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Abstract: This paper presents an experimental study that analyzes learners’ visual behaviour and
brain activity in clinical reasoning. An acquisition protocol was defined to record eye tracking and
EEG data from 15 participants as they interact with a computer-based learning environment called
Amnesia, a medical simulation system that assesses the analytical skills of novice medicine students
while they solve patient cases. We use gaze data to assess learners’ visual focus and present our
methodology to track learners’ reasoning process through scanpath pattern analysis. We also describe
our methodology for examining learners’ cognitive states using mental engagement and workload
neural indexes. Finally, we discuss the relationship between gaze path information and EEG and how
our analyses can lead to new forms of clinical diagnostic reasoning assessment.
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1. Introduction

Shedding light on how expert physicians apply clinical reasoning has always been a
difficult challenge. Part of the difficulty in identifying these skills is that clinical reasoning
is often described as a rapid tacit cognitive and metacognitive process that uses formal
and informal strategic thinking to gather, analyze and transform the features of a clinical
problem into actions and decisions [1–4]. Medical experts often have difficulty articulating
these rapid decisions to medical trainees and may not have the ability to explicitly retrace
all of their reasoning steps [4]. Consequently, human tutoring of novice trainees may be
inefficient. Therefore, new methods have been created to supplement classical medical
training activities, which include the use of serious games and immersive simulation
environments, that can offer significant support for learners to further develop this core
competency [5–7].

Serious games are interactive learning systems where learners are assigned roles
within a simulation game, and in this paper, the game allows learners to practise medical
reasoning [8,9]. The main objective of the game is to involve a learner in an immersive
scenario that will explicitly target his ability to recognize, infer and interpret the different
information and cues embedded in the scenario that will lead to an appropriate resolution
of the problem.

Despite inherent strengths in using a serious game to promote clinical reasoning,
there are some challenges that need to be considered. First, most serious games rely on
script-driven scenarios that focus on delivering the educational content without having
the necessary mechanisms that assess and support this knowledge transfer [10]. Second,
previous game experiences may influence perceptions of serious games. We see in studies
of games that some learners have negative learning experiences in unstructured, open-
ended game environments [11]. Furthermore, learners can become disengaged if the
difficulty level of the scenario is not optimally suited to their skill level [12]. Learners
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may also become overloaded in the game when they need to learn to control the game
and understand the instructions. Many serious games lack the ability to assess learners’
reasoning skills and adapt to individual differences and are unable to identify, trace and
map the process that led the learners to take these actions [13]. All these drawbacks limit
the ability of serious games to compete with traditional medical training and to provide an
optimal learning experience. Furthermore, most of these drawbacks require augmenting
serious games with additional computational techniques that could provide these systems
with continuous information about learners’ cognitive and behavioural states.

With the advent of affective computing, and more particularly physiological comput-
ing [14], learning systems are increasingly integrating sensors and features that enable
collecting, processing and analyzing data about learners’ cognitive-affective states. This
new paradigm, intrinsically centred on learners’ behaviour, presents new ways to under-
stand and explain learners’ interaction experience and can serve as a promising solution
for studying medical student learning in the context of medical training serious games [15].

In this paper, we propose to use sensing technology, namely, electroencephalogra-
phy (EEG) and eye tracking, in a serious game to analyze medical student reasoning.
These two techniques extensively used in other affective computing applications [16] have
demonstrated remarkable results in assessing and understanding human behaviour. More
specifically, we hypothesize that the integration of these sensors could unveil critical in-
formation needed to understand clinical reasoning. Our objective is to explore how these
techniques could benefit clinical reasoning assessment. More precisely, we present a novel
approach to analyzing medical students’ behaviour within a serious game’s context through
recording learners’ cognitive states using mental engagement and workload neural indexes,
together with visual focus and scanpath patterns using an eye tracker. We demonstrate
how these features are related to clinical diagnosis and performance; then, we discuss the
relationship between students’ gaze path information and EEG while solving medical cases.

The remainder of the paper is structured as follows: In Section 2, we provide a
literature review of the different studies that used EEG and eye tracking to analyze learners’
behaviour. In Section 3, we describe our methodology and experimental design. In Section 4,
we detail our results, and in Section 5, we provide our conclusions and outline possibilities
for future work in this area.

2. Previous Work

A growing body of research in human–computer interactions, particularly within
computerized learning environments, has identified and reproduced users’ behavioural
and affective states through sensing technology [17,18]. Various physical and physiological
sensors, including heart rate variability, galvanic skin response, facial expression, respira-
tion, body posture and temperature, respiration, oculometry and brain activity, are being
used (e.g., [19–23]). In this section, we describe studies with eye tracking and EEG.

Eye tracking is one of the most popular techniques to assess and analyze learners’ gaze
behaviour during cognitive task resolution as it provides valuable information about the
users’ visual focus and attention and how eye movements are related to the learning pro-
cess [24–26]. Eye tracking devices are increasingly found within realistic learning settings,
especially due to their non-intrusiveness and ease of use as compared to other devices, and
also their high sensitivity and performance [27,28]. Various gaze properties and metrics,
including gaze position, fixation, pupillometry and saccades, can be found in the literature.
For instance, D’Mello et al. [29] developed a gaze-reactive tutoring system based on gaze
position and probability distributions of gaze events to detect learners’ zoning-out. The
system uses attention reorientation strategies to re-engage the learners in the activity by
directing them towards specific relevant areas of the screen. Lallé and colleagues [30] used
eye saccades, fixation and pupil dilation, together with task performance, to evaluate learn-
ers’ skill acquisition rates within visualization tasks. A predictive model was developed
to assess students’ learning curves with the aim of providing adaptive support to slow
learners. Lum et al. [31] investigated the relationship between learners’ mental workload
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and the number of fixations while completing a computer-based training program. They
found statistically significant correlations implying that when the task was not challenging
enough, learners’ visual attention tended to decrease over the tasks. Ben Khedher and Fras-
son [32] used fixation duration, the number of fixations, time to the first fixation, and gaze
revisits to predict learners’ performance while interacting with a narrative-centred learning
game. They were able to discriminate between two groups of learners in terms of outcomes
(high and low) in different multiple-choice quizzes. Pachman and colleagues [33] also used
fixation-based metrics to detect learners’ confusion within a digital learning environment.
They found that confusion ratings were positively correlated with fixation duration on
non-relevant areas of the screen, which helped them identify potential confusing areas with
the purpose of setting self-regulatory strategies to manage confusion.

Still, the aforementioned studies rely mostly on static metrics measured locally from
the observed data neglecting to some extent the sequential properties and the dynamics
of the gaze behaviour underlying any cognitive process [34–36]. Indeed, gaze ad hoc
properties such as fixation duration, pupil size or saccade length could not glean enough
information to show, for instance, that focusing on a particular area for a certain period
of time is the cause of performance differences [19]. Yet, some researchers are concerned
with the temporal properties of eye movement patterns through the analysis of the visual
scanpath, i.e., the visual trajectory of a user’s eye movement followed through a problem-
solving task. This dynamic measure provides richer information about the users’ moment-
to-moment visual shifts across time and across different areas of interest and hence provides
valuable insights into the order in which visual data are processed in the brain [37–39]. For
instance, in the work of Susac and colleagues [40], learners’ scanpath was recoded during
mathematical solving. The goal was to analyze how students visually rearrange algebraic
equations in a way that discriminates between expert and non-expert learners. Results
showed that expert students followed a well-defined and organized visual trajectory as
compared to non-experts who focused more on the solutions presented rather than on the
mathematical statements themselves. In the same context, Byun et al. [41] used scanpath
metrics to differentiate between novice and expert players of a serious game. Results
showed that experts had a more organized visual path than novice players and tended to
focus more on the relevant areas of the game interface as compared to the novices who had
a rather random-like visual trajectory. Ho et al. [42] used learners’ scanpath to study their
visual behaviour when reading web-based scientific reports. They found that students’
level of prior knowledge had an impact on their eye gaze transitions between textual and
graphical content. Similarly, Lee and Wu [43] used scanpath metrics to analyze students’
eye movements when shifting between geometric text and figure descriptions. They found
that although fixation duration on figures was high, students’ reading pattern was rather
text-directed and that the word ordering in the geometric description had an impact on the
integration of text and figures. Visual scanpath was also extensively used in the literature to
assess cognitive disorders. For instance, Elbattah et al. [22] applied unsupervised machine
learning to identify clusters in autism spectrum disorder using visual representations of eye
tracking scanpaths with the goal of characterizing the gaze behaviour involved in autism.
Mohammadhasani et al. [26] analyzed the relationship between attention deficit and eye
movements among children on a visual word task. They found that children with attention
deficit hyperactivity disorder do not follow a standard scanpath showing an uncoordinated
and chaotic visual path as compared to typically developing children.

In this paper, we will be using both local and sequential properties of eye movements
to assess learners’ visual patterns as they solve medical cases within a serious game. We
will also use electroencephalography data to monitor learners’ brain activity.

Electroencephalography (EEG) is considered the only physiological signal that can re-
liably and precisely track restrained changes in mental alertness and effort and that can
be identified and quantified in a high temporal resolution (millisecond time frame) [44].
Several works in the literature, in education notably, have integrated this sensor to monitor
users’ brain activity [45–48]. EEG information and features extracted from power spectral
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distribution bands or event-related potential components have served as input for linear
and nonlinear classification and regression models to identify learners’ mental states. Berka
and colleagues developed an EEG workload index using discriminant function analysis for
monitoring alertness and cognitive load within different learning environments [44,49,50].
Gevins and Smith [20] used EEG spectral features to feed a neural network for classifying
users’ workload while performing memorization tasks. Mills et al. [51] also used EEG
spectral features for workload assessment. Partial least squares regression was applied to
predict learners’ cognitive load during interactions with an intelligent tutoring system. A
mental engagement index was developed by Pope and colleagues at NASA [52] for mea-
suring moment-to-moment changes in users’ attention and alertness. This index, calculated
from EEG brainwave band powers, was used in several studies for monitoring learners’
engagement during problem-solving and listening activities [53–57].

EEG data were also used for performance assessment and learners’ classification [58–60].
For example, Van der Hiele and colleagues [59] analyzed EEG correlates of cognitive
function abilities. They found that EEG power measures were associated with decreased
performance on tests of global cognition, memory, language and executive functioning.
Lujan-Moreno et al. [60] used EEG features extracted from power spectral density analysis
to feed a random forest classifier that predicts when students are going to make mistakes
while interacting with a learning environment. Moreover, EEG recording was used within
computer-based learning environments as a way to both monitor learners’ mental state
and adapt the learning content accordingly. For instance, Szafir and Mutlu [61] used EEG
signals to monitor and recapture learners’ loss of attention while listening to lectures de-
livered by an embodied pedagogical agent. An engagement index was calculated from
EEG brainwave band powers, and verbal and non-verbal cues (such as increasing vocal
volume, gesturing or head nodding) were used to regain learners’ attention if needed. In
their tutoring system, Chaouachi and colleagues [62] automatically adapt the learning
material according to learners’ attention and workload, measured with EEG. A frequency
band power analysis was used to assess mental engagement, and a machine-learned model
to assess workload. For instance, in case of a drop of attention or overload/underload, a
worked example is given as the next activity in order to re-engage students. In another
study [48], EEG technology was used in an e-learning environment to detect learners’
mental efforts while watching online videos. The authors used a mental state classification
system through a supervised learning technique to identify video segments where students
invest high mental effort. Both students and instructors can have access to these segments
in order to improve learning outcomes: students, to self-regulate their mental state and
instructors, to adapt the learning content accordingly.

Although each of these measures is highly effective in unimodally assessing students’
external visual behaviour (i.e., eye tracking) or physiological brain activity (i.e., EEG) within
learning tasks, more and more research in human–computer interaction and notably in
technology-rich tutoring environments, opt for a multimodal approach to benefit from the
advantages of both types of sensors and also overcome the possible limitations of a unique
modality. These measures are found together in several works to analyze the learners’
interaction experience with the tutoring system, their behaviour or learning performance.
For instance, Brouwer and colleagues [63] used fixation duration, pupil size and EEG event-
related potential to assess learners’ attention in a visual search task. Slanzi et al. [64] used
gaze fixation, pupil dilation and EEG responses to predict learners’ click intentions within
a web search task. Alhassan and colleagues [65] applied data mining techniques to classify
students’ learning styles. Data from EEG signals and eye tracking were used as input
features to classify visual and verbal learning modes. In the same context, Muldner and
Burleson [66] used machine learning classifiers to discriminate between high versus low
creativity students using a skin conductance bracelet, an eye tracker and EEG sensors. El-
Abbasy et al. [67] developed an affect-sensitive e-learning system that changes the learning
materials according to the learners’ experienced emotions. Negative emotions such as
sadness and frustration were recognized using eye tracking and EEG. Statistical analyses



Computation 2022, 10, 130 5 of 17

were carried out, showing that this affect-based adaptive strategy has a positive impact on
learning. Makransky et al. [68] analyzed frequency band powers from EEG and fixation
metrics from eye tracking to assess learners’ cognitive load during multimedia learning.
Statistically significant relationships were found, showing that eye tracking measures are
correlated to extraneous cognitive load and that EEG measures are correlated to intrinsic
cognitive load.

In this research, we use both eye tracking and EEG sensors to analyze the analytical
process of novice medicine students within clinical reasoning. Particularly, we use gaze
data to assess both learners’ visual focus and scanpath pattern through patient case solving,
together with neural indexes to analyze learners’ cognitive state. In our previous work [69],
a preliminary study was conducted to analyze the relationship between students’ mental
activity through EEG data and their clinical diagnosis performance, on the one hand, and
the relationship between their gaze duration in the relevant areas of the task through eye
tracking and performance, on the other hand. This analysis showed significant correlations
between students’ diagnosis performance and EEG features but no significant correlation
with gaze duration. This paper is a continuation of this work with two-fold objectives:
(1) To explore further students’ gaze information and EEG data during the tasks, including
both gaze duration and visual scanpath, which enable us to track both static and dynamic
eye tracking features, together with information about students’ mental engagement and
cognitive load from the EEG signal. (2) To assess the interplay between students’ visual
behaviour and mental state. We demonstrate how eye tracking and EEG sensors could
be used to monitor both learners’ external visual behaviour, including gaze duration
and eye movements, and cognitive state, including mental attention and fatigue levels.
We show how these features are related to learners’ analytical performance and how the
alignment metrics of the visual scanpath are related to learners’ brain measurements. To our
knowledge, this is a novel demonstration of how gaze path information and EEG are related
and could be used for clinical diagnosis assessment and eventually for predictive purposes.

3. Experimental Design and Methodology

An experimental study was conducted to analyze learners’ visual behaviour and
brain activity as they interact with a computer-based learning environment called Am-
nesia: a medical simulation system that assesses analytical skills of novice medicine stu-
dents through clinical problem-solving [70]. Fifteen participants (8 males, 7 females) aged
20–27 years (M = 21.8 ± 2.73) were recruited. They were all undergraduate students from
the department of medicine at the University of Montreal. Upon their arrival, they were
briefed about the experimental procedure and signed an ethical agreement. They were then
placed in front of an eye tracker (at 65 cm approximately) and outfitted with an EEG headset
before proceeding to the experiment. Each session lasted between 30 and 45 min and ended
with a post-game questionnaire to collect feedback about the systems’ ergonomics and
usability. Figure 1 documents the experimental procedure.
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3.1. Amnesia

Amnesia is a realistic computer-based environment developed for undergraduate
medical students to assess their analytical reasoning process as they explore a series of
observations and make clinical decisions through patient case solving. All the curricula
underlying the software material were designed by a medical professional and approved
by a doctor [70].

The system features a virtual hospital where the player acts as a doctor who is mistak-
enly diagnosed with amnesia and find himself trapped within a hospital. To get out of this
trap, the doctor needs to prove that he does not suffer from this disease by resolving first
basic cognitive exercises such as visual memory, number series and analogies tests. Then
he needs to prove his clinical skills by resolving six medical cases. Each case represents a
different disease, namely, flu, bacterial pneumonia, measles, ebola, mumps and whooping
cough, respectively. For each case, a series of observations such as patients’ demographic
information, symptoms and clinical data are given. Participants are instructed to identify
both the correct diagnosis and the appropriate treatment. Additional data such as analyses
and antecedents can be collected with each case. For each diagnosis and treatment, different
response alternatives are given, and the students have up to three attempts to find out the
correct answer. For the diagnosis, there is only one correct answer, which is the current
disease. For the treatment, there are up to three possible responses. After a failed attempt,
students can revise the patient’s information, collect additional data and conduct further
analyses to adjust their initial hypothesis and correct their answers.

3.2. Gaze Recording

A Tobii TX-300 eye tracker with a sampling rate of 300 Hz was used for gaze recording.
The device includes infrared sensors and a camera that were embedded within a 23-inch
computer monitor of (1920 × 1080) resolution. A nine-point calibration grid was used to
assess and calibrate the quality of the measured gaze points. The calibration process was
successfully completed by all respondents (N = 15) with a data quality of 92% on average.
Two different metrics were computed from the eye tracker, namely fixation duration and
visual scanpath.

Fixation duration is a temporal measure of the gaze direction used to assess where
visual attention is focused [42,71,72]. It corresponds to the amount of time the fovea (centre
of gaze) is directed towards the task-relevant elements of the screen, i.e., the Areas of
Interest (AOI) in the system’s interface. In total, six AOI were defined for each medical case
as follows (see Figure 2 [73]). Information includes the patient demographic information
(name, age, weight and height). Antecedents presents the patient medical history of previous
diseases and possible allergies. Symptoms introduces the current symptoms presented by the
patient. Analysis includes data on the patient’s temperature, heart rate, and blood pressure,
as well as results from additional lab tests, if applicable. Diagnosis shows different response
alternatives for the disease to be identified. Treatment presents different suggestions for the
treatment of the disease.

Visual scanpath is a spatiotemporal measure of the dynamic trajectory of the eye
movements that assesses the way sensory information is selectively attended to and pro-
cessed [74–76]. It corresponds to the sequence of foveal fixations and saccadic eye move-
ments across the AOI, that is, the sequential visual path followed from one area of interest
to another. A string-based coding schema [77,78] was used to record this pattern, where
each letter denotes a visited AOI: Information (I), Antecedents (A), Symptoms (S), aNalysis
(N), Diagnosis (D) and Treatment (T). Each fixation occurring within a specific area is
coded with its corresponding letter. Gaze data are then filtered with a minimum threshold
of 250 ms for fixation duration in each AOI [79] (e.g., IIAASSSSSNNNNSSNDDDSSD-
DTTDTT). Redundant characters are then collapsed to retain a unique occurrence of each
area (e.g., IASNSNDSDTDT).
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Smith–Waterman algorithm [80] was used to evaluate this scanpath. The algorithm,
which is notably used in bioinformatics for DNA sequence alignment [81], compares the
learner’s visual scanpath with a target reference sequence. This sequence, denoted as
ISANDT, represents the hypothetico-deductive analytical process a novice clinician should
follow in clinical reasoning [82]. In this process, the clinician starts by collecting the
patient’s information and then formulates initial hypotheses according to the symptoms
the patient presents. Next, additional clinical data, including medical antecedents, are
collected, and further analysis (blood tests, radiography, echography, etc.) can be conducted
to validate or discard these hypotheses until reaching a final diagnosis. A treatment is then
prescribed according to this diagnosis. The alignment algorithm seeks to identify regions
of similarity between both sequences (the learner’s scanpath and the reference sequence).
Pairwise comparison is performed through a local dynamic programming procedure by
optimizing a similarity score derived from the following features: number of matches, number
of mismatches and number of gaps. Matches are convergent elements (i.e., identical letters) in
both sequences. Mismatches are divergent elements (requiring mutations, i.e., substituting
one letter for another). Gaps are missing elements (implying an insertion or a deletion in
one of the two sequences). A substitution matrix is used to minimize in each iteration the
number of editing operations (i.e., mutation, insertion and deletion) required to transform
one sequence into another while taking into account the prior aligned subsequences with
the optimal similarity score. The higher the aligned similarity score, the more the two
sequences are similar, which means the closer the learner’s visual sequence is to the optimal
reference sequence. We refer to [83] for more details about this procedure.

3.3. EEG Recording

Electroencephalography (EEG) is a measure of the electrical activity of the human
brain resulting from synaptic voltage fluctuations of neurons. An Emotiv Epoc headset was
used for EEG recording with a sampling rate of 128 Hz. The device collects EEG data from
14 electrodes placed on the scalp according to the 10–20 international electrode placement
system [84]. Figure 3 depicts the recorded sites, namely AF3, AF4, F3, F4, F7, F8, FC5, FC6,
P7, P8, T7, T8, O1 and O2. Two additional sites (CMS and DRL) located behind the ears
are used as reference. The pads of each electrode were moistened with a saline solution
to enhance the quality of the signal. An artifact rejection procedure was applied to each
incoming 1 s EEG epoch to reduce artifacts from eye blinks and body movements [85,86].
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If the signal amplitude exceeds 25% of the data point in a predefined threshold, then the
segment is rejected. Two brain indexes were computed from the EEG recording, namely
mental engagement and workload.
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Mental engagement refers to the level of alertness and attention allocated during a
task [50]. The engagement index used in this study is a neural indicator based on brainwave
band powers. It was developed at NASA and applied within a closed-loop system to
modulate task allocation [52,86]. It was found that performance in a vigilance task improved
when this index was used as a criterion to switch between manual and automated piloting
mode. This index is computed using three frequency bands, namely θ (4–8 Hz), α (8–13 Hz)
and β (13–22 Hz) as follows: β/(θ + α). These frequencies are extracted by multiplying
every second of the EEG signal by a Hamming window to reduce spectral leakage and
applying a Fast Fourier Transform (FFT). As the EEG headset measures 14 different regions
at the same time, the values of θ, α and β were summed over all these sites. An engagement
index was computed for each second. Then, a 40 s moving average mobile window was
used in order to smooth the index and reduce its fluctuation. That is, the value of each
index at time t corresponds to the total average of the ratios calculated on a period of
40 s preceding t.

Workload, also known as cognitive load, refers to a measurable amount of information-
processing demands placed on an individual by a task [87]. It is generally related to working
memory capacity and could be viewed as a measure of mental effort produced to process
the quantity of information involved in a task. Unlike the engagement index, which is
directly extracted from the EEG raw data, the workload index is based on a machine-
learned predictive model [88]. This model was pre-trained and validated using a set of
EEG data collected through brain-training exercises (digit span, reverse digit span and
mental computation) with a varying level of workload induced in each task. This was
performed by increasing/decreasing the number of digits in the sequence to be recalled
for digit or reverse digit span and the number of digits to be used for mental computation.
We refer to [88] for more details about this procedure. The model was validated with
subjective workload level assessed using NASA Task load index (NASA_TLX) [89], showing
statistically significant correlations between the trained workload index and NASA_TLX
scores (mean correlation = 0.72, range of 0.52 to 0.82, p < 0.05). This model was also used
within an intelligent tutoring system (MENtal tuTOR) [62], fully controlled by the workload
and engagement indexes to automatically select the most adapted learning activity for
the student. It was found that using such a strategy to switch the tutoring content had a
positive effect on learners’ outcomes.

Once the training phase completed, the EEG raw data were cut into one-second seg-
ments and multiplied by a Hamming window. An FFT was then applied to transform each
EEG segment into a spectral frequency and generate a set of 40 bins of 1 Hz ranging from
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4 Hz to 43 Hz. The dimensionality of the data was reduced using a Principal Component
Analysis, and then mean normalized. Next, a Gaussian Process Regression algorithm with
an exponential squared kernel and a Gaussian noise [90] was run in order to compute the
EEG workload index from the normalized data.

In order to assess the learner’s mental state based on both engagement and workload
levels, a slope of each index was computed using the least squared error function of the
indexes’ values throughout each medical case. For the engagement index, if the slope value
is positive, then the learner is considered as mentally engaged. Otherwise, the learner is
considered as mentally disengaged. For the workload index, if the slope value is between
−0.03 and +0.03, then the workload is considered as optimal. Otherwise, if the slope value is
above 0.03, the learner is considered as overloaded, and if the slope is below −0.03, the learner
is considered as underloaded [91]. Moreover, if the learner is both mentally engaged and has
an optimal workload, then the learner’s mental state is considered positive. Otherwise, the
mental state is considered negative.

4. Experimental Results

The experimental results are organized as follows. First, we analyze the relationship
between learners’ outcomes and gaze behaviour while resolving the medical cases. Then,
we assess the relationship between learners’ outcomes and their mental state. Finally, we
examine the interplay between visual behaviour and brain activity.

4.1. Gaze Behaviour

Our first objective was to analyze the relationship between fixation duration and
learners’ analytical performance (i.e., correctness and number of attempts in each medical
case). That is, whether focusing (visually) on the task-relevant elements of the screen has
any impact on clinical outcomes. The answer is no: there was no statistically significant
correlation between fixation duration and performance measures (p = ns).

We were then interested in analyzing the dynamic gaze behaviour of the learn-
ers, namely in assessing the relationship between the clinical performance measures
and the alignment metrics of the learners’ visual scanpath: number of matches, mis-
matches and gaps, and the similarity score between the scanpath followed and the op-
timal reference sequence. First, with regard to the success/failure (i.e., correct diagno-
sis and treatment), we found that the number of mismatches was significantly lower
(F(1, 75) = 13.585, p < 0.001) if the case is successfully solved (M = 0.00, SD = 0.00) compared
to failed cases (M = 0.21, SD = 0.41). Furthermore, the similarity score was significantly
higher (F(1, 75) = 5.879, p < 0.05) for the succeeded cases (M = 5.79, SD = 2.42) compared
to the unsolved ones (M = 3.58, SD = 5.61). This implies that for the correct answers, the
alignment scores between the students’ scanpath and the optimal reference sequence were
significantly higher and the number of mismatches smaller.

In addition, statistically significant results were found for the number of attempts
per case. A significant positive correlation was found between the number of mismatches
and the number of attempts (r = 0.36, p < 0.001). This means that the more there were
mismatches or deviations between the learners’ visual sequence and the reference sequence,
the more there were attempts per case. That is, the more the learners had trouble finding the
right answer. A negative correlation with the alignment score was also found (r = −0.26,
p < 0.05): the higher the alignment score, the lower the number of attempts per case. This
suggests that the more the learner’s visual sequence was close to the optimal reasoning
sequence, the lower the number of attempts to answer. In other words, the more the
learners’ reasoning was ‘optimal’, the faster they could solve the medical cases.

Accordingly, the analysis of the gaze behaviour showed that the fixation duration had
no impact on the learning performance. A student can watch/fix the screen without being
currently engaged in the task. This will be indeed confirmed through the analysis of the
learners’ brain data (EEG engagement index). The analysis of the dynamic gaze behaviour
allowed us to track and evaluate the visual scanpath followed by the learner while solving
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the medical cases. The closer the visual sequence was to the hypothetico-deductive analyti-
cal process (i.e., the reference sequence), the better the diagnostic performance. This hence
validates our approach to monitoring the learners’ analytical process through the analysis
of the visual scanpath followed over the areas of interest of the game and its evaluation
according to the optimal reference path using a sequence alignment algorithm.

4.2. Brain Activity

Similarly, we analyzed the relationship between the EEG variables (mental state, work-
load and engagement) and the performance measures (correctness and number of attempts
in each medical case). We found a statistically significant association between correctness
and the workload variable (underload, optimal load and overload), χ(2) = 7.445, p < 0.05.
In particular, more than half of the correct answers (54.10% of the cases) were associated
with the state of optimal load (against 26.20% to overload and 19.70% to underload).

For the number of attempts, we found a statistically reliable relationship with the
mental state variable (positive/negative): F(1, 74) = 13.725, p < 0.001. The number of
attempts was significantly higher when the mental state was negative (M = 3.84, SD = 0.96),
against (M = 2.96, SD = 1.02) if the state was positive. We recall that a negative mental
state is associated with one of these states: disengagement, underload or overload. Two
other ANOVAs were conducted to study each index separately. There was no significant
relationship between workload and the number of attempts. However, a significant re-
lationship between the engagement variable (engaged/disengaged) and the number of
attempts was found: F(1, 74) = 17.27, p < 0.001. This number was significantly higher if the
learners were disengaged (M = 3.95, SD = 0.89) against (M = 3.03, SD = 1.04) if the learners
were mentally engaged. That is, as the engagement level dropped, the learners had more
difficulty in solving the medical cases. Or, conversely, when the engagement index was
high, the number of attempts to resolve the cases decreased. In other words, the more
attentive the learners were, the easier they found the right answers.

To summarize, both cerebral metrics seem to have an impact on learners’ analytical
performance. The cognitive load had an impact on the failure/success of the medical cases,
and the engagement index had an impact on the number of attempts per case. On the one
hand, we have a significant association between the optimal load interval of the workload
index and the succeeded medical cases. On the other hand, we have a lower number of
attempts for the positive values of the engagement index.

4.3. Relationship between Gaze and EEG Data

We started by analyzing the relationship between learners’ mental state and fixation
duration in medical cases. A first ANOVA showed that the fixation duration was on
average significantly higher (F(1, 74) = 5.99, p < 0.05) when the mental state was negative
(M = 326.24, SD = 44.18) vs. (M = 302.82, SD = 38.62) in case of positive mental state. Two
more ANOVAs were performed to analyze the engagement and the workload indices,
respectively. The first analysis showed that there was no statistically significant relationship
between the engagement level and the fixation duration. On the other side, the analysis
of the mental load index showed that there was a significant relation between fixation
duration and (underload, optimal load and overload): F(2, 73) = 4.275, p < 0.05. The post
hoc analysis revealed that there was a significant difference in terms of fixation duration
between the optimal load level (M = 304.06, SD = 39.97) and overload, with a higher fixation
time in case of overload (M = 334.85, SD = 48.41).

This shows that the fixation duration is not a good indicator of mental engagement.
One can fix or look at an area of interest on the screen without really lending focus or
attention. This rather suggests that a high fixation time is a sign of overload and mental
fatigue. Moreover, we found a significant negative correlation between the engagement
and the workload indexes’ values (r = −0.295, p < 0.05), which means that the higher the
level of attention, the lower the induced level of mental effort. Inversely also, if the mental
load increased, i.e., in the case of mental fatigue, the level of attention decreased. This
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was observed not only during the resolution of the medical cases but throughout all the
interactions with the game (r = −0.204, p < 0.05).

Our last analysis concerned the relationship between the EEG features (mental state,
engagement and workload) and the alignment measurements of the visual scanpath (simi-
larity score, number of matches, mismatches and gaps).

First, a statistically significant relationship was found between the mental state variable
and the similarity score: F(1, 74) = 6.622, p < 0.05. On average, this score was statistically
higher in case of positive mental states (M = 6.59, SD = 2.91) vs. (M = 4.31, SD = 4.07).
A second significant ANOVA was also found (F(1, 74) = 10.063, p < 0.001) showing that
the number of matches was statistically higher in case of positive mental states (M = 4.26,
SD = 1.19) versus (M = 3.59, SD = 0.64) in case of negative mental states. This implies that
if the learners’ mental state is positive (i.e., both engagement and workload are optimal),
they are likely to have a visual sequence close to the target reference sequence, which
corresponds to the optimal reasoning process. Or also, the more the learners followed the
optimal reasoning steps, the more they were likely to be in a positive mental state.

Then, the analysis of each index indicated that there was also a statistically significant
relationship between the alignment measures and engagement, on the one hand, and
workload, on the other hand. For the engagement index, we found that it was statistically
significantly related to the similarity score (F(1, 74) = 9.097, p < 0.001), the number of
matches (F(1, 74) = 9.851 p < 0.001) and the number of mismatches (F(1, 74) = 4.733, p < 0.05).
In particular, the similarity score and the number of matches were significantly higher and
the number of mismatches significantly lower in the case of positive engagement compared
to the state of disengagement (see Table 1).

Table 1. Statistics on the scanpath alignment measures according to the engagement level.

Positive
(Mentally Engaged)

Negative
(Mentally Disengaged)

M SD M SD

Similarity score 6.49 ** 2.68 3.95 ** 4.30
Number of matches 4.17 ** 1.12 3.54 ** 0.59

Number of mismatches 0.00 * 0.00 0.12 * 0.33
Number of gaps 1.86 1.97 3.00 3.91

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

For the workload, we found that it was statistically significantly related to the similarity
score (F(2, 73) = 3.302, p < 0.05), and to the number of gaps (F(2, 73) = 3.445, p < 0.05). The
post hoc analysis of the three modalities of the workload values (underload, optimal load
and overload) indicated that there was a statistically significant difference between the
states of underload and optimal load (there was no significant difference with regard to the
overload level). Particularly in case of underload, the alignment score was significantly
higher (M = 7.27, SD = 1.62) against (M = 4.47, SD = 4.24) in case of optimal load, and the
number of gaps was significantly lower (M = 0.73, SD = 1.22 versus M = 3.06, SD = 3.57).
This suggests that the more the visual sequence was similar to the reference, and the fewer
the errors (gaps), the lower the workload level. In other words, following (visually) the
optimal sequence of the hypothetico-deductive analytical process would imply the least
mental effort (i.e., no mental fatigue).

This conjoint analysis of the EEG features, together with the gaze behaviour, allowed
us to analyze learners’ brain activity according to the used analytical approach while
resolving the medical cases. The more optimal the analytical process was, i.e., the more the
visual sequence was close to the reference sequence, the higher the engagement level was.
This state of attention also implied fewer errors in reasoning (lower mismatches and higher
matches). For the workload, following the optimal reasoning process implied the least
mental fatigue with fewer missing elements (gaps) with regard to the reference sequence.
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To conclude, our experimental results showed that both students’ gaze features and
brain activity were related to their analytical performance in medical case solving (i.e.,
correctness and number of attempts per case). More precisely, we have found that learners’
visual scanpaths’ alignment metrics (similarity score, matches, mismatches and gaps), along
with EEG data (mental state, engagement and cognitive load indexes), were significantly
correlated to learners’ diagnosis performance. Our results also showed that there were
statistically significant correlations between learners’ gaze and mental behaviour. More
specifically, we have found that learners’ visual path metrics were significantly correlated
to their mental engagement and cognitive load levels.

5. Discussion and Conclusions

In this paper, we described our approach to assessing learners’ visual behaviour
and brain activity during clinical reasoning. More precisely, we used gaze data to assess
learners’ visual focus through fixation duration metrics on task-relevant elements of the
screen: Areas of Interest (AOI) in the system’s interface, including patient information,
antecedents, symptoms, and analysis diagnosis and treatment. In order to account for the
sequential property of eye movements, learners’ scanpath is recorded to assess the visual
path followed over the AOI while solving patient cases. This scanpath is then evaluated
according to an optimal reference path (the target reference sequence) using the Smith–
Waterman algorithm. From the EEG data, two brain indexes are computed, namely mental
engagement and workload, through EEG frequency band power analysis and a Gaussian
Regression model.

An experimental protocol was conducted to record eye tracking and EEG data from
15 undergraduate medical students while they interacted with a hospital simulation en-
vironment and solved medical cases. Results showed that both sensors provide highly
valuable information for monitoring learners’ external behaviour through gaze recording
and cognitive state through EEG sensing. Interesting trends were found showing how
these data are related and could be used for clinical diagnosis assessment. On the one side,
we found that fixation-based metrics were not effective as indices of attention or perfor-
mance assessment but rather reflected mental fatigue. This supports previous research
on eye tracking, showing that longer fixation duration is not always a reliable indicator
of interest [92]. On the other side, the analysis of the scanpath enabled us to evaluate
the analytical process followed during diagnostic reasoning. Significant correlations were
found showing how the alignment metrics of the visual scanpath, namely matches, mis-
matches and gaps, and the similarity score between the scanpath and the optimal reference
sequence are related to learners’ performance and brain measurements, including mental
state, engagement and workload. Significant correlations were also found between the EEG
features and performance.

In summary, both EEG and eye tracking do help understand learners’ behaviour within
clinical reasoning. This remains true in the medical context but also in any other learning
context. Engagement and workload neural indexes allow for monitoring learners’ cognitive
state and assessing their level of mental attention and fatigue. In turn, eye movement
properties allow to assess learners’ visual focus and understand the steps followed during
problem-solving through scanpath analysis. Compared to previous work that used mainly
training and simulation systems’ log files and outcomes to analyze students’ clinical
reasoning (e.g., [1,5–7]), these results spotlight the effectiveness of gaze metrics tools to
accurately track and measure the performance gap between the students and the experts.
The interconnection found between students’ reasoning steps, as mapped from their eye
focus and movements, and their overall performance proves that eye tracking data analysis
has prospects to identify students’ areas of improvement (such as missing or incorrect
step identification or unnecessary reasoning steps). The analysis of learners’ internal
states through brain activity measurements, i.e., workload and engagement, also confirms
the significant connection between optimal cognitive and optimal reasoning conditions.
The extraction of such brain indexes during simulation training could also support the



Computation 2022, 10, 130 13 of 17

instructors in diagnosing students’ fatigue or loss of attention and adjust their feedback,
the instruction content or the difficulty level.

These results are in line with various empirical studies that investigated how affective
computing helps trace, analyze and understand learners’ behaviour while interacting with
serious games [93–95]. The integration of cognitive and behavioural sensing technologies
considerably increases the level of insight into the learners’ interaction experience. In our
study, both EEG and eye tracking helped unveil significant patterns between learners’
cognitive load and attention level and their reasoning ability. Our study also highlights the
potential of combining the metrics computed from both EEG and eye tracking sensors to
have a multimodal assessment of learners’ behaviour. The complementary nature of the
information brought by these two data channels provides a relevant indication about the
learners’ internal cognitive state extracted from mental engagement and fatigue levels and
external behavioural state tracked through visual focus and gaze path information. We also
believe that the techniques used in this study could be generalized and replicated within a
different problem-solving context and different AOI. In turn, it should be noted that this
study could be enhanced, and several improvements could be made in future research.
For instance, at the individual level, although the recruited participants were all novice
undergraduate medical students, it is important to mention that the relationships found
between students’ performance, eye tracking features and EEG indexes could be mediated
by learners’ prior knowledge and performance. For example, better learners would tend to
have better performance in general regardless of this particular experiment; they might also
tend to be more attentive/less overloaded during the tasks. Other individual characteris-
tics such as gaming skills, personality or gender could cause between-subject variability.
Although it is out of the scope of this paper, controlling for such factors could lead to
further research on potential mediators of the relationship between diagnosis performance,
gaze behaviour and mental state. Further possible inherent factors such as the loss of
attention due to the experiment or to external stimuli (such as raising the head, dizziness,
etc.) should be controlled as they could impact the correlational results. Another obvious
limitation in this work is the rather low sample size; a larger experimental study involving
more participants could be conducted to validate these results on a higher sampling. Fur-
thermore, our approach could be revised with the goal of building a tutoring system using
both EEG and eye tracking sensors to actively adapt the game’s interventions in order to
reduce human error in diagnostic formulations according to the learners’ visual behaviour
and brain activity.
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