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Abstract: Recent studies have attempted to measure differences in lifestyle quality across the world.
This paper contributes to this strand of literature by extending the indicator introduced in Milevsky
(2020), i.e., “longevity-risk-adjusted global age” (LRaG age), to deal with the new short-term mortality
fluctuation data series freely available from the Human Mortality Database. The new weekly data on
mortality allow measuring weekly biological age. The weekly differences between biological and
chronological ages across countries were used to assess country resilience to the COVID-19 pandemic
in terms of excess mortality and health expenditure. Countries with a biological age lower than the
chronological age had a lower excess mortality in 2020–2021 and a lower health expenditure, thus
indicating some resilience to the shock of COVID-19.

Keywords: longevity risk; Gompertz–Makeham mortality; biological age; short-term mortality

1. Introduction

Inspired by new waves of the COVID-19 pandemic, many studies have concentrated
on investigating its dramatic consequences on populations around the world and local
regional situations. As an example, the study [1] showed that during this period, the
highest mortality rate within the last five years among old people was observed. These
findings led us to contribute to this area by applying longevity indicators across the Russian
and Italian populations for the years 2019 and 2020 [2]. It was shown that the age gap
median values decreased in 2020, meaning that the COVID-19 outbreak caused a flattening
across all regions between chronological and biological ages.

The current study expanded the method based on the so-called survival analysis of
different world regions. The technique uses a set of statistical methods aimed at estimating
the probability of a given event’s occurrence as a function depending on time [3]. Using
a probability density function f (t), it is possible to estimate the cumulative distribution
function, F(t), of a certain death at a random time t as:

F(t) = P(T < t) =
∫ t

0
f (u)du,

where T represents the random life span and t is the time of death.
Many models that use this method offer estimates in terms of age-dependent mortal-

ity rates. Existing studies use parametric and non-parametric techniques in this regard.
Mortality rates (also known as hazard rates) are described in a mathematical form that is a
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function of age in the former technique. The mortality rate is calculated using a weighted
average of the “crude” death rates in the latter technique.

The first category is represented by Gompertz’s study [4]. The overall mortality rate
in his work was calculated using an age-dependent factor that grows exponentially with
chronological age. A further contribution came from William Makeham [5]. He inserted an
age-independent term in the preceding framework, giving rise to the Gompertz–Makeham
(GM) model. This is one of the foundational concepts in the creation of human mortality
theory. Several authors then extended their model to simulate specific forms of mortality
rates [6–8]. The paper [9] was a study of parametric functions for mortality modeling that
implemented different parametric models.

Milewsky [10] more recently proposed a new concept of age estimation. The author
devised a mechanism for inverting GM mortality (hazard) rates, resulting in a new age
definition, i.e., the longevity-risk-adjusted global age (L-RaG).

Non-parametric models can be used instead of parametric models to estimate the
survival function. They do not make any assumptions about the theoretical distribution
of F(t), t > 0. Instead, they employ a number of estimators (several of which are often
used in clinical trials), the most notable of which are the Kaplan–Meier estimator [11], the
Nelson–Aalen estimator [12], and the long-rank test [13].

This study proposes an empirical contribution to existing studies by extending the
indicator introduced by Milevsky to obtain L-RaG age estimates across countries between
2017 and 2020 from the new short-term mortality fluctuation data series freely available on
the Human Mortality Database website. The new weekly data on mortality allow measuring
weekly biological age. The weekly differences between biological and chronological ages
across countries were used to assess country resilience to the COVID-19 pandemic in terms
of excess mortality and health expenditure.

The paper is organized as follows. In Section 2, the method presented in this work is
introduced; in particular, we describe the GM mortality law and the L-RaG age indicator.
In Section 3, the main results are compared, and we comment on the differences pre and
post the COVID-19 pandemic. Section 4 contains the conclusion.

2. The Gompertz–Makeham Mortality Estimation from Weekly Data

The mortality law introduced by Gompertz–Makeham (GM) is defined as a linear
model connecting the natural mortality rate and the chronological age x. This indicator
gives us the number of years a person has been alive. It means that every adult who lives
in the country (or region) i, for i = 1, . . . , N can be estimated as:

1− qx = e−
∫ x+1

x µydy, (1)

where µx is the total mortality rate and qx[i], specifically estimated based on country–
mortality rate tables, is the effective one-year decrement rate.

To deal with weekly mortality data, we reinterpreted Equation (1) in terms of weekly
fractions of a year, j/nw, j = 1, 2, . . . , nw, where nw is the number of weeks in the year in
question; on average, there are 52 weeks in a year (i.e., nw = 52). To this end, Equation (1)
is read as the survival probability at the j-th week of the year:

1− qx,j = e−
∫ x+(j/nw)

x µydy, (2)

where qx,j denotes the death rate in the interval (x, x + j/nw). The dynamics of the weekly
total hazard rate (wTHR) are analogous to the total hazard rate (THR) as in [10]:

µx[i]− λ[i] =
{

h[i]eg[i]x x < x∗

λ∗ x ≥ x∗
, (3)

where µx is the weekly total hazard rate and the independent variable x is the age expressed
in years plus weeks.
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Parameters λ[i], h[i], and g[i] are the accidental mortality rate (i.e., Makeham constant),
the initial natural mortality rate (INMR), and the mortality growth rate (MGR), respectively.
These parameters are specific for each country. The factor x∗ is responsible for the limit
of the Gompertzian regime, and the condition λ∗ > λ[i] is used as the constant value
when chronological ages are equal to x∗. These parameters are also known as the species-
specific lifespan and the species-specific accidental mortality rate [14]. Model (3) can be
linearized as:

ln[µx[i]− λ[i]] = ln(h[i]) + g[i]x, (4)

which provides the logarithm of the difference between the weekly total hazard and the
accidental death rate as a linear function of age in the GM regime [x, x∗]. Indeed, the full
Gompertz–Makeham model prescribes a new link among the parameters, i.e.,

1− qx,j = e−
∫ x+(j/nw)

x (λ[i]+h[i]eg[i]y)dy, (5)

so integrating and taking the logarithm of both sides of (5) yields:

− ln(1− qx,j) =
j

nw
λ[i] +

h[i]
g[i]

eg[i]x
(

eg[i](j/nw) − 1
)

, (6)

which also reads:

nw

j
ln

(
1

1− qx,j

)
− λ[i] =

h[i]
g[i]

eg[i]x nw

j

(
eg[i](j/nw) − 1

)
, (7)

that is,

ln
(

nw

j
ln
(

1
1− qx[i]

)
− λ[i]

)
= ln(h[i]) + ln

[(
eg[i](j/nw) − 1

)
/((j/nw)g[i])

]
+ g[i]x. (8)

The model in Equation (8) differs from Milevsky (see [10]) because of the time dependence
in the term

(
eg[i](j/nw) − 1

)
/((j/nw)g[i]). We therefore rewrite Equation (8) to estimate the

country-specific GM parameters λ[i], h[i], g[i]. Specifically, we add and subtract the term
ln((eg[i] − 1)/g[i]) on the right-hand side of Equation (8) and use the expansion:

ln
(

1 + ay
1 + a

)
= ln

(
1

1 + a

)
+ ay + o(y), y→ 0, a > 0, (9)

where a = g[i]/2, y = j/nw. Equation (9) allows us to rewrite (8) as follows:

z︷ ︸︸ ︷
ln
(

nw

j
ln
(

1
1− qx[i]

)
− λ[i]

)

=

K0︷ ︸︸ ︷
ln(h[i])− ln

(
1 +

1
2

g[i]
)
+ ln

[(
eg[i] − 1

)
/g[i]

]
+

K1︷︸︸︷
g[i] (x + j/(2nw)).

(10)

It is easy to see that when j = nw, Formula (10) reduces to the one proposed in [10] for
small values of g, such that ln(1 + g[i]/2) ≈ g[i]/2.

We use Equation (10) to estimate the region-specific GM parameters λ[i], h[i], g[i],
while the global parameters x∗ and λ∗ are estimated using the following linear regression:

ln(h[i]) = L + (−x∗)g[i] + ε, (11)

where, by continuity, L = ln λ∗.
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The GM mortality law means that this indicator increases linearly the log-mortality
rate, which becomes constant when the critical age, x∗, is reached. Such a tendency is also
known as the compensation law. A linear, negative relationship is therefore assumed to
exist between the initial natural mortality (intercept term) ln(h[i]) and the MGR (slope) g[i],
as shown in Equation (11). We can derive the relationship between h[i] and g[i], x∗ and λ∗

in (11) by taking the limit of the total hazard rate in Equation (3), which can be considered
a continuous function of age, x, for x → x∗. Imposing this limit for x, which tends to x∗

from below and above, we have:

h[i]eg[i]x∗ = λ∗ −→ h[i] = λ∗e−g[i]x∗ . (12)

We can therefore rewrite µx[i] as follows:

µx[i] =
{

λ[i] + λ∗eg[i](x−x∗) x < x∗

λ[i] + λ∗ x ≥ x∗
. (13)

L-RaG Age Indicator

In this section, we introduce the L-RaG age Equation (13) with country-specific param-
eters and a new equation involving global GM parameters.

In line with [10], we assumed that all the differences among countries in Model (13) are
included in the longevity-risk-adjusted global age, ξ(x, i). The latter is the age “physically
perceived” by an individual with age x in country i. To capture this perception, we rephrase
the model for the total hazard rate as follows:

Mξ(x,i) =

{
Λ + λ∗eG(ξ(x,i)−x∗) x < x∗

Λ + λ∗ x ≥ x∗
, (14)

where Mξ(x, i) is the longevity-risk-adjusted total hazard rate and Λ ≥ 0, G ≥ 0 represent
the country-level mean of λ[i], g[i], respectively (Milevsky (2020) [10]):

Λ =
1
N

N

∑
i=1

λ[i], G =
1
N

N

∑
i=1

g[i]. (15)

The L-RaG age, ξ(x, i), represents the biological or perceived age, i.e., the age estimated
by including lifestyle factors such as diet, exercise, and sleeping habits, whose computation
involves a mapping from mortality rates to a specific age by inverting the GM mortality
law.

For this reason, the L-RaG age must satisfy the compensation law described in (3),
accounting for the mean of GM parameters across the countries, i.e., Equations (14) and (15).
Setting the country-level longevity-risk-adjusted global hazard rate equal to the total hazard
rate, we have:

Mξ(x, i) = µx[i]. (16)

Solving Equation (14) for the L-RaG age, ξ(x, i), we obtain:

ξ(x, i) = x∗ +
ln [λ[i]−Λ + λ∗eg[i](x−x∗)]− ln[λ∗]

G
. (17)

The validity of ξ(x, i) is related to λ[i] − Λ + λ∗eg[i](x−x∗) > 0, and weekly data
guarantee that this constraint is satisfied.

Finally, we define the difference, the longevity-risk-adjusted global (dLRaG) indicator, as:

dLRaG(x, i) = ξ(x, i)− x . (18)

Positive/negative values of this indicator reveal people of age x and living in country
i with a perceived age greater/smaller than the chronological age. The temporal dynamics
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of this indicator with a negative trend may reveal an improved lifestyle quality, while a
positive trend may suggest worse lifestyle conditions.

3. Results

We used the weekly LRaG indicator to analyze the evolution of perceived age across
countries in the Northern Hemisphere while trying to establish whether this indicator
and/or the dLRaG indicator can be applied to measure the well-being of a country along
with its resilience to the pandemic shock.

This was performed by showing that the LRaG gap, i.e., the dLRaG indicator, is
associated with health expenditure and excess mortality. Specifically, the LRaG gap in
2019 is predictive of excess mortality in 2020–2021, while the LRaG in 2017 and 2020 is
associated with health expenditure in 2019. Interestingly, countries with a biological age
lower than the chronological age were those with a higher health expenditure and lower
excess mortality. These findings suggest that the LRaG gap is a potential tool for measuring
a country’s resilience to health shocks combined with the size of the elderly population.

3.1. Description of the Data

We used the Short-Term Mortality Fluctuation Data series (we thank Dmitri Jdanov,
Vladimir M. Shkolnikov, and Ainhoa Alustiza Galarza with the assistance of Carl Boe and
Magali Barbieri for providing the dataset freely at https://mortality.org/ (accessed on 21
February 2022)) to estimate LRaG age and, consequently, the dLRaG indicator. The new
series was added to the Human Mortality Database triggered by the COVID-19 pandemic
of 2019–2020 and the importance of short-term or seasonal mortality fluctuations that are
driven by temporary hazards such as epidemics, temperature extremes, natural disasters,
and so on. These particular problems tend to affect vulnerable population groups such as
elderly people.

We chose these new series motivated by the arguments mentioned in the STMF
methodological note (https://www.mortality.org/Public/STMF$_-$DOC/STMFNote.pdf
(accessed on 21 February 2022)): “Objective and internationally comparable data are crucial
to evaluate the political strategies used to address epidemics and other public health crises.
Indicators based on disease incidence and fatality as well as on cause-specific mortality
are valuable but have important shortcomings that make comparisons across countries
and time problematic. In contrast, being able to look at short term fluctuations in all-cause
mortality (such as captured by weekly or monthly excess deaths) comprise an important
complement to other types of data. Weekly death counts constitute a solid data basis for
the most objective and comparable way of assessing the scale of short-term excess mortality
across countries and over time.”.

The weekly age-specific death rate over the interval (x, x + a) is calculated as:

mw
y (x, x + a) = Dw

y (x, x + a)/(Ey(x, x + a)/52), (19)

as a proxy of the death rate qx,a. Here, Dw
y (x, x + a) is the number of deaths in a (broader)

age interval for week w in year y, while Ey(x, x + a) indicates the annual population
exposure in age interval (x, x + a] in year y. We considered four years, 2017, 2018, 2019,
and 2020, and 42 weeks in 2021.

We note that the weekly age-specific death rate is given for age classes: 0–14, 15–64,
65–74, 75–84, and 85-plus. In the following, we identify the class with its middle points; x
and weekly age are given by x + j/nw, j = 1, 2, . . . , nw. We also used the health expenditure
available on the OECD.Sta website (https://data.oecd.org/healthres/health-spending.htm
(accessed on 21 February 2022)). Specifically, we used the health spending indicator
(total/government/compulsory/voluntary, USD/capita, 2020 or the latest available), ex-
pressed in USD per capita.

Finally, we used data on excess mortality per 100k people along with excess mortality
as a percentage of the annual baseline. The dataset is available thanks to the work of
Karlinsky and Kobak (2021) [15], who reported the results of an excess mortality study

https://mortality.org/
https://www.mortality.org/Public/STMF$_-$DOC/STMFNote.pdf
https://data.oecd.org/healthres/health-spending.htm
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that extended to the summer of 2021 and also included middle-income countries. Excess
mortality, computed as the mortality that exceeds the baseline level (for details, see https:
//elifesciences.org/articles/69336 (accessed on 21 February 2022)), depends on infection
rates, population demographics, COVID-19 interventions, stressed healthcare systems, and
vaccine coverage. We used this cross-sectional data to analyze the relationship between
excess mortality due to the shock of the COVID-19 pandemic and pre-existing perceived
age over the countries.

3.2. Estimation of LRaG Age and dLRaG Indicator

As mentioned in the previous subsection, we used the weekly age-specific death rate,
mw

y (x, x + j/nw) as the death rate qx,j, that is the decremental rate of an individual aged x
at the j-th week of the year in question. We estimated the GM model using Equations (10)
and (11), where x, as mentioned above, represents the class considered (i.e., the midpoint
of the age class).

The compensation law—the negative relationship between the mortality growth rate
and the (log) initial mortality rate—was validated for all age classes and years via the
univariate linear regression (11), which allowed estimating the Gompertzian regime limit
age, x∗ (i.e., the slope), and the non-country-specific part, λ∗, of the hazard rate (i.e., the
intercept). Table 1 shows the estimates of the parameters x∗ and λ∗; it also shows the
p-value of the slope of the linear regression (11).

Table 1. Gompertzian regime limit age, x∗, non-country-specific part, λ∗, of the total hazard rate and
p-value of the slope in the linear regression (11) for different years.

Year x∗ λ∗ pvalue

2016 91 0.32 4.01× 10−13

2017 88 0.27 7.42× 10−11

2018 84 0.20 8.93× 10−11

2019 87 0.25 1.95× 10−11

2020 81 0.16 7.86× 10−9

2021 (42 weeks) 72 0.08 5.05× 10−8

The temporal changes of the parameters x∗ and λ∗ in Table 1 revealed that the COVID-
19 pandemic already affected longevity by reducing the Gompertzian regime limit age x∗,
while halving a plateau, λ∗, i.e., reducing the non-country-specific part of the hazard rate.
Bearing in mind that individuals who reach advanced age x∗ experience an exponentially
distributed remaining lifetime with a constant country-dependent hazard rate, our findings
suggest that individuals in 2020 will experience the plateau six years earlier than in the
pre-COVID period, but with half the risk.

3.3. Does the Dynamic Evolution of the dLRaG Indicator Capture Quality of Life?

The temporal changes of the dRaG indicator revealed a transformation in the quality
of life. Each panel in Figure 1 shows the map of the dRaG indicator across the world for a
given age class and year. Specifically, the panels in the top row relate to the age class 15–64,
those in the middle regard age class 65–74, while the panels at the bottom regards the age
class 75–84. The panels in a given column relate to the same year; three years are shown:
2017, 2019, and 2020.

The color gray indicates that STMF series are not available. Moving from 2017 to 2020,
we observed an increase in the dRaG indicator in northwestern countries and a decrease in
northeastern countries. This suggests that the quality of life, as measured by the dLRaG
indicator, has been deteriorating in northwestern countries, while improving—despite the
COVID-19 pandemic—in northwestern countries.

Such dynamics appeared strongly in age class 15–64 (see also Figure 2 for the years
2017 and 2020), while the evidence weakened for age classes 65–74 and 75–84.

https://elifesciences.org/articles/69336
https://elifesciences.org/articles/69336
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Figure 1. dLRaG for three age classes by country. Each panel shows the dLRaG across the countries
for a given year and age class.

Figure 2. dLRaG for age class 15–64 per country and years 2017 and 2020. Each panel shows the
dLRaG across the countries.

The difference in the dRaG dynamics of Eastern and western countries in the North-
ern Hemisphere may rely on differences in the country-specific health expenditure of
each country.

We provide empirical evidence of this relationship using the annual health expenditure
in 2019 across the countries (data are available at the OECD website https://data.oecd.
org/healthres/health-spending.htm (accessed on 21 February 2022)). Specifically, we
investigated a multivariate linear regression where the response function is the LRaG
gap in 2020 (i.e., the dLRaG indicator in 2020) and the explicative variables are health
expenditure in 2019 and the dLRaG indicator in 2017, 2018, and 2019:

dLRaGi,2020 = β0 + β1dLRaGi,2017 + β2dLRaGi,2018 + β3dLRaGi,2019 + β4HEi,2019 + εi, (20)

where i denotes the i-th country and εi is normally distributed noise. The data on health
expenditure and gaps in LRaG (i.e., dLRaG) from 2017 to 2020 used to estimate the pa-

https://data.oecd.org/healthres/health-spending.htm
https://data.oecd.org/healthres/health-spending.htm
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rameters of the linear model (20) are shown in Table A1 in Appendix A. We did not
consider data relative to the USA since its LRaG dynamics contrasts with the behavior of
the remaining countries.

The results of the linear regression were very satisfactory since the multiple R-squared
was 0.8437, while the adjusted R-squared was 0.8206 and the p-value of the F-statistic was
1.6× 10−10, thus implying empirical evidence to reject the null hypothesis. Furthermore, we
cannot reject the hypothesis that residuals are normally distributed, as shown in Table 2, and
that the coefficient of the LRaG gap in 2017 and health expenditure in 2019 are significant
(see Table 3).

Table 2. Normality test for residuals of the multivariate linear regressions (20).

Test Statistic p-Value

Shapiro–Wilk 0.9835 0.8921
Kolmogorov–Smirnov 0.0822 0.9696

Anderson–Darling 0.2509 0.7205

Table 3. Multivariate linear regression (20). Signif. codes: 0 “***” 0.001 “**”, 0.01 “*”, 0.05 “.”, 0.1 “ ”, 1.

Parameter Estimate Std. Error t Value Pr(>|t|)
(intercept) −0.2061 0.1095 −1.88 0.0706
dLRaG2017 0.3638 0.1860 1.96 0.0609 (·)
dLRaG2018 0.1232 0.2534 0.49 0.6307
dLRaG2019 0.1426 0.1186 1.20 0.2394

HE2019 0.0001 0.0000 2.03 0.0526 (·)

We looked for the best reduced linear model that achieved the best adjusted R2 along
with the significance of the coefficients. This resulted in the linear model:

dLRaGi,2020 = β0 + β∗1dLRaGi,2017 + β∗2 HEi,2019 + ε∗i , (21)

with a multiple R-squared equal to 0.8253 and adjusted R-squared to 0.8133. The p-value
of the F-statistic was equal to 1.03 × 10−11, indicating empirical evidence to reject the
null hypothesis of the null coefficients β∗1, β∗2. Table 4 provides the details of the linear
model (21).

Table 4. Multivariate linear regression (21). Signif. codes: 0 “***”, 0.001 “**”, 0.01 “*”, 0.05 “.”, 0.1 “ ”, 1.

Parameter Estimate Std. Error t Value Pr(>|t|)
(intercept) −0.2113 0.1116 −1.89 0.0682
dLRaG2017 0.6002 0.0516 11.64 0.0000 (***)

HE2019 0.0001 0.0000 2.00 0.0544 (·)

The residuals of the regression (21) passed the test to be normally distributed, as
shown in Table 5.

Table 5. Normality test for residuals of the multivariate linear regression (20).

Test Statistic p-Value

Shapiro–Wilk 0.9649 0.3711
Kolmogorov–Smirnov 0.1046 0.8393

Anderson–Darling 0.4189 0.3086

Linear Models (20) and (21) showed that the difference between the biological and
chronological ages in 2020 across the countries can be predicted using the health expendi-
ture in 2019 and the LRaG gap in 2017–2019 across the countries.
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More specifically, bearing in mind that the response function is the LRaG gap in 2020,
we observed that an increase of USD 1000 per capita in the health expenditure implied an
increase of the LRaG gap of 0.1 year, while an increase of one year in the LRaG gap 2017
implied an increase in the LRaG-2020 gap of 0.6 years.

Interestingly, this was confirmed by the fact that the temporal changes of the LRaG
gap (i.e., the dLRaG indicator) were related to the excess mortality recently analyzed,
for example, in Islam et al. (2021) [16] and Karlinsky and Kobak (2021) [15]. Specifically,
Islam et al. (2021) [16] reported substantial excess mortality in some Eastern European
countries and no excess mortality in New Zealand, Norway, or Denmark based on data
from 29 high-income countries in 2020. Later, Karlinsky and Kobak (2021) [15] reported
the results of an excess mortality study extended to the summer of 2021 and also included
middle-income countries.

Our hypothesis is that countries with a favorable LRaG gap (i.e., negative dLRaG
indicator) should be resilient to the shock of the pandemic. We addressed this point
using two linear models. In the first, Equation (22), the response function is the excess
mortality per 100k people up to summer 2021, which we denote with ME100ki,2021, where
the subscript i refers to the i-th country. In the second, Equation (23), the response function
is the excess mortality as a percentage of the annual baseline up to summer 2021, which we
denote with MEABi,2021, where, once again, the subscript i refers to the i-th country. The
following linear models were considered:

ME100ki,2021 = β0 + β1dLRaGi,2017 + β2dLRaGi,2018 + β3dLRaGi,2019 + β4dLRaGi,2020 + εi, (22)

MEABi,2021 = β∗0 + β∗1dLRaGi,2017 + β∗2dLRaGi,2018 + β∗3dLRaGi,2019 + β∗4dLRaGi,2020 + ε∗i , (23)

where εi and ε∗i are normally distributed noise. The data used to estimate the model
parameters are shown in Table A1 in Appendix A. The estimation of Model (22) yielded a
multiple R-squared of 0.4012, adjusted R-squared of 0.3125, and p-value of the F-statistic
0.006317, while Model (23) outperformed the previous one with a multiple R-squared
of 0.4977, adjusted R-squared of 0.4233, and p-value of the F-statistic 0.0007091. The
coefficients are displayed in Table 6. Due the higher values of the variance inflation ratio
(VIF) associated with variables dLRaG2017 and dLRaG2018, 17.14 and 22.27, according to
both Models (22) and (23), we eliminated dLRaG2018 from the models. Moreover, Figure 3
shows the Akaike information criterion (AIC) values for the stepwise linear regression
based on all possible combinations of predictors. Models (22) and (23) reached the minimum
value of the AIC only if the three predictors were included in the analysis (AIC = 393 vs.
AIC = 230).

Table 6. Multivariate linear regressions (22) and (23). Signif. codes: 0 “***”, 0.001 “**”, 0.01 “*”, 0.05
“.”, 0.1 “ ”, 1.

Linear Regression (22)

Parameter Estimate Std. Error t Value Pr(>|t|)
(intercept) 138.8954 18.7357 7.41 0.0000
dLRaG2017 107.5452 91.3934 1.18 0.2496
dLRaG2018 45.9393 122.1673 0.38 0.7098
dLRaG2019 77.6427 55.0293 1.41 0.1697
dLRaG2020 −309.4199 84.0705 −3.68 0.0010 (**)
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Table 6. Cont.

Linear Regression (23)

Parameter Estimate Std. Error t Value Pr(>|t|)
(intercept) 12.8720 1.4451 8.91 0.0000
dLRaG2017 8.1244 7.0490 1.15 0.2592
dLRaG2018 6.0949 9.4225 0.65 0.5232
dLRaG2019 7.4316 4.2443 1.75 0.0913 (·)
dLRaG2020 −27.4200 6.4842 −4.23 0.0002 (***)

 

 

Figure 3. AIC values associated with Models (23) and (23), top and bottom panel. Each circle is asso-
ciated to different combinations of predictors, while triangles highlight the best choice of predictors.

We tested the normality of the residuals, and the results in Table 7 confirmed the
normality.

The results in Table 6 show that the excess mortality per 100k people mainly depended
on the LRaG gap in 2020, while the excess mortality as a percentage of the annual baseline
depended on the LRaG gap in 2019 and 2020.

We also looked for a direct linear dependence of the two excess mortalities on the
LRaG gap in 2020, but these two univariate linear models did not work.
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Table 7. Normality test for residuals of the multivariate linear regressions (22) and (23).

Linear Regression (22)

Test Statistic p-Value

Shapiro–Wilk 0.9814 0.8391
Kolmogorov–Smirnov 0.0630 0.9987

Anderson–Darling 0.1601 0.9427

Linear Regression (23)

Test Statistic p-Value

Shapiro–Wilk 0.9815 0.8429
Kolmogorov–Smirnov 0.0925 0.9236

Anderson–Darling 0.2581 0.6955

In contrast, there was a positive correlation between excess mortality and the LRaG
gap in 2019. In fact, the following univariate linear models:

ME100ki,2021 = β0 + β1dLRaGi,2019 + εi, (24)

MEABi,2021 = β∗0 + β∗1dLRaGi,2019 + ε∗i , (25)

worked with p-values of F statistics of 0.078 and 0.0211, a multiple R-squared of 0.1 and
0.1649, and an adjusted R-squared of 0.07 and 0.1371, respectively. In Equation (24) and (25),
as usual, εi and ε∗i are normally distributed noise. The estimated coefficients are shown in
Table 8.

Table 8. Multivariate linear regressions (24) and (25). Signif. codes: 0 “***”, 0.001 “**”, 0.01 “*”, 0.05
“.”, 0.1 “ ”, 1.

Linear Regression (24)

Parameter Estimate Std. Error t Value Pr(>|t|)

(intercept) 141.11 21.77 6.483 3.65 × 10−7 ***
dLRaG2019 44.92 24.60 1.826 0.0778 (·)

Linear Regression (25)

Parameter Estimate Std. Error t Value Pr(>|t|)

(intercept) 13.077 1.766 7.406 2.98 × 10−8

dLRaG2019 4.857 1.996 2.434 0.0211 (*)

The results in Table 8 are interesting. They tell us that an increase of one year in the
LRaG gap (i.e., people experienced a lower perceived age) predicts an increase in excess
mortality per 100k people of about 45 deaths and an increase in the percentage of excess
mortality with respect to the baseline of 4.85 percentage points. Thus, countries with lower
LRaG gaps in 2019 are expected to show lower excess of mortality in 2020.

We further investigated this point, trying to understand whether the LRaG gap (i.e., dL-
RaG indicator) corresponding to a given country is a measure of the country’s resilience to
a shock such as a pandemic.

We proceeded by ranking countries with respect to the dLRaG indicator in 2019 and
with respect to excess mortality in 2020–2021 (i.e., EM100k and EMAB). We used the quartile
ranking to define a measure of the association of the two variables. Specifically, we used
Cramer’s V measure, which is the preferred measure since its maximum value is 1 when
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there is a very strong relationship and 0 when the categorical variables are independent.
Cramer’s V measure is defined as:

VEM100k,LRaG =

√√√√ 1
3n

4

∑
i=1

4

∑
j=1

(ni,j − n̂i,j)2

n̂i,j
, (26)

where n is the number of observations (i.e., n = 32), ni,j is the absolute frequency of the
rank pair (i, j), and n̂i,j is the absolute frequency of the same pair under the assumption of
independent variables. Table 9 shows the absolute frequencies.

Table 9. Bivariate absolute frequency distribution of the quartile ranking of the LRaG gap in 2019
and the excess of mortality per 100 k in 2020–21 (top panel) and excess mortality as a percentage of
the annual baseline in 2020–2021 (bottom panel).

dLRaG_r1 dLRaG_r2 dLRaG_r3 dLRaG_r4 Row Tot.

EMk100_r1 4 2 2 0 8
EMk100_r2 1 2 2 3 8
EMk100_r3 0 1 3 4 8
EMk100_r4 3 3 1 1 8

Col. Tot. 8 8 8 8 32

dLRaG_r1 dLRaG_r2 dLRaG_r3 dLRaG_r4 Row Tot.

EMAB_r1 4 1 3 0 8
EMAB_r2 1 1 2 4 8
EMAB_r3 1 3 2 2 8
EMAB_r4 2 3 1 2 8

Col. Tot. 8 8 8 8 32

Table 9 shows that the quartile rankings generated by EM100k and the LRaG gap
(i.e., dLRaG indicator) classified 10 units out of 32 (percentage 32%) with the same rank,
while the quartile rankings generated by EMBA and the LRaG gap assigned the same rank
to nine units out of 32 (percentage 28%). We further investigated the relationship between
the LRaG gap and excess mortality by computing the absolute difference of the two ranking
variables. Table 10 shows the distribution of the absolute difference of the quartile ranking
of the LRaG gap in 2019 and excess mortality per 100k people in 2020–2021 (top panel) and
excess mortality as a percentage of the annual baseline in 2020–2021 (bottom panel).

Table 10. Distribution of the absolute difference of the quartile ranking of the LRaG gap in 2019 and
excess mortality per 100k people in 2020–2021 (top panel) and excess mortality as a percentage of the
annual baseline in 2020–2021 (bottom panel).

|Rank EMk1002020−21 − Rank dLRaG2019| 0 1 2 3

n. units 10 11 8 3

|Rank EMAB2020−21 − Rank dLRaG2019| 0 1 2 3

n. units 9 10 11 2

Table 10 provides empirical evidence that the excess mortality per 100k in 2020–2021
was closely related to the LRaG gap in 2019 since the quartile ranking classification shared
22 out of 32 cases under the median, i.e., a percentage of 68.75%, while the percentage of
shared classification reduced to 59.37% in the case of excess mortality as a percentage of
the annual baseline.

The computed value of Cramer’s V was VEM100k,LRaG = 0.35, indicating that the
variables were not independent. We also measured the robustness of the result using a
Cramer test (R packages “cramer”, [17]) for a two-sample problem to test the equality of



Computation 2022, 10, 47 13 of 19

two-sample distributions. To calculate the critical value, Monte Carlo bootstrap methods
and eigenvalue methods were used. This test also works with small sample sizes.

In detail, we used the Cramer test to compare the distribution of the two categorical
variables: quartile ranking obtained with EM100k in 2020–2021 and dLRaG in 2019. Based
on 1000 ordinary bootstrap replicates, the critical value for a confidence level of 95 % was
1.828, so the hypothesis “EM100k is distributed as dLRaG” was accepted with estimated
p-value = 0.998.

We repeated the experiment, analyzing whether the indicator EMAB 2020-21 was
associated with the LRaG 2019, that is we computed:

VEMAB,LRaG =

√√√√ 1
3n

4

∑
i=1

4

∑
j=1

(ni,j − n̂i,j)2

n̂i,j
. (27)

Cramer’s V was equal to 0.32, that is slightly lower than the previous one, while the
Cramer test confirmed that there was no empirical evidence to reject the null hypothesis
that the categorical variable of the dLRaG quartile was distributed as the variable of the
EMAB-indicator quartile since the p-value was 0.996. In Appendix A, we report the quartile
ranking in Table A3.

The fact that the dLRaG-2019 quartiles and the quartiles of the mortality excess were
drawn from the same distribution suggests that countries with a low dLRaG-2019 rank
are resilient to health shocks in that they were associated with low excess mortality in
2020–2021.

We conclude by establishing whether the quartile variable defined by the health
expenditure in 2019 was associated with the dLRaG in 2017 and 2020. Cramer’s V measure
was equal to 0.29 and 0.31, respectively, while the distribution of the absolute value of the
differences in the quartile variables is shown in Table 11.

Table 11. Distribution of the absolute difference of the quartile ranking of health expenditure in 2019
and the LRagG gap in 2017 (top panel) and in 2020 (bottom panel).

|Rank HE2019 − Rank dLRaG2017| 0 1 2 3

n. units 10 11 8 3

|Rank HE2019 − Rank dLRaG2020| 0 1 2 3

n. units 7 12 7 6

Table 11 and Figures 4 and 5 show that countries such as Bulgaria, Israel, Italy, Russia,
Slovenia, and Sweden experienced a decrease in the LRaG gap from 2017 to 2020, i.e., an
improvement in biological age, and the health expenditure in these countries was only in
the first quartile, except for Israel and Italy, which were in the third quartile.
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Figure 4. Country ranking by health expenditure in 2019 (i.e., HE 2019) and by LRaG gap in 2017.
Countries on the horizontal axis are sorted alphabetically.
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Figure 5. Country ranking by LRaG gap in 2017 and 2020 and the variation of health expenditure in
2018–2019 as a percentage. Countries on the horizontal axis are sorted alphabetically.

In contrast to the above-mentioned countries, Estonia, Greece, Luxembourg, Norway,
New Zealand, and Sweden experienced a decrease in the LRaG gap from 2017–2020, despite
a large increase in health expenditure from 2018 to 2019, but with health expenditure in the
first or second quartile, except for New Zealand.

Interestingly, countries with unchanged LRaG gap rankings were those with large ex-
penditures; see, for example, Australia, Austria, Belgium, Canada, Chile, Czechia, Denmark,
Finland, France, Hungary, and Latvia.

Remarkably, countries with a higher health expenditure (HE quartile ranks 3 and 4)
were those with a higher quality of life (i.e., lower values of the quartile rank of the LRaG
gap in 2020).

We conclude this section with a look at the per-country ranking of excess mortality
per 100k people in 2020–2021 and the LRaG gap in 2019, as displayed in Figure 6. In this
figure, the countries on the horizontal axis are sorted by LRaG gap rank.
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Looking at Figure 6, we see that excess mortality was frequently ranked as the LRaG
gap plus or minus one. For four countries—Czechia, Italy, Slovakia, Hungary, and Lithuania
—we observed large values of excess mortality and good quality of life (biological age less
than chronological age). This could be explained by elderly people with a good quality of
life who were strongly affected by a COVID-19 wave and strained the healthcare system.
In contrast to these countries, we found countries with a large LRaG gap but low excess
mortality, such as Luxembourg, Norway, and Sweden, countries that had a low health
expenditure per capita. This is a very preliminary interpretation that deserves further
investigation.

We note that countries with a constant quartile for the LRaG gap from 2017 to 2020
were those with the lowest excess mortality (i.e., ranks 1 or 2).

Hence, the constant dynamics of the LRaG gap over time seems to be predictive of the
resilience of the country to a health shock when expressed as low excess mortality.

0

1

2

3

4

A
U
S2 C
ZE

D
N
K

FI
N

G
R
C

IS
L

IT
A

P
O
L

A
U
T

C
H
E

ES
P

G
B
R
_N

L
H
U
N

LT
U

N
ZL
_N

P
SV

K
B
EL

D
EU

TN
P

ES
T

G
B
R

IS
R

LU
X

N
O
R

R
U
S

B
G
R

C
A
N

C
H
L

FR
AT
N
P

LV
A

P
R
T

SV
N

SW
E

Rank EM100k 2020-21 Rank dLRaG 2019

Figure 6. Country ranking by excess mortality per 100k people (i.e., EM100k) in 2020–2021 and by
LRaG gap in 2019.

4. Discussion

We introduced the weekly LRaG-age estimator, i.e., the estimator of biological age,
using the new dataset of short-term mortality fluctuations. The difference between bio-
logical and chronological age, i.e., the dLRaG indicator, was shown to be related to health
expenditure, the excess mortality per 100k people, and excess mortality as a percentage of
the annual baseline. The constant dynamics of the quartile rank of the LRaG gap seems
to be predictive of the resilience of a country. The LRaG was analyzed by Milevsky in
2020 [10] using annual data from the human mortality dataset. In [10], the connection
between LRaG age and biological age was detailed, along with applications to pension and
retirement policies.
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Abbreviations

The following abbreviations are used in this manuscript:
L-RaG longevity-risk-adjusted global
GM Gompertz–Makeham
TMR total mortality rate
wTMR weekly total mortality rate
INMR initial natural mortality rate
ME 100k mortality excess per 100k
MEAB mortality excess as a percentage of the annual baseline
HE health expenditure

Appendix A

This Appendix contains some tables reporting the results.

Table A1. Country code meaning.

Country Code Country Name Country Code Country Name

AUS Australia LVA Latvia
AUT Austria LTU Lithuania
BLR Belarus LUX Luxembourg
BEL Belgium NLD Netherlands
BGR Bulgaria NZL_NP New Zealand Total population
CAN Canada NZL_MA New Zealand Maori
CHL Chile NZL_NM New Zealand Non-Maori
HRV Croatia NOR Norway
CZE Czechia POL Poland
DNK Denmark PRT Portugal
EST Estonia KOR Republic of Korea
FIN Finland RUS Russia

FRATNP France Total population SVK Slovakia
FRACNP France Civilian population SVN Slovenia
DEUTNP Germany Total population ESP Spain
DEUTE Germany East Germany SWE Sweden
DEUTW Germany West Germany CHE Switzerland

GRC Greece TWN Taiwan
HKG Hong Kong GBR_NP U.K. United Kingdom Total Population
HUN Hungary GBRTENW U.K. England and Wales Total Population
ISL Iceland GBRCENW U.K. England and Wales Civilian Population
IRL Ireland GBR_SCO U.K. Scotland
ISR Israel GBR_NIR U.K. Northern Ireland
ITA Italy USA U.S.A.

Table A2. Data used in the linear regressions.

Country ME 100k MEAB HE 2019 D2017 D2018 D2019 D2020

AUS2 −14.40 −2.50 4919.24 −2.30 −1.80 −2.29 −1.23
AUT 108.90 11.70 5705.10 −0.31 −0.52 −0.24 −0.16
BEL 138.70 14.50 5458.40 0.06 0.12 0.10 −0.15
BGR 457.50 29.00 1842.05 0.72 0.64 0.62 0.21
CAN 40.00 5.10 5370.44 1.19 0.99 1.14 1.26
CHE 99.70 12.60 7138.06 0.14 0.20 −0.00 0.23

https://www.mortality.org/
https://www.mortality.org/
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Table A2. Cont.

Country ME 100k MEAB HE 2019 D2017 D2018 D2019 D2020

CHL 158.50 26.90 2291.46 1.94 1.61 2.00 0.98
CZE 323.60 30.10 3417.49 −0.99 −0.81 −0.87 −0.85

DEUTNP 47.10 4.00 6518.00 0.07 0.04 0.12 0.21
DNK −10.80 −1.10 5477.57 −0.57 −0.44 −0.69 −0.26
ESP 186.20 20.30 3600.28 −0.48 −0.36 −0.30 −0.30
EST 137.90 11.50 2507.07 0.48 0.50 0.17 0.52
FIN 7.40 0.70 4558.54 −1.18 −1.31 −1.42 −0.74

FRATNP 109.60 11.60 5274.26 0.84 0.75 0.95 0.51
GBR 160.70 17.70 4500.14 0.22 0.18 0.35 0.11

GBR_NL 28.50 4.50 2318.96 −0.21 −0.07 −0.14 −0.08
GRC 72.40 5.90 2014.20 −0.47 −0.37 −0.53 −0.23
HUN 243.60 17.80 2169.77 −0.26 −0.53 −0.10 −0.21
ISL −4.50 −0.70 4540.76 0.14 −0.21 −1.60 0.08
ISR 56.00 10.40 2903.41 0.14 0.05 0.07 −0.19
ITA 206.30 19.10 3653.40 −0.42 −0.14 −0.60 −0.45
LTU 350.70 24.90 3406.26 −0.30 −0.23 −0.22 −0.14
LUX 31.00 4.30 2727.19 −0.02 0.16 0.31 −0.06
LVA 158.10 10.40 5414.48 0.67 0.89 0.72 0.35
NOR −28.20 −3.70 2039.22 0.38 −0.00 0.18 0.38

NZL_NP −40.00 −5.40 5739.20 −0.29 −0.35 −0.20 0.02
POL 309.30 27.60 6744.62 −1.42 −1.26 −1.18 −0.88
PRT 184.90 16.30 4211.85 0.58 0.58 1.23 0.78
RUS 339.80 28.20 2289.31 0.48 0.31 0.30 −0.08
SVK 305.40 30.50 3347.43 −0.52 −0.06 −0.15 −0.27
SVN 178.70 17.40 1850.26 1.28 0.73 0.59 0.04
SWE 88.10 9.70 2189.05 0.35 0.53 0.87 0.47

Table A3. Quartile ranking with respect to excess mortality per 100k people in 2020–2021, the dLRaG
indicator in 2019, and excess mortality per annual baseline.

Country Rank EM100k
2020–2021 Rank dLRaG 2019 Rank EMAB

2020–2021

AUS2 1 1 1
AUT 2 2 3
BEL 3 3 3
BGR 4 4 4
CAN 2 4 2
CHE 2 2 3
CHL 3 4 4
CZE 4 1 4

DEUTNP 2 3 1
DNK 1 1 1
ESP 3 2 4
EST 3 3 2
FIN 1 1 1

FRATNP 2 4 2
GBR 3 3 3

GBR_NL 1 2 2
GRC 2 1 2
HUN 4 2 3
ISL 1 1 1
ISR 2 3 2
ITA 4 1 3
LTU 4 2 4
LUX 1 3 1
LVA 3 4 2
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Table A3. Cont.

Country Rank EM100k
2020–2021 Rank dLRaG 2019 Rank EMAB

2020–2021

NOR 1 3 1
NZL_NP 1 2 1

POL 4 1 4
PRT 3 4 3
RUS 4 3 4
SVK 4 2 4
SVN 3 4 3
SWE 2 4 2
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Figure A1. Country ranking by excess mortality per 100k people (i.e., EM100k) in 2020–2021 and
LRaG gap in 2019 (upper panel); by health expenditure in 2019 and LRaG gap in 2017 (middle panel);
by health expenditure in 2019 and LRaG gap in 2020 (lower panel). Countries on the horizontal axis
are sorted alphabetically.
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