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Abstract

:

This paper presents an Artificial Neural Network (ANN)-based approach for predicting tunnel stability that is both dependable and accurate. Numerical solutions to the instability of unlined horseshoe tunnels in cohesive-frictional soils are established, primarily by employing numerical upper bound (UB) and lower bound (LB) finite element limit analysis (FELA). The training dataset for an ANN model is made up of these numerical solutions. Four dimensionless parameters are required in the parametric analyses, namely the dimensionless overburden factor γD/c′, the cover-depth ratio C/D, the width-depth ratio B/D, and the soil friction angle ϕ. The influence of these dimensionless parameters on the stability factor is explored and illustrated in terms of a design chart. Moreover, the failure mechanisms of a shallow horseshoe tunnel in cohesive-frictional soil that is influenced by the four dimensionless parameters are also provided. Therefore, the current stability solution, based on FELA and ANN models, is presented in this paper, allowing for the efficient and accurate establishment and evaluation of an optimum surcharge loading of shallow horseshoe tunnels in practice.
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1. Introduction


The major goal during the construction phase of urban areas is to minimize the destruction of adjacent structures and roadways above the ground surface due to the ground settlement [1,2,3]. For this reason, geotechnical engineers are increasingly concerned with the stability of subsurface structures such as tunnels, underground spaces, abandoned mine workings, and pipelines. The most influential factor regarding shallow h tunnel construction is a lack of stability, which is mostly caused by a surcharge loading above the ground [4,5,6,7,8,9,10,11]. In this study, an artificial neural network (ANN) technique is introduced to solve the tunnel stability problem in the form of a black-box-type prediction model which aims to determine the critical surcharge loading imposed on the ground surface above a shallow elliptical tunnel in cohesive-frictional soil.



The finite element limit analysis (FELA), a sophisticated numerical approach for determining factors of safety and ultimate loads, has recently become an extensive tool for developing precise plastic solutions to tunnel stability problems. To numerically determine genuine plastic collapse loads, this approach employs optimization and finite element discretization techniques by including upper bound (UB) and lower bound (LB) bracketing, which are based on plastic bound theorems to obtain the exact solutions. It is worth noting that the UB and LB approaches are based on either kinematics or equilibrium [12,13]. Sloan [14] provides further information on the features and evolution of UB and LB FELA. Moreover, various researchers, including Sloan and Assadi [15], Wilson et al. [16,17,18], Yamamoto et al. [19,20], Keawsawasvong and Ukritchon [21,22], Keawsawasvong and Likitlersuang [23], Keawsawasvong and Shiau [24], Ukritchon and Keawsawasvong [25,26], Yang et al. [27,28,29], Zhang et al. [30], and Dutta and Bhattacharya [31], have previously performed FELA to overcome the problems of unlined tunnels and trapdoors. In addition, the influence of the non-associated flow rule on the face stability of tunnels was investigated by Di et al. [32] and Zhang et al. [33]. The experimental investigation of mechanical characteristics for linings of twin tunnels was also carried out by Zheng et al. [34]. Note that these investigations were carried out with the constrained shapes of circular, square, rectangular, and elliptical tunnels.



The pain point for maintaining the stability of an underground tunnel is the minimum support pressure. Horseshoe-shaped tunnels can be utilized to minimize the amount of support pressure required and to increase the amount of useable area for openings. To minimize the excavation volume and satisfy the requirements of the geometrical constraints for the construction of roads and related walkways, horseshoe-shaped tunnels are requested. Various past constructions of horseshoe-shaped tunnels can be found in [35,36,37]. A few earlier studies on the stability of horseshoe tunnels are relevant to the present study. The initial study of horseshoe tunnels was carried out by Wilson et al. [18]; the analyses were only conducted in undrained clay, and they provided a comparison with square and rectangular tunnels, indicating that the horseshoe tunnel necessitates a lower support pressure under the same conditions. Subsequently, the stability of dual horseshoe tunnels in cohesive-frictional soil was investigated by Zhang et al. [38]. They employed upper bound analysis to determine the critical unit weight. Later on, Bhattacharya and Sriharsha [39] explored the stability of a long horseshoe tunnel in cohesive-frictional soil under plane strain conditions. The internal support pressure was obtained via lower bound limit analysis. Furthermore, the results were provided in terms of design charts, as were most of the earlier horseshoe tunnel stability solutions. Therefore, it is complicated to apply their results since there are no exact solutions provided, and approximation or interpolation is required to obtain the stability solution.



In this study, the numerical solutions regarding the stability of horseshoe tunnels in cohesive-frictional soils (or sandy soils) under plane strain conditions are presented by employing the numerical technique of FELA to derive UB and LB solutions. In FELA, four dimensionless parameters, namely soil strength parameters, soil unit weight ratio, width-depth ratio, and cover-depth ratio, are utilized to perform a parametric analysis to demonstrate their influence. The relationship between the parameters under consideration is provided, as well as the failure mechanisms. An artificial neural network (ANN) technique, which is one of the soft computing approaches, is used to construct a black-box-type prediction model. This artificial intelligence technique may acquire data from a sufficiently compact information gathering and then establish a black-box-type prediction model to resolve the problems represented by a closed-form equation. This study established an improved model for promptly and reliably evaluating the stability of horseshoe tunnels in cohesive-frictional soils via the combination of ANN and FELA techniques. It should be emphasized that earlier investigations that combined the ANN and FELA techniques were fairly restricted. Only a few investigations by Li et al. [40,41] and Qian [42], which adopted the ANN technique for soil slope stability predictions based on FELA solutions, have been reported. Keawsawasvong et al. [43] later employed a similar method to construct an ANN model for rock tunnel stability problems, employing FELA solutions in conjunction with the HB model as an input data set. Nevertheless, none of the preceding studies have determined an ANN model for horseshoe tunnel stability. Therefore, this study introduces novel soft computing techniques for assessing the stability of horseshoe tunnels in cohesive-frictional soils, resulting in a practical tool that relies on the ANN and FELA methodologies. The concept proposed in this study will allow for the rapid evaluation of these concerns in practice for shallow tunnel designs and construction in metropolitan regions.




2. Problem Statement


Figure 1 shows the problem definition of an unsupported infinitely long horseshoe tunnel in cohesive-frictional soil under plane strain conditions. The geometry of the tunnel consists of two parts, which are the half-circular tunnel roof with a diameter B and the rectangular section with a width B and a vertical height of D/2. The tunnel has an overall height of D, which is located beneath the ground level with a cover depth C. With the accompanying flow rule, the soil mass around the tunnel is assumed to obey the Mohr-Coulomb yield criterion. According to the Mohr-Coulomb yield criterion, the soil profile is controlled by three parameters: effective cohesion (c′), effective friction angle (ϕ), and unit weight (γ). The ground surface is subjected to a vertical surcharge loading (σs). It is worth noting that the soil unit weight and the surface surcharge operate as vertical driving forces leading to the event of a collapse, while the effective cohesion operates as an uplift force that resists the driving force.



To simplify the analyzed parameters, a dimensionless technique Butterfield [44] was adopted with six considered dimensional input parameters, namely C, D, B, γ, c′, and ϕ, which mainly influence the outcome of critical surcharge loading (σs) at the surface of the ground. Moreover, the six dimensional input parameters are reduced into four dimensionless input parameters, which can be stated in terms of the stability factor of horseshoe tunnels in cohesive-frictional soil as follows:


     σ s     c ′    = f (   γ D    c ′    ,  C D  ,  B D  ,  ϕ ′  )  



(1)




where σs/c′ represents the stability factor of horseshoe tunnel;



γD/c′ represents the dimensionless overburden factor;



C/D represents the cover-depth ratio;



B/D represents the width-depth ratio;



ϕ represents the soil friction angle.



The parametric analysis for the considered parameters provides a variety of alternatives that are useful in practice. More details on the chosen range of the four dimensionless parameters encompassed in this study are provided in Table 1. The dimensionless input and output data examined by FELA, on the other hand, are critical for developing a nonlinear input–output mapping of the problem of horseshoe tunnel instability in cohesive-frictional soils, which applies a neural network trained throughout an extreme learning neural network.




3. Method of Analysis


The present study employs the numerical program OptumG2 FELA [45] to analyze the stability problems of a horseshoe tunnel in cohesive-frictional soil. The numerical results obtained by FELA will be utilized as input data in the ANN model. Numerous geotechnical engineering concerns have been solved entirely by applying FELA to evaluate the stability solution in terms of safety factors and limit loads (e.g., [46,47,48,49,50,51,52,53,54,55,56,57,58]). A depth ratio of C/D = 4 and varied values of B/D = 0.5, 1, and 2 are the selected cases of the models developed by OptumG2, as seen in Figure 2a–c. Only half of the domain of the horseshoe tunnel was simulated, with the line of symmetry placed to the domain’s left boundary which is also represented in Figure 2a–c. In the FELA analysis, all numerical models are subjected to the standard boundary conditions, where the left and right boundaries are considered to be roller support that only allows the movement in the vertical direction. The bottom boundary is considered to be a fixed support in which no movement is allowed in both the horizontal and vertical directions along the plane. Free surfaces are provided within the horseshoe tunnel and on the ground surface to indicate that free movement is permitted. Furthermore, the loading multiplier function in OptumG2 is employed to place a uniform surcharge vertically across the top of the ground surface. The critical surcharge loading (σs) in the event of collapse is optimized according to the UB and the LB FELA.



In both the LB and the UB FELA, the soils are discretized into a series of triangular components that are dispersed throughout the domain of the horseshoe tunnel problems. The LB solutions are obtained in the LB FELA analysis by establishing a statically acceptable stress field, located inside three-noded triangle elements, that has its own fundamental unknowns of stress components. Through the loading multiplier approach, the collapse surcharge is maximized by obeying all equilibrium requirements based on the LB FELA technique that is developed throughout the whole domain of the problem. Moreover, a kinematically acceptable velocity field in the domain is generated in the UB FELA analysis, using each node’s vertical and horizontal velocities as the fundamental unknowns. The loading multiplier approach is used to reduce the collapse surcharge by comparing the level of current activity performed by the external pressure with the total internal power dissipation. The domain sizes are selected to be broad enough to include the plastic shear zone in all simulations of the LB and UB FELA models. The overlapping of the plastic shear zone at the right or bottom boundary should not be observed, since this would affect the correctness of the solution. Thus, the sizes of the right and bottom boundaries are set to be 7D and 2D, respectively, which are sufficient to avoid the effect of insufficient boundaries (see Figure 2).



In order to provide better precise limit solutions, the significant function of mesh adaptivity in OptumG2 is enabled in all UB and LB simulations. An autonomously adaptable mesh refinement was used to achieve the tight UB and LB solutions. Furthermore, the effective approach of automatic mesh adaptivity with shear dissipation optimization ensures that the generated LB and UB solutions are more accurate. With a starting mesh amount of 5000 elements that will be raised to the final mesh amount of 10,000 elements, this study applies five adaptive meshing phases. The finalized adaptive meshes may be utilized to display the horseshoe tunnel’s failure processes in cohesive-frictional soil. Ciria et al. [59] have written a paper that goes into further detail about this mesh adaptivity characteristic.




4. Results and Discussion


Since the differences between the current UB and LB solutions are very small (less than 1%), the average (Ave) solutions computed from the average values of the UB and LB FELA solutions, which can be considered as rigorous solutions, are presented in this study. Note that only the solutions of the active collapse of tunnels are considered in this study. Figure 3, Figure 4, Figure 5 and Figure 6 and Table 2 demonstrate the average solution of the stability factor of a horseshoe tunnel in cohesive-frictional soil. Table 2 contains the results data that will eventually be utilized as input data in the ANN technique, which will be described in the next section. Note that the sign conventions for the dimensionless load factors presented in Table 2 show that a positive sign corresponds to the cases where the ground above the tunnel can support the compressive normal stress and the self-weight of soil masses. In contrast, a negative sign corresponds to the cases where only the tensile normal stress can apply on the ground surface. The later cases of the negative sign rarely happen in practice since compressive normal stress is mostly applied on the ground surface. Nevertheless, these cases can indicate that if there is no tensile normal stress applied on the ground surface, the soils around the tunnel will certainly collapse due to the driving force from the self-weight of soil masses.



Throughout all numerical results, Figure 3a,b represents the influence of the soil friction angle on the stability factor in the selected cases of γD/c′ = 0 and C/D = 1 and 4, respectively, with various values of B/D = 0.5, 0.75, 1, 1.333, and 2. A non-linear increasing relationship between ϕ on σs/c′ is discovered, in other words as the soil frictional angle increases, the strength of soil around the tunnel also increases. The influences of the overburden factor γD/c′ on the stability number σs/c′ with the selected cases of C/D = 0 and ϕ = 0° and 5 are shown in Figure 4a,b, respectively. A decreasing linear relationship is found, with an increase in γD/c′ leading to a decrease in σs/c′. Figure 5a,b demonstrates the trend of the cover-depth ratio C/D on the stability factor σs/c′ for ϕ = 25° and γD/c′ = 0 and 1, respectively. A nonlinear rising relationship is observed, with an increase in C/D resulting in an increase in σs/c′. Moreover, the influence of the width-depth ratio B/D on the stability factors σs/c′ of horseshoe tunnels with ϕ = 25° and γD/c′ = 0 and 1 is investigated and displayed in Figure 6a,b. The charts include four distinct values of C/D = 1, 2, 3, and 4. It is discovered that a nonlinear decreasing relationship occurs, implying that higher B/D values result in a lower stability factor σs/c′.



The adaptive meshes concept is finally utilized to monitor the failure mechanisms of unlined horseshoe tunnels in cohesive-frictional soil. Figure 7a–c illustrates samples of final adaptive meshes for the selected values C/D = 5, γD/c′ = 0, and ϕ = 25° with varying values of B/D = 0.5, 1, and 2. More details are described earlier. In addition, the influence of analyzed parameters such as γD/c′, C/D, B/D, and ϕ on the horseshoe tunnel failure mechanisms are explored and demonstrated in Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12. The illustrated failure mechanisms are related to the shear dissipations of unlined horseshoe tunnels in cohesive-frictional soil. Figure 8a–c, for varied values of B/D = 0.5, 1, and 2, clearly indicates that the failure zone extent gets larger and higher off the ground surface as the tunnel gets wider (higher B/D). In Figure 9a–d and Figure 10a–d, it seems like the soil frictional angle of the overburden factor does not have much influence on the failure mechanisms for the case of the narrow tunnel as well as the overburden factor. Figure 11a–d illustrates the influence of the cover-depth ratio on the failure mechanisms. The failure zone appears to extend in both vertical and horizontal planes as the tunnel is placed deeper (higher C/D). Thus, the deeper the tunnel, the greater the failure zone. In all figures, the type of failure mechanism of the horseshoe tunnel is mostly unchanged, resembling a half-spiral opening failure.



The current average FELA solutions of an unlined horseshoe tunnel are compared to prior investigation to validate the stability factor obtained from this solution. The comparison was made up in terms of stability numbers from the present solution to those reported by Yamamoto et al. [19,20], as shown in Figure 12. It should be noted that the solutions given by Yamamoto et al. [19,20] are restricted to circular and square tunnels with B/D = 1. The soil unit weight is set to zero in comparison to eliminate the overburden factor. Therefore, the current results are equivalent to those in Yamamoto et al. [19,20], demonstrating that the developed FELA solution is exceptionally exact and trustworthy in practice.




5. Proposed Predictive Models


5.1. Multiple Linear Regression


Linear regression is the simplest method to construct a linear relationship between scalar responses (output known as dependent variables) and explanatory variables (input known as independent variables). In this study, four independent variables are considered; therefore, the process is called “multiple linear regression”.



As indicated in Equation (2), the output is a dependent variable that may be determined from the combination of the input or independent variables.


   y i  =  β 0  +  β 1   x  i 1   +  β 2   x  i 2   + ⋯ +  β p   x  i p   + ϵ    



(2)




where



   y i    = dependent variable (output);



   x  i 1   ,    x  i 2   ,   …    x  i p     = independent variables (input);



   β 0    = y-intercept (constant term);



   β 1  ,    β 1  , … ,    β p    = slope coefficients for each explanatory variable;



 ϵ  = the model’s error term (also known as the residuals).




5.2. Artificial Neural Network (ANN)


An Artificial Neural Network (ANN) is a data prediction framework based on existing features created from the human mind structure. In order to handle complicated information, it mimics the neural system’s processing method in the human brain. With many nodes (or neurons) wired together, a neural network is a computer model that may be used for many different purposes.



ANN comprises three layers: an input layer, a hidden layer, and an output layer, as shown in Figure 13. In this study, the input layer consists of four nodes representing C/D, B/D, γD/c′, and ϕ. The second layer is the hidden layer, consisting of one or more threshold logic unit layers. Generally, the number of hidden layers and hidden neurons is chosen via the trial-and-error method. It is generally recommended to start from one hidden layer. The number of hidden neurons is varied from one to the number that can create the proper model with high accuracy. This layer aims to convert the information into content that the output layer can use to predict the data. It is within this layer that the weighted sums of the inputs are calculated and a step function is applied to them before they are sent off as an output through the use of the rectified linear unit (ReLU) activation function, which provides nonlinearity in the network. The final layer is the output layer presenting the dependent variables. In this paper, the output layer consists of one node, which is a predicted stability factor of shallow elliptical tunnels in cohesive-frictional soils.




5.3. Cross-Validation and Performance Measures


In this study, the stratified tenfold cross-validation is used due to the limited number of datasets. This method can replicate the drawback of the splitting method into training and testing datasets when the datasets are limited.



The proposed cross-validation method randomly divides the datasets into ten sections, with the classes represented in about the same proportions as in the entire dataset. Before assessing the error rate on the holdout set, each section is performed in turn, and the remaining nine-tenths are later tested. As a result, the learning operation is repeated ten times on different training sets. After that, these errors are averages to employ the representative of the error estimation. However, it is highly recommended to repeat the cross-validation process 10 times, since a single tenfold cross-validation is not reliable. This leads to the learning algorithm being repeated 100 times on datasets that are all nine-tenths the size of the original.



In this paper, three well-known statistical performance measures of the obtained models are the coefficient of determination (R-squared, R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). It should be noted that the high accuracy prediction model leads to a high value of the coefficient of determination, whereas RMSE and MAE calculate errors instead of accuracy, so the good performance of the prediction model is indicated by lower values. These statistical performance measures are used to compare the performance of the models.




5.4. Predictive Equations


5.4.1. Multiple Linear Regression


A multiple linear regression model is first obtained consisting of the weight of each parameter. The coefficients are evaluated in WEKA software. The multiple linear regression equation is shown in Equation (3).


  y = − 11.1882  x 1  + 1.3637  x 2  − 5.4693  x 3  + 6.2233  x 4  − 5.7233  



(3)




where y represents the stability factor σs/c′ whereas    x 1  ,  x 2  ,  x 3    and    x 4    are the dimensionless input parameters namely, B/D, ϕ, γD/c′, and C/D respectively. The statistical values: R2, MAE and RMSE are 0.6616, 11.8803, and 19.0166, respectively (see Table 3).




5.4.2. Artificial Neural Network


In this study, the number of ANN modes is developed considering different numbers of neurons in the hidden layer. The performance of the models against the number of hidden neurons is plotted in Figure 14. It can be seen that after reaching a certain number of neurons, the performance of ANN models is likely to stabilize. In this study, ANN with the architecture of 4-7-1 is selected to be the best ANN model, as it shows the highest accuracy and the lowest errors compared to other models. Figure 15 compares the results obtained by the FELA solution and the ANN model. It is found that the predicted values from ANN are in agreement with those from the FELA solution. Table 3 also compares the performances of the MLR and ANN models. It is clear that the ANN model performs much better than the MLR model.



Figure 16 presents the multilayer network with the dimensions of input, weight, bias, and the output matrices of the proposed ANN model for stability evaluation of shallow horseshoe tunnels. From Figure 16, IW1 and IW2 represent the hidden weight matrix and output weight matrix, respectively, and b1 and b2 represent the bias matrices in the hidden and output layers.



Predictive Equation (4) can be developed based on tansig function, weight and bias from ANN model.


  P r e d i c t e d   v a l u e =  [   ∑  i = 1  N  I W  2 i  t a n s i g (  ∑  j = 1  J  I W  1  i j    x j  +  b  1 i   ) +  b 2   ]   



(4)




where N is the number of hidden neurons; X is the independent parameters (input); J is the number of independent parameters. (b1i). Table 4 presents the neural network constants of the optimal ANN model, including weight matrix and bias for the stability factor calculation of shallow elliptical tunnels in cohesive-frictional soils. The values obtained from the optimal ANN networks can be used to develop predictive equation functions and test new datasets with different variations of parameters within the required ranges.






6. Conclusions


The study aims to establish a machine learning-aided prediction of the stability of shallow elliptical tunnels in cohesive-frictional soils. The four input dimensionless parameters include the dimensionless overburden factor γD/c′, the cover-depth ratio C/D, the width-depth ratio B/D, and the soil friction angle ϕ. The influences of all input dimensionless parameters on the solutions of the stability factor σs/c′ are investigated. The solutions are computed using the finite element limit analysis (FELA). An Artificial Neural Network (ANN) model is then developed based on the training data of FELA solutions. Since it is time-consuming to develop the algorithm of the FELA and use the FELA software to obtain the stability solutions of elliptical tunnels in sands on a case-by-case basis, a proposed scheme of the ANN model is developed in this study. In addition, proper software is not usually user-friendly, and additional resources capable of providing information that is useful for decision-making are required. The combination of FELA solutions and the ANN is then presented as a guide for geotechnical engineers. Note that the optimal machine learning models for predicting the stability factor of this problem can be evaluated based on some matrices. It is notable that only one hidden layer is sufficient to create a high-performance neural network model, as R2 is already high and MSE is extremely low, showing that the optimal model is reliable and can be used to accurately predict the stability factor. Finally, the obtained trained networks can be further used to test new data for predicting the stability factor of shallow elliptical tunnels in cohesive-frictional soils using the weight matrix and bias derived in this study.
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Figure 1. Problem definition of an unsupported infinitely long horseshoe tunnel in a Cohesive-frictional soil under plane strain condition. 
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Figure 2. Numerical model used for FELA analysis of unlined horseshoe tunnel in Cohesive-frictional soil: (a) B/D = 0.5, (b) B/D = 1 and (c) B/D = 2. 
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Figure 3. Influence of ϕ on the stability factors σs/c′ of horseshoe tunnels with γD/c′ = 0: (a) C/D = 1 and (b) C/D = 4. 






Figure 3. Influence of ϕ on the stability factors σs/c′ of horseshoe tunnels with γD/c′ = 0: (a) C/D = 1 and (b) C/D = 4.



[image: Computation 10 00081 g003a][image: Computation 10 00081 g003b]







[image: Computation 10 00081 g004a 550][image: Computation 10 00081 g004b 550] 





Figure 4. Influence of γD/c′ on the stability factors σs/c′ of horseshoe tunnels with C/D = 4: (a) ϕ = 0° and (b) ϕ = 5°. 
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Figure 5. Influence of C/D on the stability factors σs/c′ of horseshoe tunnels with ϕ = 25°: (a) γD/c′ = 0 and (b) γD/c′ = 1. 
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Figure 6. Influence of B/D on the stability factors σs/c′ of horseshoe tunnels with ϕ = 25°: (a) γD/c′ = 0 and (b) γD/c′ = 1. 
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Figure 7. Final adaptive meshes for various B/D (C/D = 5, γD/c′= 0 and ϕ = 25°). 
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Figure 8. Shear dissipations for various B/D (C/D = 5, γD/c′= 0 and ϕ = 25°). 
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Figure 9. Shear dissipations for various ϕ (C/D = 5, B/D = 0.5 and γD/c′= 0). 
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Figure 10. Shear dissipations for various γD/c′(C/D = 5, B/D = 0.5 and ϕ = 20°). 
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Figure 11. Shear dissipations for various C/D (B/D = 0.5, γD/c′ = 0 and ϕ = 20°). 
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Figure 12. Comparison of the stability factors σs/c′ for different shapes of tunnels (ϕ = 0°). * Yamamoto et al. [19], ** Yamamoto et al. [20]. 
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Figure 13. ANN architecture. 
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Figure 14. Performance evaluation of horseshoe tunnel models against the number of hidden neurons with two layers. 
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Figure 15. Comparison between FELA solution and predicted value from ANN model. 
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Figure 16. Multilayer networks (4-7-1). 
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Table 1. Input parameters.
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	Input Parameters
	Values
	Average





	C/D
	1, 2, 3, 4
	2.5



	B/D
	0.5, 0.75, 1, 1.33, 2
	1.116



	γD/c′
	0, 1, 2
	1



	ϕ
	0°, 5°, 10°, 15°, 20°, 25°, 30°
	15°
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Table 2. Stability factor σs/c′ for horseshoe tunnels.






Table 2. Stability factor σs/c′ for horseshoe tunnels.














	γD/c′
	B/D
	ϕ
	C/D = 1
	C/D = 2
	C/D = 3
	C/D = 4





	0
	0.5
	0
	3.04
	3.821
	4.425
	4.912



	
	
	5
	3.7005
	4.92
	5.934
	6.797



	
	
	10
	4.6385
	6.6645
	8.4965
	10.08



	
	
	15
	6.07
	9.689
	13.2485
	16.448



	
	
	20
	8.4375
	15.551
	23.156
	30.5665



	
	
	25
	12.818
	28.57
	47.2085
	68.587



	
	
	30
	22.1785
	62.7385
	121.257
	200.599



	
	0.75
	0
	2.714
	3.533
	4.1405
	4.635



	
	
	5
	3.277
	4.4865
	5.4775
	6.3235



	
	
	10
	4.061
	5.9455
	7.6755
	9.2275



	
	
	15
	5.1965
	8.4315
	11.664
	14.677



	
	
	20
	6.9845
	13.068
	19.8125
	26.3335



	
	
	25
	10.156
	22.9915
	38.7855
	55.9345



	
	
	30
	16.391
	47.763
	92.0795
	151.6985



	
	1
	0
	2.3925
	3.2595
	3.8705
	4.3655



	
	
	5
	2.8495
	4.0845
	5.0485
	5.8775



	
	
	10
	3.4925
	5.3325
	6.9585
	8.4395



	
	
	15
	4.4195
	7.3585
	10.3445
	13.159



	
	
	20
	5.828
	10.9975
	17.052
	22.913



	
	
	25
	8.136
	18.521
	31.9775
	46.489



	
	
	30
	12.5025
	36.556
	72.2805
	117.8115



	
	1.33
	0
	1.982
	2.915
	3.5345
	4.0335



	
	
	5
	2.3405
	3.606
	4.5365
	5.3415



	
	
	10
	2.815
	4.6055
	6.1085
	7.4955



	
	
	15
	3.482
	6.184
	8.802
	11.4065



	
	
	20
	4.4695
	8.8815
	13.938
	19.237



	
	
	25
	6.0595
	14.107
	25.141
	37.231



	
	
	30
	8.9065
	25.7225
	53.0995
	87.328



	
	2
	0
	1.369
	2.2835
	2.9445
	3.449



	
	
	5
	1.5525
	2.7525
	3.683
	4.4385



	
	
	10
	1.7905
	3.431
	4.7755
	5.9915



	
	
	15
	2.1115
	4.4345
	6.5385
	8.6405



	
	
	20
	2.582
	6.0205
	9.6315
	13.69



	
	
	25
	3.2825
	8.746
	15.778
	24.7005



	
	
	30
	4.4815
	14.1115
	30.125
	52.294



	1
	0.5
	0
	1.6035
	1.3725
	0.9705
	0.4465



	
	
	5
	2.1705
	2.2555
	2.1225
	1.835



	
	
	10
	2.9795
	3.674
	4.1425
	4.369



	
	
	15
	4.214
	6.2065
	8.074
	9.568



	
	
	20
	6.2895
	11.287
	16.6635
	21.7955



	
	
	25
	10.181
	22.8725
	38.4145
	56.004



	
	
	30
	18.692
	54.527
	106.835
	178.696



	
	0.75
	0
	1.3515
	1.1175
	0.7105
	0.212



	
	
	5
	1.82
	1.867
	1.7055
	1.3975



	
	
	10
	2.464
	3.0375
	3.385
	3.537



	
	
	15
	3.441
	5.051
	6.5905
	7.864



	
	
	20
	4.9785
	8.9385
	13.39
	17.761



	
	
	25
	7.7505
	17.4825
	30.127
	43.9715



	
	
	30
	13.338
	39.78
	79.378
	131.659



	
	1
	0
	1.097
	0.8765
	0.4795
	−0.0275



	
	
	5
	1.4865
	1.508
	1.32
	0.9905



	
	
	10
	2.0195
	2.47
	2.7155
	2.7855



	
	
	15
	2.7885
	4.072
	5.293
	6.33



	
	
	20
	3.9495
	7.0305
	10.638
	14.327



	
	
	25
	5.918
	13.3085
	23.4265
	34.809



	
	
	30
	9.6975
	28.8355
	59.689
	99.0255



	
	1.33
	0
	0.778
	0.5785
	0.177
	−0.3265



	
	
	5
	1.062
	1.083
	0.8585
	0.4975



	
	
	10
	1.442
	1.824
	1.9455
	1.899



	
	
	15
	1.98
	3.01
	3.8705
	4.602



	
	
	20
	2.7975
	5.096
	7.6895
	10.503



	
	
	25
	4.123
	9.2305
	16.528
	25.319



	
	
	30
	6.469
	18.8115
	40.5245
	69.0425



	
	2
	0
	0.2685
	0.0575
	−0.3515
	−0.8585



	
	
	5
	0.398
	0.3715
	0.089
	−0.321



	
	
	10
	0.563
	0.8185
	0.757
	0.5335



	
	
	15
	0.791
	1.491
	1.8475
	2.077



	
	
	20
	1.126
	2.5825
	3.833
	5.2025



	
	
	25
	1.646
	4.4895
	8.004
	12.5485



	
	
	30
	2.529
	8.361
	18.2025
	32.8185



	2
	0.5
	0
	0.1295
	−1.1115
	−2.534
	−4.1



	
	
	5
	0.611
	−0.449
	−1.7415
	−3.213



	
	
	10
	1.2895
	0.623
	−0.352
	−1.642



	
	
	15
	2.329
	2.612
	2.5495
	2.0485



	
	
	20
	4.0955
	6.7755
	9.487
	11.888



	
	
	25
	7.4755
	16.735
	28.35
	41.356



	
	
	30
	15.0435
	45.0135
	90.282
	152.242



	
	0.75
	0
	−0.082
	−1.331
	−2.742
	−4.3085



	
	
	5
	0.314
	−0.7865
	−2.1095
	−3.6025



	
	
	10
	0.8565
	0.059
	−1.0265
	−2.401



	
	
	15
	1.657
	1.575
	1.189
	0.3865



	
	
	20
	2.9525
	4.6405
	6.3395
	7.8025



	
	
	25
	5.2945
	11.7125
	20.225
	29.791



	
	
	30
	10.152
	30.906
	63.938
	107.4515



	
	1
	0
	−0.284
	−1.542
	−2.949
	−4.4905



	
	
	5
	0.0455
	−1.1025
	−2.4485
	−3.962



	
	
	10
	0.48
	−0.4305
	−1.623
	−3.086



	
	
	15
	1.0965
	0.7045
	0.0185
	−1.068



	
	
	20
	2.05
	2.9205
	3.7815
	4.333



	
	
	25
	3.663
	7.844
	13.6145
	20.4685



	
	
	30
	6.8415
	20.625
	44.0205
	75.6995



	
	1.33
	0
	−0.515
	−1.8005
	−3.215
	−4.731



	
	
	5
	−0.273
	−1.469
	−2.8585
	−4.3985



	
	
	10
	0.0325
	−0.9895
	−2.304
	−3.875



	
	
	15
	0.4605
	−0.2175
	−1.257
	−2.684



	
	
	20
	1.0885
	1.189
	1.099
	0.6395



	
	
	25
	2.1385
	4.16
	7.137
	10.6765



	
	
	30
	3.9975
	11.468
	25.024
	45.0415



	
	2
	0
	−0.9135
	−2.2385
	−3.6855
	−5.2045



	
	
	5
	−0.798
	−2.0605
	−3.528
	−5.122



	
	
	10
	−0.671
	−1.8255
	−3.326
	−5.0805



	
	
	15
	−0.534
	−1.489
	−3.0155
	−3.6745



	
	
	20
	−0.3395
	−0.953
	−2.371
	−2.5215



	
	
	25
	−0.0315
	0.039
	−0.6185
	−1.811



	
	
	30
	0.5055
	2.216
	4.7235
	8.757
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Table 3. Performance measures of each methodology.
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	Methodology
	R2
	Mean Absolute

Error (MAE)
	Root Mean Squared

Error (RMSE)





	Multi Linear Regression
	0.6616
	11.8803
	19.0166



	Artificial Neural Network (ANN)
	0.9963
	1.4897
	2.1889
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Table 4. Neural network constants of the optimal model for stability prediction of shallow elliptical tunnels in cohesive-frictional soils.
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Hidden Layer Neurons (i)

	
Hidden Layer Bias (b1)

	
Hidden Weight IW1




	
C/D (j = 1)

	
B/D (j = 2)

	
γD/c′ (j = 3)

	
ϕ (j = 4)






	
1

	
−0.6618

	
−0.20694

	
−0.02904

	
−0.07786

	
0.152957




	
2

	
−1.35951

	
1.084979

	
−0.31878

	
−0.31652

	
1.316469




	
3

	
−0.63364

	
−0.76094

	
0.280919

	
−0.00101

	
0.12054




	
4

	
−5.65279

	
0.979189

	
−1.15515

	
0.439291

	
3.511314




	
5

	
−1.57382

	
1.605169

	
0.001409

	
0.82818

	
−0.74447




	
6

	
−4.5357

	
0.616293

	
−0.29021

	
−0.42419

	
2.613965




	
7

	
−0.75008

	
−1.03205

	
0.711475

	
0.377549

	
0.08785




	
Output layer node (k)

	
Output layer bias (b2)

	
Output weight IW2




	
i = 1

	
i = 2

	
i = 3

	
i = 4

	
i = 5

	
i = 6

	
i = 7




	
1

	
2.844085

	
0.207948

	
−1.28044

	
0.623847

	
−3.51562

	
−1.838293

	
−2.60675

	
0.89989

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
— BD=05






media/file4.png
(c)

(b)





media/file30.png
ﬁ¢¢¢¢¢¢¢¢¢¢¢
| 1
5

1

- - ” ” = =
() C/D =1

R R

(c) C/D =4

RARREIERRER

| |

‘

| |

| |
i

TR
| |
| |
| A
y) |
| - - =:|:|: - ”





media/file39.jpg
Input Hidden Layer Output Layer

o a7 3=y
A 1 5=
axT W Tx W 21 1x1
7x4 1x7
1= e
- x1]
1— b, b,
4 7x1 7 1x1 1

a, = tansig(IWypy +by) @y = purelin(IWya, + b,)





media/file35.jpg
099

098

% 097

096

095

094

Number of hidden neurons

MAE,RMSE





media/file21.jpg
AR,
LR

T

%
Ao 2
ey

VNININANININININAINN]
RS

RIS,
RRROPOOCRRRRN XX

-1

B

VaVAVAVaVAVAVAVAVAVAVAVAVAVATAY

P74 VAVAVAVAVAVAVAVAVAVAVAVAVAVAY.
SR
S RIHKRRREILHRK

VAVASZAVAVAVAVA

TR

REKKT

05

@8D






media/file26.png
IR,

(a) p=0°
RREENERE
| 1
| 1
| 1
, 1
-

1 1
- e

(c) =10°

REREAARR

)

|-
| 1
= .
(b) ¢ =5°
AR IR VR
| 1
| 1
Il 1
, |
| -
| o o . ”
(d) ¢ =20°





media/file27.jpg
(©yDic=2





media/file3.jpg
®






media/file18.jpg
0.5 1.0 15 2.0

B/D
(b)





media/file22.png
I NONONININININININININTN/N
/NONINININININONININININ/
SDROCKRORRO

ST

S
\/
A%A%!%A

N>
JAVAN

AN
/N/

VAV,

TAVA

/N\/
\VAVAVAVAVAVAVA

/\

\\/

ININININ/
JAVAY

A
YavaY,

v,
Ava)

7\

TAY,

PAY
WAV, v,
"'u‘ﬂ‘.‘

v,
.

\/\

A
)/

/\/

aVl

uﬂiﬂﬂﬂﬁ@ﬁ&ﬁﬁﬁﬁﬁsﬂ$

<IN

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

AT
eV VAN PZ VAVAVAVAN g
KA

DavAVLYAV \WAN)YAVAVAV;

\/
\/

/\
NN/

/N

A\
/\/

AVAVA

4
N

IS
/N

by
WAV
nAVA\VAV
\WAVAV

\WVAYAVAV/

PRy
Aviar gy

i
L

N/

v

:

g

(b) B/D =1

=0.5

(a) B/D

NANNSANN NN\
ININNINNINNINNINAS
VAVAVAVAVAVAVAVAVAVAVAVAVAV,
)VAVAVAVAVAVAVAVAVAVAVAV/
s VAVAVAVAVAVAVAVAVAVAVY
AVAVAVANNZAVAVAVAVAVS.
NNVAVAVATAVEOVOVAVA%S

AT
TS R A

o
)

>
v .

>
K
WVAVAVAVAYA

NININN
AVAVAVAVAV,

[\

AVA

'
g&%

=2

(c) B/D





media/file14.jpg
— BD =05
— BD=075
— BD=1

— B/D=1333
— BD=2

yD/c'=1






media/file28.png
|
|! ,
3

O

D/c'=2
()!/ /c
C





media/file40.png
Output Layer

az =y

7x1
N\ VAN /AN

1x1

J

a, = tansig(IW; 1p1 + by) a, = purelin(IW, a, + by)





media/file15.png
— B/D =105
— B/D=10.75
— B/D =1

— B/D = 1.333

____________________________________________________

yD/C O






media/file33.jpg





media/file32.png
o./c'

- Horseshoe (B/D = 0.5), Present study
-0~ Horseshoe (B/D = 0.75), Present study
-& Horseshoe (B/D = 1), Present study

-0~ Horseshoe (B/D = 1.33), Present study -
O- Horseshoe (B/D = 2), Present study

-s- Circular, *

% Square, **

17 ] ' A | = ] 1 1 ' L s

1 ]

2 3 4
C/D





media/file19.png
B/D

2.0





media/file36.png
ASINIAVIN

e~ \O o =T cn o — o
1
1 ] 1 1 ]
| 1 | |
| 1 | |
| 1 |
1 L 1 |
1 w wn | |
1 o <C MM 1 |
1 1 1 1
! &S E| ! !
1 1 1 I
| 1 | |
| 1 | |
| 1 | |
1 1 1 |
1 1 I |
1 ] 1 1 I
||||||| L T T ey
1 | 1 1 I
| | 1 | |
| | 1 | |
| | 1 | |
| | 1 | |
I | 1 I |
1 | 1 1 |
1 | 1 1 1
1 | 1 1 I
1 | 1 1 1
| | 1 | |
| | 1 I |
| | 1 I |
| | 1 1 |
1 | 1 1 |
1 | 1 1 |
IIIIIII | i e e . D T e o
1 | 1 1 I
1 | 1 1 I
| | 1 | |
| | 1 | |
| | 1 I |
| | 1 |
| | 1 1 |
| 1 1 1
1 | 1 1 1
1 | 1 I 1
1 | 1 1 I
| | 1 | |
| | 1 | |
| | 1 | |
| | 1 | |
|||||||| [ A I [N W I SN D
i ] 1 1 i T
1 | 1 1 I
1 | 1 I I
1 | 1 1 I
| | 1 | |
| | 1 | |
| |
| | 1 I |
1 | 1 |
1 1 [ 1
1 | I
1 | 1 1 I
| 1 |
I | 1 | |
| | 1 | |
| | 1 | |
) ] ) I ]

— (@) 0 ~ O Yy =t
S 3 o R o S\
<o <o o < < o

zd

16

12

Number of hidden neurons





media/file37.jpg
P S
=3 =3 = =3 =3
o e} <+ [ Q

suonnjos aAy ‘Yo /0

50 60

40

30

20

o,/0,;, ANN model

10





nav.xhtml


  computation-10-00081


  
    		
      computation-10-00081
    


  




  





media/file11.png
o,/c'

..... — BD=05 —BD=075
— B/D = — B/D=1333

----------------------------------------------------------------------------------------

0I5 i ll5 2
vD/c’





media/file6.jpg
— BD=05
200 — B/D=075

— BD=1
ié —sp=-1333 C/D=4

~ — B/D=2






media/file16.png
— B/D =105
— B/D =10.75

— B/D =1
— B/D =1.333
— B/D =2






media/file2.png
SETRNEREN RNy

Cohesive-trictional soil

c\gy






media/file20.png
60 T
50 4

40 4

/¢’

= 30 4

O,

20

10 §

0.5 1.0

B/D
(b)

2.0





media/file23.jpg
L bbbyl RN

[ 1
[ 1
| 1 '

\, | \, |
if | il 1
T ——_—— e .
Ll
il 1





media/file10.jpg
o,/c’'
e

12
10

— BD=05 — B/D=0.75
. B/D=1 — B/D=1333
— BD=2
0.5 1 L5

wD/c

(b)






media/file5.jpg
o/eh

25

15

10

— B/D=05
— B/D=075
— B/D=1

— B/D=1333

— B/D=2

C/D=1

15 20 25

30





media/file7.png
25 - -
— B/D =05

— B/D =075
201 — BD=1
— B/D = 1.333

———————————————————————————————————————————————————

<« 154 —BD=2 SR ___________
X [ ’ | ?
o}
0 . | é
0 5 10 15 20 25





media/file24.png
RN

(a) B/D = 0.5

AR AR AR A A AR AL AR

-

RENEERIEER

(c) BID=2

-
(b) B/D =1





media/file29.jpg
ﬁ$¢¢$l$$®¢¢$
| )
h )

)

T ——

@on=1

IR EE AR

| )

(©CD=4

IREREEERER

i |

’

i |
T

Ly Lit ey
| )
| )
I |
‘? )
il )
{i -





media/file1.jpg
LI ll L]

Cohesive-frictional soil

gy






media/file31.jpg
a,/c'

- Horseshoe (B/D = 0.5), Present study

- Horseshoe (B/D = 0.75), Present study
-4 Horseshoe (B/] ), Present study
-0~ Horseshoe (B/] .33), Present study
“0- Horseshoe (B/D = 2), Present study
=~ Circular,*
- Square, **

2 3

C/D






media/file25.jpg





media/file12.png
o,/c'

12
10

o o]

— B/D=

— B/D=0.75

_____ 0.5
— B/D=1 — B/D = 1.333
""" — B/D=2
0.5 1 1.5 2
!
vD/C





media/file9.jpg
’
o,/c

10 — BD=05 — BD=075

3 — BD=1 — B/D=1333
— BD=2

6

4

2

0

0 0.5 1 Ls 2

/e’
(a)





media/file0.png





media/file38.png
- N o)
- - -

o.,/o,; , Ave solutions
(S
S

R’ =99.63%

A

20 30 40
o/o,.;, ANN model

50

60





media/file8.png
C

~

o

“

240

200

160

120

80

40

' —Bp=1333 C/D=4

— B/D=05
— B/D=0.75
— B/D =1

____________________________________________________

— B/D=2






media/file34.png





media/file17.jpg
/c'

v

O,

B/D
(a)





