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Abstract: The disposal of infectious waste remains one of the most severe medical, social, and
environmental problems in almost every country. Choosing the right location and arranging the most
suitable transport route is one of the main issues in managing hazardous waste. Identifying a site
for the disposal of infectious waste is a complicated process because both tangible and intangible
factors must be considered together, and it also depends on various rules and regulations. This
research aims to solve the problem of the size selection and location of infectious waste incinerators
for 109 community hospitals in the upper part of northeastern Thailand by applying a differential
evolution algorithm to solve the problem with the objective of minimizing the total system cost,
which consists of the cost of transporting infectious waste, the fixed costs, and the variable cost of
operating the infectious waste incinerator. The developed differential evolution produces vectors
that differ from the conventional differential evolution. Instead of a single set of vectors, three are
created to search for the solution. In addition to solving the problem of the case study, this research
conducts numerical experiments with randomly generated data to measure the performance of the
differential evolution algorithm. The results show that the proposed algorithm efficiently solves the
problem and can find the global optimal solution for the problem studied.

Keywords: facility location problem; differential evolution algorithm; infectious waste collection

1. Introduction

The disposal of infectious waste remains a severe problem in healthcare waste man-
agement in almost every country. However, in the past few years, the level of public
concern about healthcare waste management has been increasing worldwide [1]. When
mishandled, the collection, transportation, and disposal of infectious waste might cause
significant adverse health hazards and environmental impacts [2]. Therefore, infectious
waste is hazardous waste that must be a priority in the process of storing, collecting, trans-
porting, and disposing of it properly. It is a critical issue in every country, especially with
regard to how to dispose of infectious waste because the disposal of the infectious waste
directly affects the environment and people. Infectious waste occurs in medical diagnosis
and treatment, immunization, and disease experiments and includes cotton buds, gauze,
needles, blades, rubber tubes, excretions, bodily fluid flow from the patient, etc. In 2020,
Thailand had a total of 47,962 tons of infectious waste from government hospitals, private
hospitals, private clinics, veterinary hospitals, and dangerous infection laboratories. From
the report on the situation of infectious waste in Thailand from 2015 to 2020, the amount of
infectious waste tended to increase continuously, as shown in Figure 1.
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Figure 1. The amount of infectious waste that occurred from 2015 to 2021 [3].

Chummuel et al. [4] surveyed infectious waste incinerators in the upper part of the
northeastern region for proper management. It was found that every community hospital
had an incinerator for infectious waste disposal. However, only 22.09% of the incinerators
were in regular use, and the rest were out of order due to the lack of spare parts and proper
maintenance. Therefore, the community hospitals whose incinerators did not work would
send infectious waste to a private company for disposal; the company was located in the
central part of Thailand. As a result, these community hospitals had to pay the high cost
of transporting infectious waste to the waste disposal site. Moreover, the infectious waste
collection was slow because the burning capacity of the existing incinerator was not enough
to meet the demand. As a result, the Thai government released a policy to promote the
establishment of new waste disposal centers in potential hospital areas to fix such problems
and increase efficiency in the removal of infected garbage. These disposal facilities had to be
able to serve nearby hospitals and at the same time minimize the economic, environmental,
health, and social factors. New disposal facilities needed to be planned along with proper
transport routing to have the lowest transport routing costs for maximum benefit. Therefore,
choosing a site for the disposal of infectious waste was a complicated and challenging
process because it had to comply with the regulatory requirements of each country and
had to reduce the social, environmental, and economic impacts at the same time [5].

The upper part of northeastern Thailand has 109 community hospitals under the
Ministry of Public Health. These community hospitals often encounter problems due to
their remoteness from the existing external waste disposal agencies. Choosing the right
size of the new incinerator and its suitable location, in this case, is a complex problem that
is difficult to solve using existing techniques alone because there are relevant factors to
consider, including infrastructural, geological, environmental, social, and exact cost factors.
All the factors must be considered simultaneously for maximum benefit. To address the
above problem, this study focuses on the problem of selecting the size and location of the
hospital incinerator for infectious waste disposal sites located in northeastern Thailand. The
objective is to obtain the lowest total cost of infectious waste transportation and operating
costs combined with the operating costs of the infectious waste incinerator. Sresanpila and
Sindhuchao [6] proposed a mathematical model and particle swarm optimization (PSO)
to solve the problem of the size selection and location of infectious waste incinerators.
The objective function and some constraints of the mathematical model are non-linear.
Later, Reference [7] developed an iterated local search (ILS) to solve this problem. Using
mathematical programming, both [6,7] could not find the optimal solution due to the non-
linear components. As a result, this research proposes an adjustment of the mathematical
model from non-linear to linear without changing the nature of the problem. Due to the
complex nature of the problem and its model, the problem is NP-hard. If the problem is
very large, solving problems with mathematical modeling will take quite a long time, and
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the results may not be found. Therefore, the authors propose a method of evolution using
differential evolution (DE).

Our main contributions are as follows:

1. We develop a differential evolution algorithm that can efficiently solve the problem.
2. We propose an adjustment of the mathematical model from non-linear to linear with-

out changing the nature of the problem, which Lingo Solver can solve to optimality.

The remainder of the article is organized as follows: Section 2 presents the related
literature; Section 3 presents the details of the original and modified mathematical models.
The differential evolution algorithm (DE) is proposed in Section 4. The experimental
results are discussed in Section 5, and finally, the conclusion of this research is presented in
Section 6.

2. Related Literature

The Facility Location Problem (FLP) has been studied for a long time and was first
studied by Pierre de Fermat, Evagelistica Torricelli, and Battista Cavallieri [8]. The original
FLP was a problem with a single objective or goal. The objectives often consider location
issues because location decisions directly affect the organization’s operational and logis-
tical decisions, which are related to service capability [9]. In general, the FLP is used to
determine the number, the size, and the locations of the facilities and to allocate services
from these locations to customers both within and outside the organization to minimize
the transportation costs, distance, or time required to deliver the goods or services [10].
Alumur and Kara [11] propose a mathematical model to solve the problem of hazardous
waste site routing by selecting a site for hazardous waste storage and disposal. The use
of technology is considered to select hazardous waste disposal sites and to arrange the
suitable transport routes in order to reduce the total costs and the risks of hazardous waste
transportation. Aboutahoun [12] proposes a mathematical model for selecting hazardous
waste disposal or storage sites and transportation routes by mainly considering the cost of
the damage caused by accidents. The mathematical model is developed in conjunction with
Floyd Warshall’s algorithm to provide the shortest transport distance and the lowest risk of
accidents. Wichapa and Khokhajaikiat [13] propose a solution to the site routing problem
of infectious waste by selecting suitable areas to establish infectious waste disposal facili-
ties for community hospitals in the upper part of northeastern Thailand. A hybrid fuzzy
goal programming model is used, which combined fuzzy analysis, a hierarchy process,
and fuzzy goal programming. Later, Reference [14] determines the shortest distance for
collecting infectious waste using a hybrid genetic algorithm that mixes genetic algorithms
and local search. These include 2-Opt-move, Insertion-move, and λ-interchange-move,
resulting in the lowest total cost. Suksee and Sindhuchao [15] suggest heuristic ideas to
solve the problem of waste incineration site selection and the routing of infectious waste col-
lection vehicles for hospitals in northeastern Thailand based on the principles of the greedy
randomized adaptive search procedure (GRASP) and the adaptive large neighborhood
search (ALNS). A simulation optimization approach is proposed by [16]. It integrates a
system dynamics simulation model (SDSM) with a multi-period capacitated facility location
problem (CFLP) as a decision support tool for future APL implementations. In addition, a
Monte Carlo simulation is applied to estimate the costs and reliability level with random
demands. Němec et al. [17] present the possibilities in solving the weighted multi-facility
location problem (MFLP) and its related optimization tasks using a widely available office
software—MS Excel with the Solver add-in. The result shows that this widely available
office software is practical when solving even relatively complex optimization tasks, with
sufficient quality for many real-world applications. Yu et al. [18] propose the regional loca-
tion routing problem (RLRP) model and the multi-depot regional location routing problem
(MRLRP) model, which are extensions of the location routing problem (LRP), to provide a
better municipal waste collection process. In addition, hybrid genetic algorithm-simulated
annealing is applied to determine the depot locations in each region and the vehicles’ routes



Computation 2023, 11, 10 4 of 20

for collecting waste to fulfill the inter-regional independent needs at a minimum total cost.
The results show that the proposed method efficiently solves the RLRP and MRLRP.

The differential evolution algorithm is presented by [19]. This method has a process of
finding solutions which is similar to that of the genetic algorithm (GA). The improvement
of the differential evolution algorithm to increase the solution’s efficiency is developed
by [20], who present five mutation strategies called DE/rand/1, DE/best/1, DE/rand-to-
best/1, DE/best/2, and DE/rand/2. Chiang et al. [21] propose a method for modifying
coordinates by applying the principle of 2–Opt exchange. Pitakaso et al. [22] introduce
1-point and 2-point exponential exchanges for exchanging coordinates. The binomial
exchange of coordinates slowly leads to good solutions, while the 1-point exponential
coordinate exchange moves towards a good solution quickly. In the early stages of the
differential evolution algorithm, the 2-point exponential coordinate exchange is slow to
lead to good solutions, but after a period of processing, good solutions can be obtained
quickly. In addition, both the 1-point and the 2-point exponential coordinate exchanges
provide a similar result. Zhu et al. [23] present a method for vector scaling. If a search
cannot find a better solution, a new vector will be added. The values in the coordinates of
the newly created vector are randomly numbered between 0 and 1. Then, the procedures
of the differential evolution algorithm are repeated. If no better solution is found, the
population size keeps increasing until it reaches the maximum population limit. Sethanan
and Pitakaso [24] develop the differential evolution algorithm with two types of local search
for solving the general assignment problem. Type 1 performs a local search on all trial
vectors. Type 2 performs a local search on some vectors only—10% of the best vectors and
10% of the remaining vectors—in order to reduce the computational time. The results show
that the solutions can be improved with less computational time. In addition to improving
the methodology of the differential evolution algorithm, the hybrid approaches between the
differential evolution and some metaheuristics are also introduced by [25–30]. Epitropakis
et al. [25], Miranda and Alves [26], Sedki and Ouazar [27], Thongdee and Pitakaso [28]
present the differential evolution algorithm with the PSO, while [29,30] propose the hybrid
differential evolution with the simulated annealing (SA). These hybrid approaches perform
the common DE more efficiently.

The studies discussed above show that global search metaheuristics (e.g., DE, GA,
PSO, ALNS, and SA) are effective in solving optimization problems such as the location
problem. Due to the importance of the environmental and economic impact, the cost of
transporting infectious waste and the cost of incinerating infectious waste are considered.
As a result, the objective of the problem studied is to minimize total energy consumption
while considering the frequency of traveling to collect infectious waste and the size of the
infectious waste incinerators. In order to solve this problem, a mathematical model has
been adjusted, and DE is introduced to further the search efficiency of the solution.

3. Problem Formulation
3.1. Problem Description

The problem of the size selection and location of infectious waste incinerators for
109 community hospitals in the upper part of northeastern Thailand was studied. Figure 2
shows the locations of all 109 community hospitals whose total amount of infectious waste
was approximately 104,487 kg/month. Each community hospital can be selected as the
location of the infectious waste disposal facility where only one incinerator can be operated.
There are three types of incinerators, with different waste-burning capacities: 100, 300, and
600 kg/h. Each hospital can obtain the service of infectious waste disposal from only one
facility. The incinerator can be operated continuously for a month after a 6 h warm-up time.
The transportation of infectious waste from the hospital to the incinerator location is by
direct shipping. A vehicle is dispatched from the infectious waste disposal facility to collect
the infectious waste at a particular community hospital, and then, it returns to the facility.
The community hospitals may have different frequencies of infectious waste disposal due
to different waste management policies. The solution is to determine where the infectious
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waste disposal facilities should be located and which type of incinerator should be utilized
at each facility, as well as to assign the community hospitals to each facility in order to
minimize the total system cost, which comprises the transportation cost and the fixed and
variable operating costs of the incinerator.
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3.1.1. Data Collection

The data were collected on the infectious waste from 109 community hospitals in
the upper part of northeastern Thailand, comprising nine provinces: Khon Kaen, Kalasin,
Mahasarakham, Sakon Nakhon, Udon Thani, Nong Khai, Nong Bua Lamphu, Loei, and
Bueng Kan [6,31]. The courtesy information was from private companies and community
hospitals and included the amount of infectious waste received for disposal in each hospital,
the frequency of the receiving of infectious waste for disposal, the service charge rate/time,
and the shipping cost/km. Therefore, the preliminary data could be collected as follows.

3.1.2. Information about Infectious Waste Incinerators

Incinerators used to dispose of infectious waste come in many forms, divided accord-
ing to the ability to burn infectious waste (kg/time unit). In this study, only three types
of incinerators were considered: the incinerators capable of incinerating infectious waste
of 100, 300, and 600 kg/h. It is the model that private service providers recommend or
currently use. The information about the price, the maximum burning rate, and the service
life of each type of incinerator is shown in Table 1.

Table 1. Information on the infectious waste incinerators considered.

Information
Infectious Waste Incinerator

Type 1 Type 2 Type 3

Price (THB) 1,995,000 3,745,000 10,165,000
Maximum Burning

Rate (kg/hour) 100 300 600

Service Life (Years) 10 10 10



Computation 2023, 11, 10 6 of 20

The costs considered consist of two essential parts: the cost of transporting the infec-
tious waste and the cost of incinerating the infectious waste. The shipping costs depend
on the distance of the transport and the cost per unit distance. The cost of incinerating
infectious waste consists of several parts: incinerator maintenance fee, utility bills, fuel cost
for burning, employee wages, and depreciation. These costs are based on the research data
from [6,31]. The cost of the incineration of infectious waste by incinerator type is shown in
Table 2.

Table 2. The cost of incineration of infectious waste/hour.

Characteristics of Each Type of Infectious
Waste Incinerator Type 1 Type 2 Type 3

Incinerator Maintenance Fee (THB/Hour) 53 90 128
Utility Bills (THB/Hour) 107 135 183

Fuel Cost for Burning (THB/Hour) 210 329 607
Cost of Incineration of Infectious Waste

(THB/Hour) 370 554 918

Depreciation (THB/Month) * 16,397 30,781 83,548
Employee Wages (THB/Month) ** 31,500 31,500 31,500

Fixed Cost of Incinerator Operation
(THB/Month) 47,897 62,281 115,048

* Depreciation is calculated from incinerator price: THB/lifetime (days). ** Employee wages are calculated from
350 THB/day/person (three employees).

3.1.3. Transport Information for Infectious Waste

1. The distance to each hospital uses the latitude and longitude of the hospital location,
to be processed via Google Map. The distance is in kilometers.

2. The vehicles used to collect infectious waste from each hospital use six-wheel trucks.
The average speed of the truck is 60 km/h. The work time of the garbage collector is
12 h/day (including a 1 h break).

3. The cost of transporting infectious waste is 5 THB/km, and the average weight of the
infectious waste is 60 kg/bin.

4. The average waste collection time is 2 min/bin, and the average service time is
10 min/time at each community hospital.

3.2. The Mathematical Model for the Problem of Size Selection and Location of the Infectious
Waste Incinerators

The mathematical model of the problem of the size selection and location of the
infectious waste incinerators formulated by [6] has been studied. The original objective
function and some of the constraints are non-linear. As a result, it is difficult to solve for
the global optimal solution. In this research, the non-linear terms have been adjusted to
become linear, which makes it easier to obtain the global optimal solution. The details of
the mathematical model and its improvement are as follows.

Indices
i Sequence of community hospitals i = 1, 2, . . . , I;
j Sequence of positions that can open the incinerators for infectious waste
j = 1, 2, . . . , J;
k Sequence of the infectious waste incinerator model k = 1, 2, . . . , K.
Parameters
Cij Transportation distance from the hospital i to the location of the infectious waste

incinerator j;
Pk Fixed cost of operating the infectious waste incinerator k;
Di The average amount of infectious waste generated each month in community

hospitals;
A Cost of transporting infectious waste;
Fi Frequency of traveling to collect infectious waste from hospital i each month;
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Bk The maximum burning rate per hour of the incinerator k;
Ok Cost of operating the incinerator for infectious waste k.
Decision Variables

Xij =

{
1, i f the in f ectious waste o f the community hospital i is transported to location j

0, Otherwise

Yj =

{
1, I f the in f ectious waste incinerator is open at the location j

0, Otherwise

Skj =

{
1, i f the incinerator k is used at location j

0, Otherwise

Hkj Number of hours per month that the incinerator k is operated at the location j

Min Z =
I

∑
i=1

J

∑
j=1

AFiCijXij +
J

∑
j=1

K

∑
k=1

PkSkj +
J

∑
j=1

K

∑
k=1

HkjOkSkj (1)

Min Z =
I

∑
i=1

J

∑
j=1

AFiCijXij +
J

∑
j=1

K

∑
k=1

PkSkj +
J

∑
j=1

K

∑
k=1

HkjOk +
J

∑
j=1

K

∑
k=1

(6)SkjOk (2)

The objective function (1) is to minimize the total system cost which is the sum of the
cost of transporting infectious waste and the fixed cost of the operation combined with

the variable cost of operating the infectious waste incinerator. The term
J

∑
j=1

K
∑

k=1
HkjOkSkj is

non-linear due to the multiplication of two decision variables, Hkj and Skj. For this term,
Hkj is the number of operating hours of the incinerator per month, including the 6 h warm
up time. To adjust this term to be linear, let Hkj be the number of waste-burning hours
only, not including the 6 h warm up time. However, after adjusting the equation, Hkj, the

warm-up hours of the infectious waste incinerator are not included. Then,
J

∑
j=1

K
∑

k=1
HkjOkSkj

can be divided into two terms:
J

∑
j=1

K
∑

k=1
HkjOk +

J
∑

j=1

K
∑

k=1
(6)SkjOk, as shown in (2). The first

term is the cost of burning the infectious waste of the incinerator, and the second term is
the cost of warming up the incinerator.

Constraint (3) is a conditional equation forcing each community hospital i to obtain
service from only one infectious waste disposal facility.

J

∑
j=1

Xij = 1, ∀i, i = 1, 2, . . . , I (3)

Constraint (4) stipulates that the community hospital selected as an infectious waste
disposal facility must use only one type of incinerator.

K

∑
k=1

Skj = Yj, ∀j, j = 1, 2, . . . , J (4)

Constraint (5) defines that each community hospital can receive infectious waste
disposal services only from the facilities that are in operation.

Xij ≤ Yj, ∀i, j, i = 1, 2, . . . , Iand j = 1, 2, . . . , J (5)

Constraint (6) indicates that the infectious waste incinerator of the facility is required
to warm up for 6 h before starting an incineration process, and in each month, the number
of incinerating hours must be sufficient to eliminate all the infectious waste collected
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from the community hospitals assigned to the facility. Due to the fact that the term of
K
∑

k=1
BkSkj

(
Hkj − 6

)
is in a non-linear form, it would take a lot of time and effort to obtain

the optimal solution. The problem can be eased by transforming this term to become linear.
To do so, Hkj is given a new meaning, which is the total time of incineration without the
warm-up time. Then, constraint (6) can be replaced by constraint (7).

K

∑
k=1

BkSkj

(
Hkj − 6

)
≥

I

∑
i=1

DiXij, ∀j, j = 1, 2, . . . , J (6)

K

∑
k=1

Bk Hkj ≥
I

∑
i=1

DiXij, ∀j, j = 1, 2, . . . , J (7)

Constraint (8) gives the limit of the number of hours that the infectious waste incinera-
tor k can be operated continuously at location j, which must not be more than one month
or 30 days, including the 6 h warm-up time. To cooperate with constraint (7), constraint (9)
replaces constraint (8) by excluding the 6 h warm-up time from the upper bound.

0 ≤ Hkj ≤ (24)(30)Skj, ∀k, j, k = 1, 2, . . . , K and j = 1, 2, . . . , J (8)

0 ≤ Hkj ≤ ((24)(30)− 6)Skj, ∀k, j, k = 1, 2, . . . , K and j = 1, 2, . . . , J (9)

Constraint (10) states that if location j is selected as the infectious waste disposal
facility, there must be at least one community hospital using its services. Constraints (11),
(12), and (13) define the binary decision variables.

I

∑
i=1

Xij = Yj, ∀j, j = 1, 2, . . . , J (10)

Xij ∈ {0, 1}, ∀i, j, i = 1, 2, . . . , I and j = 1, 2, . . . , J (11)

Yj ∈ {0, 1}, ∀j, j = 1, 2, . . . , J (12)

Skj ∈ {0, 1}, ∀k, j, k = 1, 2, . . . , K and j = 1, 2, . . . , J (13)

4. Differential Evolution (DE) Algorithm

The differential evolution (DE) algorithm is metaheuristic one and has an iteration
process that has been used extensively for solving difficult optimization problems. It is
a population-based method inspired by biological evolution, including mutation, recom-
bination, and selection. DE uses vectors to generate solutions. New offspring solutions
can be produced through mutation, recombination, and selection. To apply DE for solving
a particular problem, the vectors must be well designed to come up with the solution.
The case study is a problem in which there are many decision variables: the number of
incinerators, the incinerator sizes, the incinerator locations, and the assignment of the
community hospitals to each location. Therefore, the solution vectors are designed into
three sets (X1, X2, X3) for the easy conversion of the answer from the vectors. The details of
the initialization of the vectors, mutation, recombination, and selection can be explained
as follows.

4.1. Initialization of Vectors

To solve the problem of selecting the size and location of the infectious waste incin-
erator, a certain number of vectors called “Target Vector” are created in the first iteration.
Each target vector will consist of three sets of vectors. The first vector (X1) is used to
find the number of infectious waste disposal facilities that are to open. The second vector
(X2) determines the locations of the incinerators or facilities and the assignment of the
community hospitals to each facility. Finally, the third vector (X3) is used to find the type
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of incinerator that should be operated at each location. The vectors X1, X2, and X3 have
109 coordinates, which is equal to the number of community hospitals. Coordinate 1 means
community hospital 1, coordinate 2 means community hospital 2, and so on. For each
coordinate of vector X3, there are three sub-coordinates equal to the number of incinerator
types considered. Sub-coordinate 1 means incinerator type 1. The algorithm begins with
the randomization of a real number between 0 and 1, which is assigned to each coordinate
of vectors X1 and X2 and to each sub-coordinate of vector X3, as shown in Table 3. Then,
the initial solution to the problem can be obtained from the vector values.

Table 3. Examples of values in the coordinates of one target vector consisting of three vectors.

Vector
Sets

Coordinates (Community Hospitals)

1 2 3 . . . 108 109

X1 0.78 0.45 0.2 . . . 0.52 0.15
X2 0.8 0.91 0.85 . . . 0.81 0.35

X3 0.1, 0.85,
0.43

0.58, 0.24,
0.9

0.33, 0.18,
0.75 . . . 0.65, 0.2,

0.88
0.45, 0.31,

0.9

To obtain an initial solution, the vector X1 is first considered in order to identify
which coordinate of the vector X1 has the greatest random number value. The number of
infectious waste disposal facilities to open is equal to the order of the coordinate that has
the largest random number. For example, it is supposed that the random number of the
fifth coordinate is the largest; so, the solution is to set up five infectious waste disposal
facilities. Then, the vector X2 is considered in order to find which community hospitals
will be the locations of the facilities. To do so, the location candidate list is formed by
sorting the coordinates of the vector X2 in descending order of the random numbers. Due
to opening five facilities, the first five orders of the community hospitals in the location
candidate list will be the locations of the facilities. For example, it is assumed that the
first five orders in the location candidate list are the coordinates 52, 25, 15, 2, and 33. As
a result, community hospitals 52, 25, 15, 2, and 33 will be selected as the locations of the
infectious waste disposal facilities. To determine which type of incinerator will be used
at each location, the vector X3 is considered. For each coordinate of the selected locations,
the sub-coordinate with the largest random number identifies the type of incinerator. For
example, if coordinate 52 has sub-coordinates with random numbers equal to 0.2, 0.5,
and 0.7, then the sub-coordinate 3 has the largest random number (0.7). This means that
incinerator type 3 will be chosen to be operated at the facility located at community hospital
52. Returning to the location candidate list, an assignment of community hospitals to each
facility will be managed. Starting with the first order in the location candidate list, each
community hospital is assigned to the nearest facility under all the constraints, such as the
burning capacity of the incinerator. The assignment process continues until all community
hospitals have been assigned to the facilities. From the previous example, starting with
community hospital 52 in the first order of the list, it will be assigned to facility 1, which is
located at the location of community hospital 52 because this hospital is closest to facility
1 with the 600 kg/hour burning capacity of incinerator type 3; all the monthly infectious
waste of community hospital 52, combined with one of the other community hospitals
previously assigned to facility 1, can be eliminated. Once the assignment of the community
hospitals to the facilities is completed, the fitness function value can be computed. In
this case, the fitness function is the objective function (2). A target vector provides one
solution. The number of target vectors that should be created as a population depends on
the problem size. In general, a large population can find a better solution than the small
one. The vector giving the best fitness value or the lowest total system cost is retained, and
it will be replaced if a better solution is found.
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4.2. Mutation

The DE mutation strategy presented in this research is DE/best/2, where the number
of difference vectors involved is two, and the best target vector is considered [20]. After
generating a number of target vectors (population size) and evaluating their fitness values,
the vector with the best fitness value will be used to construct all the mutant vectors. The
variables related to the mutation process are shown below.

X1i,G, X2i,G, X3i,G Target vector i in iteration G.

V1i,G, V2i,G, V3i,G Mutant vector i in iteration G.

X1best,G, X2best,G, X3best.G Vector giving the lowest fitness value in iteration G.

X1r1,G, X1r2,G, X1r3,GX1r4,G Four random vectors of vector set 1 in iteration G.

X2r1,G, X2r2,G, X2r3,GX2r4,G Four random vectors of vector set 2 in iteration G.

X3r1,G, X3r2,G, X3r3,GX3r4,G Four random vectors of vector set 3 in iteration G.

F Scaling factor (constant real number equal to 2 in this case).

In each iteration, the mutant vector i can be obtained using Equations (14)–(16). As
seen, to obtain a mutant vector i of any given vector set (1, 2 or 3) in any given iteration, the
best target vector of that set in that iteration will be used along with four randomly chosen
target vectors of that set in that iteration.

V1i,G = X1best,G + F(X1r1,G − X1r2,G) + F(X1r3,G − X1r4,G) (14)

V2i,G = X2best,G + F(X2r1,G − X2r2,G) + F(X2r3,G − X2r4,G) (15)

V3i,G = X3best,G + F(X3r1,G − X3r2,G) + F(X3r3,G − X3r4,G) (16)

After the mutation process, the mutant vectors are obtained with different values
of coordinates from those of the target vectors. Therefore, new solutions (offspring) to
the problem are generated and can be determined with the same schemes mentioned in
Section 4.1. Finally, the best solution is updated.

4.3. Recombination

In this recombination process, a trial vector (offspring) is produced in a probabilistic
manner using the values of the coordinates of both the mutant and the target vectors. With
different values of coordinates from the parents (target and mutant vectors), the variety of
solutions to the problem can be obtained. How to obtain the values of the coordinates of the
trial vectors can be explained by Equations (17)–(19). To compute a value of the coordinate
of any trial vector, a real number between 0 and 1 (rand(j) and rand(j, k)) will be randomly
selected. If the random number is less than or equal to the coordinate exchange rate (CR),
the value in this coordinate position of the trial vector is equal to the value in the same
coordinate position of the mutant vector. In the other case, it is equal to that of the target
vector. The same condition holds for all the components of the trial vectors.

U1ij,G =

{
V1ij,G, i f (rand(j) ≤ CR)

X1ij,G, Otherwise
(17)

U2ij,G =

{
V2ij,G, i f (rand(j) ≤ CR)

X2ij,G, Otherwise
(18)

U3ijk,G =

{
V3ijk,G, i f (rand(j, k) ≤ CR)

X3ijk,G, Otherwise
(19)

U1ij,G, U2ij,G: Value of coordinate j of trial vector i of vector sets 1 and 2 in iteration G.
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U3ij,G: Value of sub-coordinate k of coordinate j of trial vector i of vector set 3 in
iteration G.

V1ij,G, V2ij,G: Value of coordinate j of mutant vector i of vector sets 1 and 2 in itera-
tion G.

V3ij,G: Value of sub-coordinate k of coordinate j of mutant vector i of vector set 3 in
iteration G.

X1ij,G, X2ij,G: Value of coordinate j of target vector i of vector sets 1 and 2 in iteration G.
X3ij,G: Value of sub-coordinate k of coordinate j of target vector i of vector set 3 in

iteration G.
rand(j): Random number in coordinate j.
rand(j, k): Random number in coordinate j and in sub-coordinate k.
CR: Coordinate exchange rate.
Equations (17)–(19) are used to produce the trial vectors of sets 1, 2, and 3, respectively.

Table 4 demonstrates the construction of a trial vector of set 1 using the coordinate exchange
rate of 0.8. For coordinate 1, the values of coordinate 1 of the target vector and the mutant
vector are 0.78 and 0.45, respectively. A random number of 0.56 is chosen, and it is less than
the CR. As a result, from Equation (17), the value of coordinate 1 of the trial vector will be
0.45. The same comparison scheme is applied for the remaining components of this trial
vector. Once all the trial vectors in a given iteration have been created, a new solution can
be interpreted from each trial vector, and the best solution is updated again.

Table 4. Examples of trial vector determinations of the first set of vectors at CR = 0.8.

Vector Set
Coordinate

1 2 3 . . . 108 109

X1 0.78 0.45 0.2 . . . 0.52 0.15
V1 0.45 0.11 0.95 . . . 1.25 0.84

Random 0.56 0.9 0.73 . . . 0.15 0.98
U1 0.45 0.45 0.95 . . . 1.25 0.15

4.4. Selection

Selection is the procedure for selecting the target vectors for the next iteration, which
can be obtained from Equation (20). The target vector i for the next iteration (Xi,G+1) will
be either the trial vector i of the current iteration (Ui,G) or the target vector i of the current
iteration (Xi,G). If the trial vector has a better fitness value than that of the target vector, the
target vector for the next iteration will be the trial vector of the current iteration. In the other
case, the target vector for the next iteration will be the target vector of the current iteration.

Xi,G+1 =

{
Ui,G, i f f (Ui,G) < f (Xi,G)

Xi,G, Otherwise
(20)

After all the target vectors for the next iteration have been created, the mutation and
recombination processes are repeated. The search for the better solution continues until
the maximum number of iterations has been reached and the best updated solution is the
solution obtained from DE. The pseudo-code corresponding to the algorithm DE is shown
as follows (Algorithm 1):
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Algorithm 1 Pseudo-Code of Differential Evolution Algorithm

1: Set Iterations, Number of Vectors, F, CR
2: Generate Initial Solution
3: For i = 1 to Number of Vectors
4: X1i,1 = random number between 0 and 1
5: X2i,1 = random number between 0 and 1
6: X3i,1 = random number between 0 and 1
7: Target vector solution, calculate objective function and update best solution
8: End for
9: For G = 1 to Max Iteration
10: Mutation
11: For i = 1 to Number of Vectors
12: V1i,G = X1best,G + F(X1r1,G − X1r2,G) + F(X1r3,G − X1r4,G)
13: V2i,G = X2best,G + F(X2r1,G − X2r2,G) + F(X2r3,G − X2r4,G)
14: V3i,G = X3best,G + F(X3r1,G − X3r2,G) + F(X3r3,G − X3r4,G)
15: Mutant vector solution, calculate objective function and update best solution
16: End for
17: Recombination
18: For i = 1 to Number of Vectors

19: U1ij,G =

{
V1ij,G, i f (rand(j) ≤ CR)

X1ij,G, Otherwise

20: U2ij,G =

{
V2ij,G, i f (rand(j) ≤ CR)

X2ij,G, Otherwise

21: U3ijk,G =

{
V3ijk,G, i f (rand(j, k) ≤ CR)

X3ijk,G, Otherwise
22: Trial vector solution, calculate objective function and update best solution
23: End for
24: Selection
25: For i = 1 to Number of Vectors

26: Xi,G+1 =

{
Ui,G, i f f

(
Ui,G

)
< f

(
Xi,G

)
Xi,G, Otherwise

27: End for
28: End for
29: Return best solution

5. Results
5.1. Solving Problems with Mathematical Models

In the beginning, Lingo version 17 running on an Intel(R) CoreTM i7–8700 CPU
E8400 @ 3.20 GHz Ram 16 GHz, was used to solve the problem of the case study with
the original mathematical model, which has the non-linear objective function (1) and the
non-linear constraint (6). The result from Lingo is shown in Figure 3a. As seen, the local
optimal solution is obtained with the objective function value of 657,403 THB/month,
compared to 948,470 THB/month, which is the result of Lingo version 11 from [6], and the
computational time is 1 h 30 min and 51 s. To achieve the global optimal solution, the non-
linear objective function, the non-linear constraint (6), and constraint (8) are transformed to
the linear objective function (2) and the linear constraints (7) and (9), respectively. Then,
the modified mathematical model is solved using Lingo again. Figure 3b displays the
result from Lingo. The global optimal solution is found with the objective function value of
569,563 THB/month, and the computational time reduces to only 1 min and 45 s.



Computation 2023, 11, 10 13 of 20Computation 2023, 11, x 13 of 20 
 

 

(a) (b) 

Figure 3. Searching for answers to the Lingo program with mathematical equations before (a) and 

after (b) development. 

Now, the proposed DE algorithm is applied to solve the problems. The algorithm is 

coded in C++ through Dev C++ version 5.11, running on the same computer used for 

Lingo. In addition to the case study, three sizes of problems—small (50 community hos-

pitals), medium (100), and large problems (150)—are also tested to measure the perfor-

mance of the proposed algorithm. All instances have been randomly generated as follows. 

The average amount of infectious waste (kilogram per month) and the frequency of the 

collection of the infectious waste per month from each community hospital are randomly 

generated from the uniform distribution on [80,4000] and [4,8], respectively. The locations 

of the community hospitals are generated uniformly in the square [0,1000]2R2, and Eu-

clidean distances are used to measure the transportation costs. The relevant parameters 

are defined as shown in Table 5. A preliminary experiment is conducted to evaluate the 

predefined parameters (F, CR), which are given in Equations (14)–(19). The DOE method 

of central composite design (CCD) is used to determine the optimal values of F and CR. 

The corresponding results are analyzed using the Minitab software (Minitab Inc.). The 

response optimizer results are shown in Figure 4, and therefore, these predefined param-

eters will be used in later experiments, as follows: F = 1.4818 and CR = 0.2774. 

Table 5. Relevant parameter configurations for the differential evolution algorithm. 

Parameter Configure the Relevant Parameters 

1. Maximum Iterations 1000 

2. Number of Vectors Four times the number of hospitals 

3. Scaling Factor: � 1.4818 

4. CR 0.2774 

Figure 3. Searching for answers to the Lingo program with mathematical equations before (a) and
after (b) development.

Now, the proposed DE algorithm is applied to solve the problems. The algorithm is
coded in C++ through Dev C++ version 5.11, running on the same computer used for Lingo.
In addition to the case study, three sizes of problems—small (50 community hospitals),
medium (100), and large problems (150)—are also tested to measure the performance of the
proposed algorithm. All instances have been randomly generated as follows. The average
amount of infectious waste (kilogram per month) and the frequency of the collection of the
infectious waste per month from each community hospital are randomly generated from
the uniform distribution on [80,4000] and [4,8], respectively. The locations of the community
hospitals are generated uniformly in the square [0,1000]2⊂R2, and Euclidean distances are
used to measure the transportation costs. The relevant parameters are defined as shown
in Table 5. A preliminary experiment is conducted to evaluate the predefined parameters
(F, CR), which are given in Equations (14)–(19). The DOE method of central composite
design (CCD) is used to determine the optimal values of F and CR. The corresponding
results are analyzed using the Minitab software (Minitab Inc.). The response optimizer
results are shown in Figure 4, and therefore, these predefined parameters will be used in
later experiments, as follows: F = 1.4818 and CR = 0.2774.

Table 5. Relevant parameter configurations for the differential evolution algorithm.

Parameter Configure the Relevant Parameters

1. Maximum Iterations 1000
2. Number of Vectors Four times the number of hospitals
3. Scaling Factor: F 1.4818
4. CR 0.2774
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Figure 4. Predefined parameter optimization.

For small instances, computational experiments are conducted to measure the perfor-
mance of DE and Lingo and to demonstrate how well the modified mathematical model
works. Both mathematical models have been verified to be accurate. Table 6 displays the
computational results. The results indicate that Lingo, with the original mathematical
model, can find the solution with the local optimal state. On the other hand, DE and Lingo
with the modified mathematical model can find global optimal solutions within a short
processing time.

Table 6. Computational Results of DE and Lingo for small instance (50 Nodes).

Instance
Lingo—Original Mathematical Model DE Lingo—Modified Mathematical Model

Status Total Cost
(THB/Month)

Processing
Time(s)

Best
Total Cost

(THB/Month)

Best Pro-
cessing
Time(s)

Status Total Cost
(THB/Month)

Processing
Time(s)

1 Local Optimal 632,639 58 610,504 17.292 Global Optimal 610,504 15
2 Local Optimal 742,170.6 53 699,410.6 4.984 Global Optimal 699,410.6 8
3 Local Optimal 672,856.7 55 641,236.7 16.636 Global Optimal 641,236.7 7
4 Local Optimal 758,315 50 723,335 4.296 Global Optimal 723,335 18
5 Local Optimal 746,705 60 707,319.96 1.937 Global Optimal 707,319.96 25
6 Local Optimal 671,182.9 59 659,862.9 40.827 Global Optimal 659,862.9 5
7 Local Optimal 636,229.8 51 595,729.8 22.726 Global Optimal 595,729.8 31
8 Local Optimal 668,438.1 63 620,997.6 14.71 Global Optimal 620,997.6 21
9 Local Optimal 715,228.6 51 682,633.6 50.261 Global Optimal 682,633.6 33

10 Local Optimal 719,170.1 57 617,558.4 12.681 Global Optimal 617,558.4 31

Table 7 shows the percentage gap of the total cost and processing time of DE and Lingo
with the modified mathematical model compared to the result from Lingo with the original
mathematical model. The percentage gap can be calculated by using (21), where Rv is the
solution obtained from the proposed DE and Lingo with the modified mathematical model,
and RL is the solution obtained from Lingo with the original mathematical model. As can
be seen, for small instances the proposed DE and Lingo with the modified mathematical
model outperform Lingo with the original mathematical model, with an average percentage
gap of 5.77% for the total cost and around 60% for the computational time.

Percentage Gap =

(
Rv − RL

RL

)
× . . . % (21)
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Table 7. Percentage gap of the total cost and the processing time of DE and Lingo with the modified
mathematical model compared to the results of Lingo with the original mathematical model.

Instance
Total Cost Processing Time

DE Lingo—Modified
Mathematical Model DE Lingo—Modified

Mathematical Model

1 −3.50 −3.50 −70.19 −74.14
2 −5.76 −5.76 −90.60 −84.91
3 −4.70 −4.70 −69.75 −87.27
4 −4.61 −4.61 −91.41 −64.00
5 −5.27 −5.27 −96.77 −58.33
6 −1.69 −1.69 −30.80 −91.53
7 −6.37 −6.37 −55.44 −39.22
8 −7.10 −7.10 −76.65 −66.67
9 −4.56 −4.56 −1.45 −35.29

10 −14.13 −14.13 −77.75 −45.61

Average −5.77 −5.77 −66.08 −64.70

Because both DE and Lingo with the modified mathematical model provide the
optimal solutions, the computational times of both methods are compared using statistical
analysis. The paired t-test with a 0.05 significance level is conducted to evaluate whether DE
and Lingo provide different computational times. Table 8 shows a p-value of the test of the
hypothesis using a paired t-test which is greater than 0.05. Therefore, it can be concluded
that the average computational times of DE and Lingo with the modified mathematical
model are not significantly different.

Table 8. Result of the paired t-test for the average computational time of DE and Lingo with modified
mathematical model for small instances.

Detail p-Value

Processing Time 0.895

To measure the performance of the developed DE, the results obtained from DE are
compared to the ones obtained from Lingo that solve the modified mathematical model
of the problem. Table 9 displays the comparison of the results from both methods. It can
be seen that both methods can find the global optimal solutions of all 30 instances. For
the large size of the problem (instances 21–30), DE provides much less computational
time. Finally, for the case study, both Lingo and DE can find the global optimal solution.
However, DE outperforms Lingo in the computational time aspect, which is confirmed by
the results of the hypothesis testing, as shown in Table 10.

From Table 10, the null hypotheses are rejected for both tests. It can be concluded
that the average computational time of DE is significantly less than that of Lingo with the
modified mathematical model.

From Figure 5, for small-sized instances, Lingo and DE can find optimal solutions
with similar short processing times. However, Lingo takes longer time to find the solutions
for the medium- and large-sized instances. The computational time of Lingo increases
exponentially as the problem size increases, while that of DE increases linearly. Therefore,
it can be concluded that DE outperforms Lingo in terms of the computational time.
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Table 9. Comparison of results from the Lingo program and the differential evolution algorithm.

Instance
Number

of
Hospital

Result from Lingo Result from DE Difference
in

Total Cost
(%)

Status Total Cost
(THB/Month)

Processing
Time(s)

Best Total
Cost

(THB/Month)

Best
Processing

Time(s)

1 50 Global optimal 610,504 15 610,504 17.292 0.0000
2 50 Global optimal 699,410.6 8 699,410.6 4.984 0.0000
3 50 Global optimal 641,236.7 7 641,236.7 16.636 0.0000
4 50 Global optimal 723,335 18 723,335 4.296 0.0000
5 50 Global optimal 707,319.96 25 707,319.96 1.937 0.0000
6 50 Global optimal 659,862.9 5 659,862.9 40.827 0.0000
7 50 Global optimal 595,729.8 31 595,729.8 22.726 0.0000
8 50 Global optimal 620,997.6 21 620,997.6 14.71 0.0000
9 50 Global optimal 682,633.6 33 682,633.6 50.261 0.0000
10 50 Global optimal 617,558.4 31 617,558.4 12.681 0.0000
11 100 Global optimal 1,078,002 124 1,078,002 392.462 0.0000
12 100 Global optimal 1,095,953 3,239 1,095,953 412.25 0.0000
13 100 Global optimal 1,070,054 143 1,070,054 299.107 0.0000
14 100 Global optimal 1,108,291 161 1,108,291 554.625 0.0000
15 100 Global optimal 1,074,216.07 1,986 1,074,216.07 761.654 0.0000
16 100 Global optimal 1,050,140 2,210 1,050,140 558.452 0.0000
17 100 Global optimal 1,081,190 5,033 1,081,190 307.007 0.0000
18 100 Global optimal 1,112,685 5,420 1,112,685 428.688 0.0000
19 100 Global optimal 1,106,656 1,900 1,106,656 401.476 0.0000
20 100 Global optimal 1,071,397 3,637 1,071,397 283.793 0.0000
21 150 Global optimal 1,469,615 16,556 1,469,615 2,315.933 0.0000
22 150 Global optimal 1,467,808 27,258 1,467,808 1505.632 0.0000
23 150 Global optimal 1,526,718 38,603 1,526,718 1674.715 0.0000
24 150 Global optimal 1,535,098 40,011 1,535,098 2,031.46 0.0000
25 150 Global optimal 1,432,549 42,911 1,432,549 2,272.94 0.0000
26 150 Global optimal 1,511,526 148,775 1,511,526 1672.97 0.0000
27 150 Global optimal 1,508,135 212,837 1,508,135 2165.418 0.0000
28 150 Global optimal 1,450,927 52,503 1,450,927 2157.674 0.0000
29 150 Global optimal 1,444,293 128,805 1,444,293 1552.48 0.0000
30 150 Global optimal 1,465,037 117,992 1,465,037 2382.795 0.0000

Case study 109 Global optimal 569,562.66 105 569,562.66 11.928 0.0000

Table 10. Results of the paired t-test for average computational time of DE and Lingo with modified
mathematical model for all 30 instances.

Null Hypotheses Alternative Hypotheses p-Value

H0 : µd = 0 H1 : µd 6= 0 0.008
H0 : µd ≤ 0 H1 : µd > 0 0.004

µ1 = average computational time of Lingo with the modified mathematical model. µ2 = average computational
time of DE. µd = µ1 − µ2.
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5.2. Case Study

From Table 11, it can be seen that PSO, ILS, and the mathematical programming in the
past research have not been able to find the optimal solution. Therefore, in this research
the mathematical model was adjusted to become linear, which made it possible to solve
to optimality.

Table 11. Comparison of the total cost of solving case studies.

Method Status Total Cost
(THB/Month)

Difference in
Total Cost with Optimal

Solution (%)

Original mathematical model by Lingo [6] Local Optimal 657,402.66 13.36
Particle Swarm Optimization (PSO) [6] - 588,298 3.18

Iterated Local Search (ILS) [7] - 570,183 0.11
Mathematical model (Linear) by Lingo Global Optimal 569,562.66 0.00

Differential Evolution (DE) - 569,562.66 0.00

As mentioned in Section 5.1, DE can solve to optimality the problem of selecting the
size and location of the infectious waste incinerators in the upper part of northeastern
Thailand. DE can find the global optimal for every repetition and has less computational
time than Lingo. The optimal results shown in Table 12 revealed that the total cost is THB
569,562.66, which consists of the cost of transporting the infectious waste of THB 245,400,
fixed operating expenses of THB 124,562, and the cost of operating an incinerator for
infectious waste of THB 199,600.66. The average time for finding the best solution is 56.80 s,
and the total processing time is 154.44 s on average. Two locations, Location 25 (Nonghan
Hospital) and Location 52 (Kosumphi-sai Hospital), were selected as the infectious waste
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disposal facilities. Both facilities operate the same type of incinerator, with a burning
capacity of 300 kg per hour. The facility located at Nonghan Hospital serves 70 hospitals,
and the other, located at Kosumphisai Hospital, provides services for 39 hospitals.

Table 12. The result of selection of the suitable infectious waste disposal locations and incinerators.

Suitable disposal
Facilities Hospitals Type of

Incinerator
Burning Time
(Hour/Month)

Total Cost
(THB/Month)

P25

H1, H2, H3, H4, H7, H18, H20,
H21, H22, H23, H24, H25, H26,
H27, H28, H29, H30, H31, H32,
H33, H34, H35, H36, H37, H38,
H39, H40, H41, H42, H43, H44,
H45, H46, H47, H48, H49, H50,
H68, H69, H73, H74, H75, H76,
H77, H78, H79, H80, H81, H82,
H83, H84, H85, H86, H87, H88,
H89, H90, H92, H94, H95, H96,
H97, H102, H103, H104, H105,

H106, H107, H108, H109
(70 hospitals)

300 Kg/Hr. 209.75
569,562.66

P52

H5, H6, H8, H9, H10, H11, H12,
H13, H14, H15, H16, H17, H19,
H51, H52, H53, H54, H55, H56,
H57, H58, H59, H60, H61, H62,
H63, H64, H65, H66, H67, H70,
H71, H72, H91, H93, H98, H99,

H100, H101 (39 hospitals)

300 Kg/Hr. 150.54

6. Conclusions and Discussion

Disposing of the infectious waste is a concern for all hospitals. In northeastern Thai-
land, there are 109 community hospitals, whose monthly total amount of infectious waste is
round 104,487 kg. Almost all of them use services of remote private companies to eliminate
their infectious waste at a very high cost. The policy of having the infectious waste dis-
posal facilities in the same region as the community hospitals will help to reduce the total
system costs, especially the transportation cost. The differential evolution (DE) algorithm is
proposed to solve the problems of choosing the suitable location in which to establish the
infectious waste disposal facility, the suitable type of the incinerator to use at each facility,
and the optimal assignment of the community hospitals to each facility.

In this problem, each community hospital can be a potential location for the infectious
waste disposal facility. There are three types of the incinerator. Each facility can use only
one incinerator. The transportation of infectious waste from the hospital to the facility
is by direct shipping. The non-linear original mathematical model of the problem was
transformed to the linear form that can be more easily solved by Lingo. In addition to the
case study, thirty random instances were also tested to measure the performance of the
proposed DE. For all the instances, both DE and Lingo could find the optimal solutions. In
the computational time aspect, DE and Lingo performed equally well for small problem
instances, but for the medium- and large-sized problem instances, Lingo had a much longer
computational time than DE. Therefore, it can be concluded that DE outperforms Lingo.
For the case study, both DE and Lingo can solve the problem to optimality, but for the
computational time, DE outperforms Lingo as well. The optimal result is to locate the
infectious waste disposal facility at Nonghan Hospital and Kosumphisai Hospital. Each
facility utilizes an incinerator with a burning capacity of 300 kg per hour.

From the previous research, PSO [6] and ILS [7] were proposed to solve the case study
that was formulated as a non-linear mathematical model. Neither of them could find the
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optimal solution. On the other hand, the DE developed in this research could solve the
problem to optimality with less computational time.

In the future research, a specific local search will be conducted with DE, and the scope
of the problem will be expanded to cover all community hospitals in the northeastern part
of Thailand. A hybrid DE will also be developed.
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