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Abstract: In many industries and plants, a stable power supply system with acceptable cost/benefit
is essential. This paper investigates the cost-effectiveness of an unreliable retrial system that includes
standby generators and experiences the switchover failures of standby generators. Four different
standby retrial configurations are included, and each configuration includes various numbers of
primary and standby generators. Upon arrival, a failed generator is repaired immediately if the server
is available; otherwise, the failed generator will enter into orbit. The server is subject to breakdown
even when the server is idle. The explicit expressions of the mean time-to-failure and steady-state
availability for each configuration are derived and compared. We also compare the cost/benefit ratio
among four configurations. The developed results can provide managers with decision reference for
stable power supply system and cost reduction.

Keywords: retrial queue; availability; unreliable server; switching failure; cost-benefit

1. Introduction

A robust power supply system with acceptable cost/benefit is a fundamental part
for high-tech fabrication plants (called fabs), which plays an important role in modern
industries, such as packaging and testing, IC design, and wafer foundry. For fabs, a
stable power supply system is essential for maintaining the competition. Liu et al. [1]
applied a retrial system with standby switching failure to model the power supply system
for a fab. In their work, the repair server is assumed to be reliable. They applied the
supplementary variables techniques to obtain the explicit expressions of the steady-state
availability. However, in real world application, the repair server may be malfunctioned,
but can be repaired. To address this issue, in this paper, we extend the work of Liu et al. [1]
to the case of a unreliable repair server. As we know, the more system features we take into
consideration simultaneously, the more difficulty we have in modelling the system and
deriving the equations. Hence, the investigated model has not been studied in the literature
so far. In addition, we derive the explicit expressions of the mean time-to-failure and
steady-state availability for each configuration. Four different standby retrial configurations
are included, and each configuration includes various numbers of primary and standby
generators. Except for obtaining the explicit expressions of steady-state availability for each
configuration, we also obtain the explicit expressions of the mean time-to-failure for each
configuration and make a comparison.

Due to the practical applicability of the retrial queues, more and more researchers have
attracted attention to retrial systems. For existing works related to retrial systems, interested
readers can refer to Falin and Templeton [2], Artalejo [3], Artalejo and Gomez-Corral [4],
Yang and Chang [5], Chen [6], Chen and Wang [7], Yang and Tsao [8], Phung-Duc [9],
and the references therein. Recently, Yen, Wang, and Wu [10] investigated the system
availability and sensitivity analysis of a retrial queue with working breakdowns operating
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under the F-policy. Yen and Wang [11] investigated the reliability and availability of
four retrial systems with imperfect coverage and compared the cost/benefit among these
four retrial systems. Gao and Wang [12] studied a retrial unreliable machine system with
mixed standbys and optimized the cost-effectiveness ratio. Wu and Yang [13] constructed
a repairable system with warm standbys and imperfect switchovers and evaluated its
availability and reliability. Hirata et al. [14] presented an evaluation method for the variance
of failure times in the two-component priority standby redundant system by expanding
the idea by evaluating mean time-to-failure proposed in the previous research. They
proposed a procedure for deriving the reliability function in the system based on the
maximum entropy principle by utilizing mean time-to-failure and variance of failure times.
Liu et al. [15] studied a K-out-of-N retrial system with mixed standby components and a
single repair server under Bernoulli vacation schedule. They used vector Markov process
and Laplace transform theory to derive the steady-state availability, reliability function,
and mean time-to-failure.

The process of switching over standbys in the actual repairable standby system may
not be perfect, as described by Lewis [16]. Kuo and Ke [17] constructed three standby unre-
liable systems with switching failure and compared the cost/benefit ratio and availability
among the three systems. Ke et al. [18] modeled a machine repairing system incorporating
standby switching failure, in which the general repair times are considered, and constructed
a cost function to search the optimal system parameters. Utilizing supplementary variables,
Lee [19] studied the availability analysis of a redundancy model with general repair times,
switching failure, and interrupted repairs. Other research works along this line includes
Shekhar et al. [20], Ke et al. [21], Jain and Gupta [22], and Liu et al. [23].

The contents of this work are managed in the following sections. The model descrip-
tion is given in Section 2. The four different unreliable retrial systems are introduced in
Section 3. For each configuration, the explicit expressions for mean time-to-failure (MTTF)
and steady-state availability (Av) are derived by the matrix-analytic method. The numerical
results are presented in Section 4. We also rank four configurations according to MTTF, Av,
and the cost/benefit ratio. Section 5 is devoted to the summary and conclusions.

2. System Description

By referring to Liu et al. [1], we consider that a system requires 24 megawatts (MW)
power and assume that the power generating capacity of a generator is available in units of
24 MW, 12 MW, and 8 MW. In this system, the energy generator that is supplying electricity
is called the primary generator, and the energy generator that is online but does not provide
power is called the standby generator. Both the primary and standby energy generators
may fail and can be repaired. The failure times of primary and standby generators obey
an exponential distribution with rate λ and α (0 < α < λ), respectively. We assume that
the switching device has a failure probability q. In the repair facility, only one server is
responsible for repairing a failed generator and there is no waiting space in front of the
server. Hence, a failed generator finding that the server is free is repaired immediately;
otherwise, it will enter orbit. The retrial time obeys exponential distribution with the rate γ.
The failed generators will continue to retry until it gets the required repair. The repair times
of a failed generator obey exponentially distributed with rate µ. Additionally, the server
may fail at any time even if it is idle. The server fails with an exponential breakdown rate
of η. The repair time for the server obeys exponentially distributed with mean β−1.

Four configurations are considered as follows: configuration 1 consists of one 24 MW
primary generator and one 24 MW standby generator. Configuration 2 includes two 12 MW
primary generator s and one 12 MW standby generator. Configuration 3 contains two 12 MW
primary generators and two 12 MW standby generators. Configuration 4 contains three 8 MW
primary generators and two 8 MW standby generators.
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3. Systematic Methodology

We first draw the transition-rate diagram for each configuration. According to the
diagram, we develop the differential-difference equations. Finally, we utilize the matrix-
analytic method to obtain the explicit expressions of MTTF and Av. We define the following
probabilities throughout the paper.

P0,n(t) = Pr(W(t) = n, J(t) = 0),

P1,n(t) = Pr(W(t) = n, J(t) = 1),

P2,n(t) = Pr(W(t) = n, J(t) = 2),

P3,n(t) = Pr(W(t) = n, J(t) = 3),

where W(t) represents the number of failed generators in orbit at time t, and J(t) denotes
the states of the server at time t, and

J(t) =


0, the server is free,
1, the server is busy,
2, the free server is under repair,
3, the busy server is under repair.

3.1. Configuration 1

For the reliability case, the state-transition-rate diagram of configuration 1 is provided
in Figure 1. It is assumed that the system is characterized as a failure as soon as the
remaining electricity generation capacity is less than 24 MW. So, if the system cannot be
resumed, the states (0, 2), (1, 1), (2, 2), and (3, 1) are absorbing states. Based on the Figure 1,
the differential-difference equations can be written as the following matrix form:

d
dt

P1(t) = Q1P1(t), (1)

where

Q1 =



−∆10 0 0 µ 0 β 0 0 0 0
0 −∆11 0 0 0 0 β 0 0 0
0 0 0 0 0 0 0 0 0 0

x11 γ 0 −∆12 0 0 0 0 β 0
λq λ 0 λ 0 0 0 0 0 0
η 0 0 0 0 −∆13 0 0 0 0
0 η 0 0 0 x11 −(λ + β) 0 0 0
0 0 0 0 0 λq λ 0 0 0
0 0 0 η 0 0 0 0 −(λ + β) 0
0 0 0 0 0 0 0 0 λ 0


,

P1(t) = [P0,0(t), P0,1(t), P0,2(t), P1,0(t), P1,1(t), P2,0(t), P2,1(t), P2,2(t), P3,0(t), P3,1(t)]
T ,

∆10 = λ + α + η, ∆11 = λ + γ + η, ∆12 = λ + µ + η, ∆13 = λ + α + β, x11 = λ(1− q) + α.

To evaluate MTTF1, we define A1 as the transpose matrix of Q1 omitting the row and
column for the absorbing states. First, 1 represents a column vector with all elements equal
to 1, and the initial condition is

P(0) = [P0,0(0), P0,1(0), P1,0(0), P2,0(0), P2,1(0), P3,0(0)]
T = [1, 0, 0, 0, 0, 0]T .

Then, we can obtain

E
[

T0→absorbing

]
= P1(0)

T
(
−A−1

1

)
1, (2)
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where

A1 =



−∆10 0 x11 η 0 0
0 −∆11 γ 0 η 0
µ 0 −∆12 0 0 η
β 0 0 −∆13 x11 0
0 β 0 0 −(λ + β) 0
0 0 β 0 0 −(λ + β)

.

MTTF1 can be expressed as

E
[

T0→absorbing

]
= MTTF1. (3)

Due to the complexity of the explicit expression for MTTF1, this formula is difficult to
display here. However, by using a suitable computer program, it can be evaluated numerically.
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To discuss the availability of this configuration, we need the process below to obtain
the steady-state availability. In steady-state, we let the derivatives of the state probabilities
be zero. Then, we have
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−∆10 0 0 µ 0 β 0 0 0 0
0 −∆11 0 0 µ 0 β 0 0 0
0 0 −2γ 0 0 0 0 β 0 0

x11 γ 0 −∆12 0 0 0 0 β 0
λq λ 2γ λ −(µ + η) 0 0 0 0 β
η 0 0 0 0 −∆13 0 0 0 0
0 η 0 0 0 x11 −(λ + β) 0 0 0
0 0 0 0 0 λq λ −β 0 0
0 0 0 η 0 0 0 0 −(λ + β) 0
0 0 0 0 η 0 0 0 λ −β





P0,0(∞)
P0,1(∞)
P0,2(∞)
P1,0(∞)
P1,1(∞)
P2,0(∞)
P2,1(∞)
P2,2(∞)
P3,0(∞)
P3,1(∞)


=



0
0
0
0
0
0
0
0
0
0


(4)

By partitioning the probability vector as Π1 = [π1(0), π1(1), π1(2), π1(3)]
T , where

π1(i) = dPi,0(∞), Pi,1(∞)eT(i = 1, 3) and π1(i) = dPi,0(∞), Pi,1(∞), Pi,2(∞)eT (i = 0, 2),
then Equation (4) can be rewritten as

F11 F12 F13
F21 F22 F24
F31 F33

F42 F44




π1(0)
π1(1)
π1(2)
π1(3)

 =


0
0
0
0

, (5)

where

F11 =

 −∆10 0 0
0 −∆11 0
0 0 −2γ

, F12 =

 µ 0
0 µ
0 0

, F13 =

 β 0 0
0 β 0
0 0 β

,

F21 =

[
λ(1− q) + α γ 0

λq λ 2γ

]
, F22 =

[
−∆12 0

λ −(µ + η)

]
, F24 =

[
β 0
0 β

]
,

F31 =

 η 0 0
0 η 0
0 0 0

, F33 =

 −∆13 0 0
λ(1− q) + α −(λ + β) 0

λq λ −β

,

F42 =

[
η 0
0 η

]
, F44 =

[
−(λ + β) 0

λ −β

]
,

and 0 is a zero matrix with the appropriate dimension.
By solving Equation (5) and after some routine substitutions, we have

π1(0) = −(F21)
−1(F22 + F24Ψ3)π1(1) = Ψ0π1(1), (6)

π1(2) = −(F33)
−1F31π1(0) = Ψ2π1(1), (7)

π1(3) = −(F44)
−1F42π1(1) = Ψ3π1(1), (8)

(F11Ψ0 + F12 + F13Ψ2)π1(1) = 0. (9)

Hence, we can calculate π1(1) by solving Equation (9) and the normalizing condition
∑2

j=0 P0,j(∞) + ∑1
j=0 P1,j(∞) + ∑2

j=0 P2,j(∞) + ∑1
j=0 P3,j(∞) = 1. Thus, the steady-state

availability of configuration, Av1 = 1 − P0,2(∞) − P1,1(∞) − P2,2(∞) − P3,1(∞), can be
computed once the steady-state probabilities are obtained.

3.2. Configuration 2

Figure 2 presents the state-transition-rate diagram of configuration 2. Similarly, the
transition from (2, 2) to (0, 2), the transition from (0, 2) to (1, 1), the transition from state
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(1, 1) to (0, 1) and (3, 1), and the transition from (3, 1) to (1, 1) are ignored when investigating
the system MTTF. The associated probability vector for this configuration is defined as:

P(t) = [P0,0(t), P0,1(t), P0,2(t), P1,0(t), P1,1(t), P2,0(t), P2,1(t), P2,2(t), P3,0(t), P3,1(t)]
T .

We can write the differential-difference equations of configuration 2 as the following
matrix form:

d
dt

P2(t) = Q2P2(t), (10)

where

Q2 =



−∆20 0 0 µ 0 β 0 0 0 0
0 −∆21 0 0 0 0 β 0 0 0
0 0 0 0 0 0 0 0 0 0

x21 γ 0 −∆22 0 0 0 0 β 0
2λq 2λ 0 2λ 0 0 0 0 0 0

η 0 0 0 0 −∆23 0 0 0 0
0 η 0 0 0 x21 −(2λ + β) 0 0 0
0 0 0 0 0 2λq 2λ 0 0 0
0 0 0 η 0 0 0 0 −(2λ + β) 0
0 0 0 0 0 0 0 0 2λ 0


,

∆20 = 2λ + α + η, ∆21 = 2λ + γ + η, ∆22 = 2λ + µ + η, ∆23 = 2λ + α + β, x21 = 2λ(1− q) + α.

We define A2 as the transpose matrix of Q2 omitting the row and column for the
absorbing state. Let

P2(0) = [P0,0(0), P0,1(0), P1,0(0), P2,0(0), P2,1(0), P3,0(0)]
T = [1, 0, 0, 0, 0, 0]T

represent the initial condition. We can obtain

E
[

T0→absorbing

]
= P2(0)

T
(
−A−1

2

)
1, (11)

where

A2 =



−∆20 0 x21 η 0 0
0 −∆21 γ 0 η 0
µ 0 −∆22 0 0 η
β 0 0 −∆23 x21 0
0 β 0 0 −(2λ + β) 0
0 0 β 0 0 −(2λ + β)

.

For this configuration, MTTF2 can be expressed as

E
[

T0→absorbing

]
= MTTF2. (12)

As mentioned earlier, the explicit expression of MTTF2 is not shown here due to
its complexity. We compare the four configurations in Section 4 based on the calculated
numerical results. We utilize the same process in the prior subsection to get the steady-state
availability. In steady-state, we let the derivatives of the state probabilities be zero, then



Computation 2022, 10, 48 7 of 19



−∆20 0 0 µ 0 β 0 0 0 0
0 −∆21 0 0 µ 0 β 0 0 0
0 0 −2γ 0 0 0 0 β 0 0

x21 γ 0 −∆22 0 0 0 0 β 0
2λq 2λ 2γ 2λ −(µ + η) 0 0 0 0 β

η 0 0 0 0 −∆23 0 0 0 0
0 η 0 0 0 x21 −(2λ + β) 0 0 0
0 0 0 0 0 2λq 2λ −β 0 0
0 0 0 η 0 0 0 0 −(2λ + β) 0
0 0 0 0 η 0 0 0 2λ −β





P0,0(∞)
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P1,0(∞)
P1,1(∞)
P2,0(∞)
P2,1(∞)
P2,2(∞)
P3,0(∞)
P3,1(∞)


=



0
0
0
0
0
0
0
0
0
0


(13)

Solving the above equation and using the normalizing condition ∑2
j=0 P0,j(∞)+

∑1
j=0 P1,j(∞) + ∑2

j=0 P2,j(∞) + ∑1
j=0 P3,j(∞) = 1, we can obtain the steady-state proba-

bilities. Once the steady-state probabilities are obtained, the availability of configuration 2,
Av2 = 1− P0,2(∞)− P1,1(∞)− P2,2(∞)− P3,1(∞), can be computed.
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3.3. Configuration 3

Figure 3 presents the state-transition-rate diagram of configuration 3. When deriving
the system MTTF, the transition from state (2, 3) to (0, 3), transition (0, 3) to (1, 2), transition
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from state (1, 2) to states (0, 2) and (3, 2), and transition from state (3, 2) to (1, 2) should be
deleted. Let

P3(0) = [P0,0(0), P0,1(0), P0,2(0), P1,0(0), P1,1(0),

P2,0(0), P2,1(0), P2,2(0), P3,0(0), P3,1(0)]
T

= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

represent the initial condition. We can write the differential-difference equations of this
configuration as the following matrix form:

d
dt

P3(t) = Q3P3(t), (14)

where

Q3 =



−∆30 0 0 0 µ 0 0 β 0 0 0 0 0 0
0 −∆31 0 0 0 µ 0 0 β 0 0 0 0 0
0 0 −∆32 0 0 0 0 0 0 β 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

x32 γ 0 0 −∆33 0 0 0 0 0 0 β 0 0
x33 x31 2γ 0 x31 −∆34 0 0 0 0 0 0 β 0

2λq2 2λq 2λ 0 2λq 2λ 0 0 0 0 0 0 0 0
η 0 0 0 0 0 0 −∆35 0 0 0 0 0 0
0 η 0 0 0 0 0 x32 −∆36 0 0 0 0 0
0 0 η 0 0 0 0 x33 x31 −(2λ + β) 0 0 0 0
0 0 0 0 0 0 0 2λq2 2λq 2λ 0 0 0 0
0 0 0 0 η 0 0 0 0 0 0 −∆37 0 0
0 0 0 0 0 η 0 0 0 0 0 x31 −(2λ + β) 0
0 0 0 0 0 0 0 0 0 0 0 2λq 2λ 0



,

∆30 = 2λ + 2α + η, ∆31 = 2λ + α + γ + η, ∆32 = 2λ + 2γ + η, ∆33 = 2λ + µ + η,

∆34 = 2λ + µ + η, ∆35 = 2λ + 2α + β, ∆36 = 2λ + α + β, ∆37 = 2λ + α + β,

x31 = 2λ(1− q) + α, x32 = 2λ(1− q) + 2α, x33 = 2λq(1− q).

We define A3 as the transpose matrix of Q3 omitting the row and column for the
absorbing state. After the transpose operation, we have

A3 =



−∆30 0 0 x32 x33 η 0 0 0 0
0 −∆31 0 γ x31 0 η 0 0 0
0 0 −∆32 0 2γ 0 0 η 0 0
µ 0 0 −∆33 x31 0 0 0 η 0
0 µ 0 0 −∆34 0 0 0 0 η
β 0 0 0 0 −∆35 x32 x33 0 0
0 β 0 0 0 0 −∆36 x31 0 0
0 0 β 0 0 0 0 −(2λ + β) 0 0
0 0 0 β 0 0 0 0 −∆37 x31
0 0 0 0 β 0 0 0 0 −(2λ + β)


. (15)

We can obtain the mean time-to-failure for configuration 3 as follows.

E
[

T0→absorbing

]
= P3(0)

T
(
−A−1

3

)
1. (16)



Computation 2022, 10, 48 9 of 19

For the availability case of this configuration, we utilize the same process in the prior
subsection to get the steady-state availability. In steady-state, we let the derivatives of the
state probabilities be zero, then we have

G11 G12 G13
G21 G22 G24
G31 G33

G42 G44




π3(0)
π3(1)
π3(2)
π3(3)

 =


0
0
0
0

, (17)

where

G11 =


−∆30 0 0 0

0 −∆31 0 0
0 0 −∆32 0
0 0 0 −3γ

, G12 =


µ 0 0
0 µ 0
0 0 µ
0 0 0

,

G13 =


β 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

, G21 =

 x32 γ 0 0
x33 x31 2γ 0

2λq2 2λq 2λ 3γ

,

G22 =

 −∆33 0 0
x31 −∆34 0
2λq 2λ −(µ + η)

, G24 =

 β 0 0
0 β 0
0 0 β

,

G31 =


η 0 0 0
0 η 0 0
0 0 η 0
0 0 0 0

, G33 =


−∆35 0 0 0

x32 −∆36 0 0
x33 x31 −(2λ + β) 0

2λq2 2λq 2λ −β

,

G42 =

 η 0 0
0 η 0
0 0 η

, G44 =

 −∆37 0 0
x31 −(2λ + β) 0
2λq 2λ −β

,

π3(i) =

 Pi,0(∞)
Pi,1(∞)
Pi,2(∞)

(i = 1, 3), π3(i) =


Pi,0(∞)
Pi,1(∞)
Pi,2(∞)
Pi,3(∞)

(i = 0, 2).

Similarly, solving Equation (17) recursively with the normalizing condition ∑3
j=0 P0,j(∞) +

∑2
j=0 P1,j(∞) + ∑3

j=0 P2,j(∞) + ∑2
j=0 P3,j(∞) = 1 can obtain the steady-state probabilities.

Once the steady-state probabilities are obtained, then the availability of this configuration,
Av3 = 1− P0,3(∞)− P1,2(∞)− P2,3(∞)− P3,2(∞) is computed.
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We can obtain the mean time-to-failure for configuration 3 as follows. 

𝐸[𝑇0→𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔] = 𝑷3(0)
𝑻(−𝐴3

−1)𝟏.  (16) 

Figure 3. State-transition-rate diagram of configuration 3.

3.4. Configuration 4

The state-transition-rate diagram of configuration 4 is shown in Figure 4. The associ-
ated probability vector is

P(t) = [P0,0(t), P0,1(t), P0,2(t), P0,3(t), P1,0(t), P1,1(t), P1,2(t),

P2,0(t), P2,1(t), P2,2(t), P2,3(t), P3,0(t), P3,1(t), P3,2(t)]
T .

According to the Figure 4, the differential-difference equations of this configuration
can be written as the following matrix form:

d
dt

P(t) = Q4Ps(t), (18)
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where

Q4 =



−∆40 0 0 0 µ 0 0 β 0 0 0 0 0 0
0 −∆41 0 0 0 µ 0 0 β 0 0 0 0 0
0 0 −∆42 0 0 0 0 0 0 β 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

x42 γ 0 0 −∆43 0 0 0 0 0 0 β 0 0
x43 x41 2γ 0 x41 −∆44 0 0 0 0 0 0 β 0

3λq2 3λq 3λ 0 3λq 3λ 0 0 0 0 0 0 0 0
η 0 0 0 0 0 0 −∆45 0 0 0 0 0 0
0 η 0 0 0 0 0 x42 −∆46 0 0 0 0 0
0 0 η 0 0 0 0 x43 x41 −(3λ + β) 0 0 0 0
0 0 0 0 0 0 0 3λq2 3λq 3λ 0 0 0 0
0 0 0 0 η 0 0 0 0 0 0 −∆47 0 0
0 0 0 0 0 η 0 0 0 0 0 x41 −(3λ + β) 0
0 0 0 0 0 0 0 0 0 0 0 3λq 3λ 0



,

∆40 = 3λ + 2α + η, ∆41 = 3λ + α + γ + η, ∆42 = 3λ + 2γ + η, ∆43 = 3λ + µ + η,

∆44 = 3λ + µ + η, ∆45 = 3λ + 2α + β, ∆46 = 3λ + α + β, ∆47 = 3λ + α + β,

x41 = 3λ(1− q) + α, x42 = 3λ(1− q) + 2α, x43 = 3λq(1− q).

We define A4 as the transpose matrix of Q4 omitting the row and column for the
absorbing state. Let

P4(0) = [P0,0(0), P0,1(0), P0,2(0), P1,0(0), P1,1(0),

P2,0(0), P2,1(0), P2,2(0), P3,0(0), P3,1(0)]
T

= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

represent the initial condition, we can obtain

E
[

T0→absorbing

]
= P4(0)

T
(
−A−1

4

)
1, (19)

where

A4 =



−∆40 0 0 x42 x43 η 0 0 0 0
0 −∆41 0 γ x41 0 η 0 0 0
0 0 −∆42 0 2γ 0 0 η 0 0
µ 0 0 −∆43 x41 0 0 0 η 0
0 µ 0 0 −∆44 0 0 0 0 η
β 0 0 0 0 −∆45 x42 x43 0 0
0 β 0 0 0 0 −∆46 x41 0 0
0 0 β 0 0 0 0 −(3λ + β) 0 0
0 0 0 β 0 0 0 0 −∆47 x41
0 0 0 0 β 0 0 0 0 −(3λ + β)


.
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Once the steady-state probabilities are obtained, the availability of configuration 4, 

𝐴𝑣4 = 1 − 𝑃0,3(∞) − 𝑃1,2(∞) − 𝑃2,3(∞) − 𝑃3,2(∞), is computed. In the following section, we 

compare these four configurations based on MTTF and the availability. 
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We utilize the same process in the prior subsection to get the steady-state availability.
The steady-state probabilities can be obtained by solving

H11 H12 H13
H21 H22 H24
H31 H33

H42 H44




π4(0)
π4(1)
π4(2)
π4(3)

 =


0
0
0
0

, (20)
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with the normalizing condition ∑3
j=0 P0,j(∞)+∑2

j=0 P1,j(∞)+∑3
j=0 P2,j(∞)+∑2

j=0 P3,j(∞) =
1, where

H11 =


−∆40 0 0 0

0 −∆41 0 0
0 0 −∆42 0
0 0 0 −3γ

, H12 =


µ 0 0
0 µ 0
0 0 µ
0 0 0

,

H13 =


β 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

, H21 =

 x42 γ 0 0
x43 x41 2γ 0

3λq2 3λq 3λ 3γ

,

H22 =

 −∆43 0 0
x41 −∆44 0
3λq 3λ −(µ + η)

, H24 =

 β 0 0
0 β 0
0 0 β

,

H31 =


η 0 0 0
0 η 0 0
0 0 η 0
0 0 0 0

, H33 =


−∆45 0 0 0

x42 −∆46 0 0
x43 x41 −(3λ + β) 0

3λq2 3λq 3λ −β

,

H42 =

 η 0 0
0 η 0
0 0 η

, H44 =

 −∆47 0 0
x41 −(3λ + β) 0
3λq 3λ −β

,

π4(i) =

 Pi,0(∞)
Pi,1(∞)
Pi,2(∞)

(i = 1, 3), π4(i) =


Pi,0(∞)
Pi,1(∞)
Pi,2(∞)
Pi,3(∞)

(i = 0, 2).

Once the steady-state probabilities are obtained, the availability of configuration 4,
Av4 = 1− P0,3(∞)− P1,2(∞)− P2,3(∞)− P3,2(∞), is computed. In the following section,
we compare these four configurations based on MTTF and the availability.

4. Comparative Results
4.1. Comparison of MTTF and Av

The cases listed below are provided in this section to compare four configurations
according to their MTTFi and Avi (i = 1,2,3,4).

Case1. Given α = 0.01, µ = 2, q = 0.2, γ = 3, η = 0.05, β = 0.5, and change the values of λ.
Case2. Given λ = 0.5, α = 0.01, q = 0.2, γ = 3, η = 0.05, β = 0.5, and change the values of µ.
Case3. Given λ = 0.5, α = 0.01, µ = 2, γ = 3, η = 0.05, β = 0.5, and change the values of q.
Case4. Given λ = 0.5, α = 0.01, µ = 2, q = 0.2, η = 0.05, β = 0.5, and change the values of γ.
Case5. Given λ = 0.5, α = 0.01, µ = 2, q = 0.2, γ = 3, β = 0.5, and change the values of η.
Case6. Given λ = 0.5, α = 0.01, µ = 2, q = 0.2, γ = 3, η = 0.05, and change the values of β.

Tables 1 and 2 show the results of MTTF and Av for each configuration. From
Table 1, the MTTF of configuration 3 is larger than that of configurations 1, 2, and 4
if 0.01 < λ < 0.2731, but the MTTF1 is larger than that of the other configurations if
0.2731 < λ < 0.5. From Table 2, one can find that based on the comparison of Av,
configuration 3 may be the best configuration as 0.01 < λ < 0.1390, but as 0.1390 < λ < 0.5,
the best configuration may be configuration 1. In addition, no matter how we vary the
values of µ, q, γ, η and β, the best configuration is always configuration 1 whether it
is based on MTTF comparisons or Av comparisons. From Table 2, one can find that in
most cases, configuration 1 has the highest steady-state availability, while configuration
4 performs the worst among the four configurations, only outperforming configuration 2 in
some cases. As a standard for comparing these four configurations, the cost/benefit ratio
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may be equitable to the benefit, since each configuration spends different costs during the
construction process.

Table 1. Comparisons of configurations 1–4 for MTTF.

Scope of λ Results

0.01 < λ < 0.0542 MTTF2 < MTTF1 < MTTF4 < MTTF3
0.0542 < λ < 0.2731 MTTF2 < MTTF4 < MTTF1 < MTTF3

0.2731 < λ < 0.5 MTTF2 < MTTF4 < MTTF3 < MTTF1

Scope of µ Results

0.5 < µ < 0.9834 MTTF4 < MTTF2 < MTTF3 < MTTF1
0.9834 < µ < 2 MTTF2 < MTTF4 < MTTF3 < MTTF1

Scope of q Results

0 < q < 0.3981 MTTF2 < MTTF4 < MTTF3 < MTTF1
0.3981 < q < 1 MTTF4 < MTTF2 < MTTF3 < MTTF1

Scope of γ Results

0.5 < γ < 6 MTTF2 < MTTF4 < MTTF3 < MTTF1

Scope of η Results

0.01 < η < 0.5 MTTF2 < MTTF4 < MTTF3 < MTTF1

Scope of β Results

0.01 < β < 1 MTTF2 < MTTF4 < MTTF3 < MTTF1

Table 2. Comparisons of configurations 1–4 for Av.

Scope of λ Results

0.01 < λ < 0.0265 Av2 < Av3 < Av1 < Av4
0.0265 < λ < 0.1390 Av2 < Av3 < Av4 < Av1
0.1390 < λ < 0.2420 Av2 < Av4 < Av3 < Av1

0.2420 < λ < 0.5 Av4 < Av2 < Av3 < Av1

Scope of µ Results

0.5 < µ < 2 Av4 < Av2 < Av3 < Av1

Scope of q Results

0 < q < 1 Av4 < Av2 < Av3 < Av1

Scope of γ Results

0.5 < γ < 6 Av4 < Av2 < Av3 < Av1

Scope of η Results

0.01 < η < 0.5 Av4 < Av2 < Av3 < Av1

Scope of β Results

0.01 < β < 2 Av4 < Av2 < Av3 < Av1

4.2. Comparison Based on Their Cost/Benefit Ratio

We consider a situation where different configurations may have different costs. To
compare different configurations fairly, these costs should be considered. We list the costs
(Ci) for each configuration i (i = 1,2,3,4) as shown below.

C1 = $18× 106, C2 = $15× 106, C3 = $18× 106, C4 = $16× 106.

Considering the same cases as in the previous subsection, we compare the cost/bene f it
ratio for each configuration i (i = 1,2,3,4), i.e., cost/MTTF and cost/Av. The results de-
picted in Figures 5–10 indicate that when λ, q, or η increase, cost/MTTF and cost/Av



Computation 2022, 10, 48 15 of 19

increase for any configuration, but cost/MTTF and cost/Av decrease as µ, γ or β in-
crease for any configuration. Figure 5 displays that configuration 2 has minimum cost/Av
for different ranges of λ. The best configuration of cost/bene f it ratio is cost3/MTTF3 if
0.01 < λ < 0.2731. Otherwise, the best configuration of cost/bene f it ratio is cost1/MTTF1.
The worst configuration of cost/MTTF ratio is cost2/MTTF2.
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Figure 10. cost/bene f it versus β.

From Figures 6–10, the optimum configuration based on the cost/Av is dependent
on µ, q, γ, η, and β. With the cost/Av ratio, the worst configuration is configuration 4 for
different ranges of µ, q, γ, η, and β. C2/Av2 has the minimum cost/availability ratio if
µ > 1.8495, q < 0.4514, γ > 1.6048 or η < 0.0780. Otherwise, the best configuration of the
cost/availability is C1/Av1. In addition, they also show that the optimum configuration
based on the cost/MTTF will not change as µ, q, γ, η, and β vary. C2/MTTF2 has the
minimum cost/MTTF ratio. The worst configuration of cost/bene f it ratio is C2/MTTF2
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for all ranges of β. The worst configuration is C2/MTTF2 if γ > 2.1352, q < 0.2352,
η > 0.1245 or µ > 1.8469. Otherwise, the worst configuration is configuration 4.

5. Conclusions

This work evaluated the cost-benefit of four standby unreliable retrial configurations
with standby switching failure. The explicit and computationally tractable expressions
for MTTFi and Avi (i = 1, 2, 3, 4) were derived for each configuration. A Matlab computer
program is utilized to carry out the proposed approach. We ranked four configurations
based on MTTF, Av and the cost/benefit ratio. According to our numerical results, the
system with configuration 1 displayed the highest performance in most cases. Therefore,
the procedure proposed in this paper can provide managers with a valuable tool to select
the configuration with greatest benefit in terms of MTTF or availability. For future research,
we may consider the general repair times of failed generators and the server. Moreover, we
may also design the optimal management system.
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