ρσκ2τeκτ − σ2 + σ2e2κτ − 2σ2κτeκτ
)

,

A(2)
0,0 (τ) =

1
8κ3 e−2κτ

(
2θ2κ − 4θ2κeκτ + 2θ2κe2κτ + 8θκ2eκτ − 8θκ2e2κτ − 8rθκ2τeκτ

+ 8rθκ2τe2κτ + 4θ2κ2τeκτ − 4θ2κ2τe2κτ + 8r2κ3τ2e2κτ + 8θκ3τe2κτ

− 8rθκ3τ2e2κτ + 2θ2κ3τ2e2κτ − 16θρσκeκτ + 16θρσκe2κτ − 8θρσκ2τeκτ

− 8θρσκ2τe2κτ + θσ2 + 4θσ2eκτ − 5θσ2e2κτ + 4θσ2κτeκτ + 2θσ2κτe2κτ
)

.

Remark 2. The recursive coefficient functions of the second conditional moment in our result agree
with the results proposed by Rujivan and Zhu [32] by comparing term by term the coefficients of xt
and vt.

4.3. Conditional Skewness and Higher Conditional Moments

Conditional skewness can be computed from the first, second, and third conditional
moments by using the following formula:

SkewQ[xT | Ft] =

EQ
t

[(
xT − EQ

t [xT ]
)3
]

(
VarQ

t [xT ]
) 3

2

=
EQ

t
[
x3

T
]
− 3EQ

t [xT ]E
Q
t
[
x2

T
]
+ 4
(

EQ
t [xT ]

)3

(
VarQ

t [xT ]
) 3

2
.

By applying Theorem 1, the third moment of the log price based on the Heston model can
be expressed as:

EQ
t

[
x3

T

]
= u(3)(x, v, t)

= A(3)
0,0 (τ) + A(3)

1,0 (τ)v + A(3)
1,1 (τ)x + A(3)

2,0 (τ)v
2 + A(3)

2,1 (τ)xv

+ A(3)
2,2 (τ)x2 + A(3)

3,0 (τ)v
3 + A(3)

3,1 (τ)xv2 + A(3)
3,2 (τ)x2v + A(3)

3,3 (τ)x3,

where we solve the initial value problem (8)–(12) given in Theorem 1 when n = 3.
Higher conditional moments using the nth conditional moments can be computed

by applying Theorem 1 as well. To obtain the recursive coefficient functions, A(n)
j,` for

0 ≤ ` ≤ j ≤ n, we solve A(n)
j,` foreach term in the order of the diagram illustrated in

Figure 1.
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The steps to solve recursive coefficient functions in Figure 1 are explained as follows. The
recursive function coefficient A(n)

n,n is solved first and is always equal to 1. Next, we compute

A(n)
n,n−1, A(n)

n,n−2, . . . , A(n)
n,1 , and A(n)

n,0 by solving the system of ODEs of (9). After obtaining A(n)
n,n−1,

we can solve A(n)
n−1,n−1 by using Formula (10). For each k = n− 2, n− 3, . . . , 1, 0, when A(n)

n,k is

obtained, A(n)
n−1,k can be solved using Formula (11). After terms A(n)

n−1,n−1, A(n)
n−1,n−2, . . . , A(n)

n−1,1,

and A(n)
n−1,0 are obtained, we can solve terms A(n)

n−2,n−2, A(n)
n−2,n−3, . . . , A(n)

n−2,1, and A(n)
n−2,0 by

using Formulas (10) and (11) again. Continue this process until A(n)
1,1 and A(n)

1,0 are obtained.

Recursive function coefficient A(n)
0,0 is computed lastly by solving Formula (12).

Figure 1. Diagram for solving recursive coefficient functions from A(n)
n,n to A(n)

0,0 .

Moreover, we give the pseudocode in Algorithm 1 from Figure 1 to obtain the nth
conditional moment for n ≥ 2.

Algorithm 1 Recursive coefficient functions.

Input: n ≥ 2 conditional moments
Output: A(n)

a,b for a ∈ {n, n− 1, . . . , 0} and b ∈ {a, a− 1, . . . , 0}
1: for a← n to 0 (step = −1) do
2: for b← a to 0 (step = −1) do
3: if a = n then
4: if b = a then
5: Solve (8)
6: else
7: Solve (9)
8: end if
9: else if 1 ≤ a ≤ n− 1 then

10: if b = a then
11: Solve (10)
12: else
13: Solve (11)
14: end if
15: else if a = 0 then
16: Solve (12)
17: end if
18: end for
19: end for
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5. Numerical Validation

These experimental validations discuss the inhomogeneous Heston model (4) by
employing the Euler–Maruyama (EM) discretization method [39] to the model. We let x̂t
and v̂t, respectively, be time-discretized approximations of xt and vt, which are generated
on the time interval [0, T] in Ns steps, i.e., 0 = t0 < t1 < t2 < · · · < tNs = T. Then, the EM
approximation for (4) is performed by:

x̂ti = x̂ti−1 +
(

r(ti−1)− 1
2 v̂ti−1

)
dt +

√
v̂ti−1

√
∆t Z(1)

i+1,

v̂ti = v̂ti−1 + κ(ti−1)(θ(ti−1)− v̂ti−1) dt + ρσ(ti−1)
√

v̂ti−1 Z(1)
i+1

+ σ(ti−1)
√

v̂ti−1

√
1− ρ2

√
∆t Z(2)

i+1,

(26)

where the initial values x̂t0 = xt0 , v̂t0 = vt0 , the time-step size is ∆t = ti − ti−1, and the

standard normal random variables Z(1)
i and Z(2)

i are mutually independent.
In this study, the numerical simulations for obtaining the comparison results were

implemented by applying MATLAB R2021b running on a laptop computer configured
with the following details: Intel(R) Core(TM) i7-5700HQ, CPU @2.70 GHz, 16.0 GB RAM,
Windows 10 Pro, Version 20H2, and 64 bit operating system.

For the numerical testing, we used parameters r = 0.01, κ = 0.1, θ = 0.1, ρ = 0.01, and
σ = 0.001. The comparison results between Formula (7) given in Theorem 1 and the MC
simulations with 10,000 sample paths are shown in Figures 2 and 3. These figures illustrate
that the results obtained from the MC simulations (colored circles) completely match with
the closed-form Formula (7) (colored lines) for the first and second conditional moments,
thereby validating the accuracy of the closed-form Formula (7) obtained from Theorem 1.

1 2 3 4 5 6 7 8 9 10

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

(a)

1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

(b)
Figure 2. Validation tests of the first and second conditional moments for the initial values x = 10
and v = 1, 2, 3, . . . , 10 at different τ = 0.25, 0.5, 0.75, 1. (a) The first conditional moment u(1)(10, v, τ).
(b) The second conditional moment u(2)(10, v, τ).

In addition, Tables 1 and 2 demonstrate the mean absolute errors (MAEs) between
Formula (7) and the MC simulations and the average runtimes (ARTs) of the MC simu-
lations for different numbers of the sample paths: 20,000, 40,000, and 80,000, to validate
the accuracy and efficiency of our proposed formula. These ARTs are the average of the
computational times to calculate the MC simulations for fixing τ = 1 at each initial value
x = 1, 5, 10 and v = 1, 5, 10. Tables 1 and 2 conclude that the more the sample path numbers
increase, the more the MAEs decrease. However, the ARTs also increase. Moreover, we
can see the efficiency of our proposed Formula (7) from Theorem 1, which provides the
exact value of u(1)(x, v, τ). Our proposed Formula (7) employs a small computational time
around 0.1532 s. Finally, we depict the surface plots of the first and second conditional mo-
ments u(1)(x, v, τ) and u(2)(x, v, τ) by varying x, v ∈ [1, 10] at different τ = 0.25, 0.5, 0.75, 1
in Figures 4 and 5.
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(b)
Figure 3. Validation tests of the first and second conditional moments for the initial values v = 10
and x = 1, 2, 3, . . . , 10 at different τ = 0.25, 0.5, 0.75, 1. (a) The first conditional moment u(1)(x, 10, τ).
(b) The second conditional moment u(2)(x, 10, τ).

Table 1. MAEs of the first conditional moment u(1)(x, v, 1) between our formula and the MC simula-
tions together with the average runtimes of the MC simulations.

x No. of
v = 1 v = 5 v = 10

Paths MAEs ARTs MAEs ARTs MAEs ARTs

1 20,000 6.64× 10−2 9.14 6.80× 10−2 8.78 6.88× 10−2 10.05
40,000 5.43× 10−2 17.98 6.65× 10−3 19.11 5.53× 10−2 18.65
80,000 3.23× 10−3 36.57 4.74× 10−3 36.88 7.51× 10−3 35.52

5 20,000 6.73× 10−2 8.81 6.68× 10−2 9.24 6.14× 10−2 9.11
40,000 5.45× 10−2 19.22 6.28× 10−3 18.05 5.45× 10−2 18.63
80,000 6.54× 10−3 35.64 4.95× 10−3 37.06 2.99× 10−3 37.69

10 20,000 6.72× 10−2 9.54 7.33× 10−2 9.47 5.14× 10−2 9.17
40,000 5.41× 10−2 18.87 6.23× 10−2 18.55 4.45× 10−2 17.57
80,000 6.04× 10−3 37.87 9.55× 10−3 36.14 8.53× 10−3 36.36

Table 2. MAEs of the second conditional moment u(2)(x, v, 1) between our formula and the MC
simulations together with the average runtimes of the MC simulations.

x No. of v = 1 v = 5 v = 10

Paths MAEs ARTs MAEs ARTs MAEs ARTs

1 20,000 7.54× 10−2 11.14 4.15× 10−2 9.54 6.23× 10−2 10.13
40,000 6.87× 10−3 18.05 7.11× 10−2 19.91 6.38× 10−2 20.57
80,000 4.13× 10−3 39.78 5.09× 10−3 40.24 7.99× 10−3 39.76

5 20,000 5.34× 10−2 10.81 6.80× 10−2 10.49 5.41× 10−2 9.61
40,000 4.55× 10−2 19.52 5.69× 10−3 21.59 3.74× 10−2 21.03
80,000 8.54× 10−3 38.30 2.12× 10−3 39.14 8.36× 10−3 40.11

10 20,000 1.25× 10−2 9.98 7.23× 10−2 10.08 7.91× 10−2 11.79
40,000 7.28× 10−3 20.17 4.15× 10−2 21.11 5.11× 10−2 20.50
80,000 5.10× 10−3 39.88 8.83× 10−2 40.47 8.94× 10−3 39.96
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(a) (b)

(c) (d)

Figure 4. Surface plots of the first conditional moment u(1)(x, v, τ) by varying x, v ∈ [1, 10] at different
values of τ. (a) u(1)(x, v, 0.25). (b) u(1)(x, v, 0.5). (c) u(1)(x, v, 0.75). (d) u(1)(x, v, 1).

(a) (b)

(c) (d)

Figure 5. Surface plots of the second conditional moment u(2)(x, v, τ) by varying x, v ∈ [1, 10] at
different values of τ. (a) u(2)(x, v, 0.25). (b) u(2)(x, v, 0.5). (c) u(2)(x, v, 0.75). (d) u(2)(x, v, 1).
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6. Conclusions

In this study, we derived a closed-form formula of conditional moments for the
inhomogeneous Heston model (4) in the term of a polynomial expansion, as provided in
Theorem 1. We further presented a formula for the first conditional moment u(1)(x, v, τ)
proposed in Corollary 1 as a consequence of Theorem 1. Additionally, some essential
properties of the inhomogeneous Heston model (4), such as the first and second conditional
moments, and the skewness were observed and discussed in Section 4. The algorithm
to solve the recursive coefficient functions (8)–(12) given in Theorem 1 was provided in
Algorithm 1.

Finally, we validated our closed-form formula for the first and second conditional
moments by comparing it with the MC simulations via several experimental examples in
Section 5. The experiments in each example indicated that our proposed formula and the
MC simulations completely matched. Figures 2 and 3 and Tables 1 and 2 confirmed that
our closed-form formula provides good accuracy and reduces the computational burden
compared with the MC simulations.

This technique presented here can be also applied to the other two-factor models, such
as Schwartz’s two- or three-factor model. However, one primary concern for our presented
formulas is that the coefficients A(n)

j,` (τ) in (7) cannot be obtained directly by solving the
system of recursive ODEs. In such a case, a numerical method is required to manipulate
those coefficients.
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