
Citation: Sung, N.; Kim, S.; Cho, N.

An Efficient Path Planning Algorithm

Using a Potential Field for Ground

Forces. Computation 2023, 11, 12.

https://doi.org/10.3390/

computation11010012

Academic Editor: Demos T. Tsahalis

Received: 22 December 2022

Revised: 6 January 2023

Accepted: 9 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

An Efficient Path Planning Algorithm Using a Potential Field
for Ground Forces
Nakyeong Sung , Suhwan Kim and Namsuk Cho *

Department of Operations Research, Korea National Defence University(KNDU),
Nonsan 33021, Republic of Korea
* Correspondence: ncho64@gmail.com

Abstract: With the development and proliferation of unmanned weapons systems, path planning is
becoming increasingly important. Existing path-planning algorithms mainly assume a well-known
environment, and thus pre-planning is desirable, but the actual ground battlefield is uncertain, and
numerous contingencies occur. In this study, we present a novel, efficient path-planning algorithm
based on a potential field that quickly changes the path in a constantly changing environment. The
potential field is composed of a set of functions representing enemy threats and a penalty term
representing distance to the target area. We also introduce a new threat function using a multivariate
skew-normal distribution that accurately expresses the enemy threat in ground combat.

Keywords: path planning; potential field; threat function; ground forces

1. Introduction

Unmanned systems such as robotics, autonomous vehicles, and UGVs (unmanned
ground vehicles) have been widely used in commercial and industrial applications. Among
the various technologies applied to unmanned systems, one of the most important is path
planning, a method for planning paths to move an object from a start point to an end
point while avoiding obstacles. Path planning can be applied to various environments
with diverse obstacles. Kumar et al. [1] applied path planning to shelves as obstacles in a
warehouse, and Hu et al. [2] considered cars as obstacles on a road. In such environments,
the general path-planning procedure starts with analyzing prior information about the
given environment, defining the space (whether discrete or continuous), and implementing
obstacles depending on the defined space. Then, algorithms are applied to plan the path.
Based on this general path planning concept, existing studies suggest various methods
depending on the environment where their experiments are placed. For example, ŠIŠLÁK
et al. [3] planned a path on a 2-dimensional discrete space targeting a robotics using A*
algorithm. Iswanto et al. [4] targeted a quadrotor model to plan a path on a 3-dimensional
continuous space.

In the military context, path planning is important for unmanned weapons systems,
which are gradually being developed and used on actual battlefields. Unmanned weapons
systems such as UAVs (unmanned aerial vehicles) are not significantly affected by the
environment because they operate in the air, above the terrain. However, UGVs are highly
affected by the battlefield environment, which is uncertain and unpredictable. Since threats
become obstacles on the battlefield [5], detection of the enemy’s position is very important,
but the position obtained from prior information analysis continuously changes over time
and is unpredictable. Additionally, since some threats, such as surveillance distance or rifle
range, do not physically exist, it is difficult to implement these threats as obstacles. For
these reasons, in some military operations, applying existing path-planning methods that
provide pre-planned paths is not efficient. Exceptionally, if the prior information on the
environment of a given battlefield is clear, there is no problem with applying the existing
path-planning methods. However, since the ground battlefield environment of modern

Computation 2023, 11, 12. https://doi.org/10.3390/computation11010012 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11010012
https://doi.org/10.3390/computation11010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-2767-5740
https://orcid.org/0000-0003-2754-3120
https://doi.org/10.3390/computation11010012
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11010012?type=check_update&version=1


Computation 2023, 11, 12 2 of 13

warfare changes rapidly, information analysis on the environment in which operations
are conducted may not be sufficient. In order to overcome these battlefield characteristics,
the Korean Ministry of National Defense is making efforts to develop MUM-T (manned-
unmanned teaming), which is a new type of operation to achieve maximum efficiency by
supplementing the shortcomings of manned and unmanned weapons systems. Recently,
its utilization in ground forces is increasing. Based on this background, our study targets
ground forces and assumes an operational situation in which a sudden enemy threat may
occur in a continuously changing environment. In this case, algorithms applied to robots
such as UGVs should not take up a lot of computational resources, so we designed a
computationally cheap algorithm.

Our study presents a new path-planning algorithm that can be applied to the ground
battlefield environment. The algorithm satisfies two conditions. First, it plans a path
in near-real time, which enables a unit to respond quickly to changes on the battlefield.
For example, if the enemy’s position changes during maneuvering due to ambush or
concealment, our algorithm immediately finds a new path. Second, we implement enemy
threats as obstacles by using a threat function. This function can change the size and shape
of the enemy threat depending on the situation.

In Section 2, we introduce previous research on path planning. In Section 3, we describe
the algorithmic path-planning sequence. We present the results obtained by applying the
algorithm to sample models in Section 4 and conclude the research in Section 5.

2. Literature Review

Path planning is an optimization problem that plans an optimal path while avoiding
collisions with obstacles. There are several common components that most path-planning
studies consider. Although each study uses different terminology, the usual components
are space, obstacles, and initial and goal states.

Space: The space can be an arbitrary two-dimensional space or a specific space such as
a warehouse or a road. The space state allows for both discrete (finite or countably infinite)
and continuous (uncountably infinite) states. The space definition is important because it
affects both the design of the problem and the algorithm used.

Obstacles: Many studies focus on the implementation of obstacles, because this sig-
nificantly affects the results of experiments. Obstacles can be an object, a wall, or in some
cases a space that should not be accessed. The various shapes of obstacles are differently
implemented according to the state space. In discrete space, the obstacles are simply
expressed in a grid form [3]. In this case, a cost or probability is assigned to each cell to
distinguish obstacles from spaces where a robot can move. In continuous space, obstacles
can be expressed as various shapes, such as circles or curves [6].

Initial and goal state: Robots or vehicles have an initial point to start from and a goal
point where the algorithm ends. In our study, the initial state is a start point, and the goal
state is a target.

Depending on the specific definitions of the three components mentioned above,
there are various methods of path planning. Among them, there are three representative
path-planning methods, commonly distinguished in terms of space.

In discrete space, grid-based approaches, the most representative method set the
space and obstacles with a grid [3]. This method is widely used and developed in various
ways because it can easily configure the space, and such algorithms are well known for
efficient path searching. That said, there are two major limitations that apply to situations
where real-time path planning is required. First, prior information analysis of the given
environment and obstacles is required, because it is necessary to decide at what interval
the grid should be applied according to the size of the space and the shape of obstacles.
The second is that as the space becomes larger or the grid becomes denser, the complexity
of the problem increases rapidly and the computation time becomes longer [7]. Thus, most
grid-based algorithms use heuristic methods [8] such as A* or D* algorithms, or ant colony
optimization [3,9,10].



Computation 2023, 11, 12 3 of 13

In continuous space, sampling-based approaches and potential-field approaches are
typically used. Sampling-based approaches, such as rapidly-exploring random trees (RRTs)
or probabilistic roadmaps, are used for stochastic searches [11]. These methods generate uni-
formly randomized direction or node samples and explore from start to end point [12]. RRTs
and PRMs have been recognized as effective algorithms in high-dimensional spaces [13].
Nevertheless, as the size of space gets larger or obstacle shapes become more complex, the
size of the sampled set increases [11].

For potential-field-based approaches, Khatib and Oussama (1986) [14] suggested the
concept of a potential field that consists of repulsive and attractive forces. Repulsive forces
are used to avoid obstacles, and attractive forces are employed to reach the goal. These
forces are implemented as functions. In this space, a robot moves autonomously due to
forces without colliding with obstacles. This method is well known for real-time path
planning, since it rapidly provides a local-minimum solution. However, this method has
two typical problems. First, a local minimum trap can occur when a robot encounters a
narrow passageway or multiple obstacles. Second, most studies have applied simple types
of obstacles, such as circles [4] or walls. None of these studies showed a way to implement
enemy threats which do not physically exist on the battlefield.

The uniqueness of our study derives from a review of the literature as follows:

1. We present a new path-planning algorithm that provides a path in near-real time
reflecting the continuously changing environment.

2. To configure the environment, we define the potential field based on a penalty function.
3. We present a threat function that reflects the features of enemy threats on the battlefield.

3. Methodology

This section presents the problem definition considering the ground battlefield envi-
ronment and suggests a new algorithm for planning a path.

3.1. Assumption

Our approach is based on the potential field method, with the field reflecting the
battlefield environment. A two-dimensional continuous space is given in which a target
exists as a goal to reach. Further, we assume the shapes of obstacles are defined as threats
induced by the enemy’s defensive fighting position (DFP). A moving object—in other
studies, usually a robot—is a friendly unit.

Figure 1 shows the concept of our approach’s configuration space with enemies, target,
and a friendly unit. Even though the defensive position is shown as having already been
set, we assume that a new enemy may suddenly appear or the existing DFP may change.
Operationally, it is important to reach the target within the given time, so we focus not only
on finding a collision-free path but also on determining the shortest of such paths.

Figure 1. An example of a conceptual diagram of our approach.



Computation 2023, 11, 12 4 of 13

3.2. PFP (Potential Field Based on Penalty Function) Model

The problem we define is to plan a path for friendly units to reach the target while
avoiding enemy threats. We suggest the potential field based on a penalty function (here-
after referred to as PFP) model. In general, a penalty function is an objective function
modified by reformulating a constraint as a penalty term in order to avoid straying too
far from the feasible region [15]. The penalty function is defined as the sum of the threat
function tj(x) with multiplier wj and the goal function g(x) with multiplier δ. The threat
function acts in the potential field as a repulsive force that pushes a unit away from enemies,
and the goal function acts as attractive force that pulls the unit toward the target.

Let the variable x be the coordinates of of the unit’s current position and j be an
element in a set of threats T . Our PFP model is as follows.

min f (x) = ∑
j∈T

wjtj(x) + δg(x) (1)

We define the goal function g(x) as a penalty term whose value increases with the
unit’s distance from the target. Specifically, we define g(x) as the 2-norm distance between x̂
(the target location) and x (current location of the unit) normalized by the distance between
the start and end point. The definition of g(x) is as follows.

g(x) =
‖x̂− x‖2

‖x̂− x0‖2 (2)

To further discuss the PFP model’s procedure, we need to specify the threat function.
Let tj(x) : R2 → R be a continuous and differentiable function of the enemy unit j’s
position. tj(x) can be either convex or non-convex. In reviewing other literature in which
the potential field is composed of functions to find the proper threat function, various
functions have been applied to the potential field method. Kim et al. [16] configured a
potential field by using a harmonic function. Figure 2 shows an example of a harmonic
function’s surface plot. Hwang et al. [17] used a set of linear functions to implement the
field of obstacles. Rasekhipour et al. [18] implemented triangular-shaped obstacles on the
potential field.

Figure 2. An example of a harmoric function’s surface plot.

However, these functions are not appropriate for our approach, because the threat
function tj(x) is derived from the properties of enemy DFPs. For example, in a real
battlefield, the threat increases as the unit gets closer to an enemy. Additionally, the shape
of the threat induced by an enemy DFP is a distorted circle because the enemy defenses
are oriented in a specific direction, rather than all directions uniformly: the threat is wide
and gently sloping in the front, and narrow and steep in the rear. To satisfy these spatial



Computation 2023, 11, 12 5 of 13

features, we suggest an MSN (multivariate skewed-normal) distribution [19] as a threat
function. The MSN distribution suggested by Azzalini and Dalla Valle (1996) takes the form

t(x) = 2φ(x; σ1)Φ(αx; σ2) (3)

where φ and Φ denote the N(0, 1) density and the distribution function, respectively. The
parameters σ1 and σ2 are the standard deviations of density and distribution, and α is a
given parameter. The details of this case will not be discussed in this paper. Instead, we
suggest some parameters that determine the shape of the threat function. The parameters
σ1 and σ2 are 2 × 2 matrices in which anti-diagonal elements are identical and determine

the degree of distortion. The parameter α =

[
α1
α2

]
determines the position of distortion

“position” which allows us to adjust the direction in which the enemy DFP is facing. Figure 3
shows the various shapes of enemy threats that changes according to these parameters.

(a) σ1 =

[
1 0.1
0.1 1

]
, σ2 =

[
1 0
0 1

]
, α =

[
−3
0.5

]
(b) σ1 =

[
1 0.1
0.1 1

]
, σ2 =

[
0.3 0
0 1

]
, α =

[
−3
0.5

]

(c) σ1 =

[
1 0.1
0.1 1

]
, σ2 =

[
0.3 0
0 1

]
, α =

[
−0.5
−3

]
(d) σ1 =

[
1 0.1
0.1 1

]
, σ2 =

[
0.3 0
0 1

]
, α =

[
−2
3

]

Figure 3. Various threat function shapes by MSN distribution: (a) basic shape; (b) changing the degree
of distortion; (c) changing direction toward the south; (d) changing direction toward the northwest.

Figure 4 shows an example of a PFP model’s surface plot. A descending slope is drawn
across the plot from the start point to the target point. Threats are present In the field in the
form of small mounds. The target is located at the lowest point of the potential field.



Computation 2023, 11, 12 6 of 13

(a) (b)

Figure 4. Example of the PFP model’s 3D surface plot: (a) 3D surface plot viewed from above; (b) 3D
surface plot viewed from side.

3.3. PFP Algorithm

Our approach is based on the line-search method. This method is generally applied on
an unconstrained optimization model. The line-search procedure is as follows. First, at any
point, a direction is searched by using first-order information for a given objective function.
Second, the point moves one step to the next position by following the resulting direction.
Third, this procedure is repeated until the point reaches a local minimum solution.

Figure 5 shows a conceptual diagram of our model. Red arrows are in opposite
directions to threat function gradients, and the blue arrow is in the opposite direction to the
gradient of the goal function. Black arrows are directions at the unit’s location determined
as weighted sums of threat and goal vectors. Small blue circles connected by black arrows
are current unit positions at the kth iteration, and the xk next to each blue circle represents
its coordinates, where k ∈ {0, 1, 2, · · · }. We define each xk as a sequence, and a set of
sequences {xk} draws a path on the given space. Our primary interest in this study is not
the local minimum solution x*, rather a set of sequences {xk}.

Figure 5. Sample conceptual diagram of a PFP model.

We next present the details of applying the line-search method. Let pk be a search
direction where pk ∈ [−1, 1] × [−1, 1]. At any point xk, the next point is defined as



Computation 2023, 11, 12 7 of 13

xk+1 = xk + αk pk, where the given parameter αk is the step length. We obtain first-order
information by ∂

∂x f (x):

5 f (xk) = ∑
j∈T

wj5 tj(xk) +
2δk

‖x̂− x0‖2 (x̂− xk) (4)

Since our objective function is a minimization problem, the direction pk needs to be a
descent gradient. We choose the search direction at xk as

pk = −
5 f (xk)

‖ 5 f (xk)‖
(5)

Our approach is similar to descending a mountain efficiently. A climber searches
direction based on the steepest slope at his position, proceeding down to the lowest point
of the mountain while avoiding rocks or trees. Likewise, the friendly unit starts from the
highest point of the potential field and moves step by step following the steepest descent
gradient at each point to reach the lowest point of the field. The Algorithm 1 implementing
this process is as follows.

Algorithm 1 PFP algorithm.

1: Given : x̂, tj(x), δk, ∀j ∈ T , k ∈ K
2: Initialization : x0 = starting point, δ0 = 0.08
3: while k = MAXITER or stop condition do
4: Calculate5 f (xk) = ∑j∈T wj5 tj(xk) + δk5 g(xk)

where,5tj(xk)* ≈
[

tj(x(1)k +ε)−tj(x(1)k )
ε ,

tj(x(2)k +ε)−tj(x(2)k )
ε

]T

, (0 < ε ≤ 1e− 10)**

where, x(1)k and x(2)k are x and y - coordinates of xk, respectively,

5: Calculate pk = −
5 f (xk)
‖5 f (xk)‖

6: xk+1 ← xk + αk pk
where, αk ∈

[
10−1, 10−2]**

7: k← k + 1
8: (If necessary) update δk
9: Stop condition : ‖xk − x̂‖ ≤ 0.1

10: end while
11: Return sequence of xk as a path

* We approximate gradient of the threat function.
** Empirically chosen

This algorithm iterates the line-search method until the friendly unit reaches the target.
In the iteration, we approximate the gradient of the threat function because the closed form
of first order information of the MSN distribution is not known [19,20]. Additionally, we
suggest αk and δk empirically because the situation varies depending on the size of space
and the number of enemy threats. The parameter δk is important because it determines the
size of the attractive force from the target. We describe the details for δk in Section 4.

4. Computational Results

To verify the effectiveness of the algorithm proposed in this study, we experiment
with various instances. The algorithm was coded in MATLAB (R2021b 9.11.0.1809720) and
performed on an (Intel(R) Core(TM) i5-10210U CPU with 8 GB RAM.

We aimed to improve and check the algorithm in a simple instance consisting of a
10×10 space and two enemy threats. Additionally, we conducted several experiments to
choose values for two parameters, δk and αk, because these parameters significantly affect
the path-planning result. Based on the experiments, we empirically chose δk and αk that



Computation 2023, 11, 12 8 of 13

show the most stable result. Table 1 shows the simple instance and given parameters. The
result in this instance is shown in Figure 6.

Table 1. Simple instance and parameters.

MAXITER Start Point Target Enemy
Position δk αk

K = 300 x0 = (0, 0) x̂ = (10, 10) Enemy 1 = (4, 6)
Enemy 2 = (7, 3)

0.08 0.1

In Figure 6, the two contour plots (red lines) represent enemy threats. The blue line,
drawn as a sequence of small dots, is a path. As we can see in Figure 6, we obtain a path
that avoids enemy threats and reaches the target. Furthermore, it takes less than 2 s of
computation time to obtain this result.

We now apply the algorithm to a larger-sized instance. The size of the space is 20
× 20, and the number of enemy threats is six. We conducted experiments in various
environments, changing the positions of the start point, target, and enemy threats. Based
on this experiment, it takes less than 5 s of computational time to plan a collision-free path.
Figure 7 shows the results of the expanded experiments.

Figure 6. Path planning result for a simple instance experiment.

Additionally, we experimented to see if the algorithm works even in a changing
environment. Contingency situations are likely to happen in military contexts and could
affect another action or situation [21], such as ambush, concealment, or a situation caused
by inaccurate prior information analysis. Hence, we create a situation in which an enemy
suddenly appears while a unit is maneuvering toward the target.

Figure 8 shows the experimental results. The situation is as follows. At first, there are
two enemies, and the expected path is shown in Figure 8a. We bring a new enemy when
the unit reaches coordinates xk = (4.6, 4.9). In this situation, as shown in Figure 8b, the unit
follows a modified path that is computed based on a new start point and the new enemy
threat position. This process is repeated whenever information about the environment
is updated.



Computation 2023, 11, 12 9 of 13

(a) (b)

(c) (d)

Figure 7. Path planning results in large instances: (a) Initial state of expanded instance. (b) Changing
the start and target point. (c) Changing enemy threat positions. (d) Changing all components.

(a) (b)

Figure 8. Path planning in a contingency situation: (a) initial state with two enemy threats; (b)
contingency situation: a new enemy appears.

The parameter δk depends closely on both the threat function and the goal function.
Figure 9 shows the different path-planning results according to the choice of δk. These
results show that the choice of δk has a rule such that a large δk causes the unit to ignore
enemy threats, and a small δk makes the unit move further away from enemy threats; if it is
too small, the unit cannot reach the target. In Table 2 below, we suggest the appropriate
δk values that we empirically obtained in various sizes of space. Although we suggest
empirical data for δk, the choice of δk can be flexible depending on the operational situation.



Computation 2023, 11, 12 10 of 13

For example, if a unit needs to reach a target as fast as possible, δk needs to be increased.
Conversely, if the purpose of an operation is to minimize vulnerability to enemy threats, δk
needs to be decreased.

(a) (b)

Figure 9. Effect on the path planning of choice of δk: (a) result when δk is large (δk = 2); (b) result
when δk is small (δk = 0.01).

Table 2. The suggested range of δk that was empirically obtained.

Size of Space ‖x̂− x0‖2 The Suggested Range of δk

10 × 10 200 0.08 ≤ δk ≤ 0.2
20 × 20 400 0.3 ≤ δk ≤ 0.5
30 × 30 1800 0.7 ≤ δk ≤ 0.9

Even though the PFP algorithm performs efficiently and reaches the target in various
conditions, we found a problem when changing the positions of the enemy threats and
the size of the space. The problem is said to be a cycle [22], meaning that the sequence xk
obtained by the algorithm converges to a specific point that is not the target point. There are
two typical reasons that cause the cycling problem. First, a small δk applied to an expanded
space causes cycling because the distance between the start and target point affects the
vector of the goal function, as described in Equation (2). Second, if the unit is surrounded
or blocked by enemy threats, as shown in Figure 10, cycling can arise.

There are various empirical solutions to escape cycling. We suggest some of these.
The simplest solution is to increase δk, as shown in Figure 10c. Alternatively, input a
random direction for a certain number of iterations, then return to the original algorithm or
change direction pk toward an alternative target, such as a designated assembly point or an
arbitrary point, as shown in Figure 10d. Although these empirical solutions are not always
the best option because the way to escape cycling depends on the operational situation,
they can nevertheless help to escape cycling in various situations.

We next discuss computational time, to verify the effectiveness of the algorithm.
Table 3 shows various conditions and the results. The time gradually increases as the size
of space becomes larger and the number of enemy threats increases. In our approach, the
computation time in the table below is the sum of the time taken for each sequence. This
means that, at any point, the time consumed by searching for direction and moving to
the next position is shorter than that shown in the table. With this interpretation, robots
or unmanned vehicles in the contingency situation that we described earlier do not need
to wait for a new planned path. Rather, they continuously move to the next position by
searching for a new direction in real time.



Computation 2023, 11, 12 11 of 13

(a) (b)

(c) (d)

Figure 10. Cycling problems and remedies: (a) Cycling caused by inappropriate δk. (b) Cycling
caused by enemy threats. (c) Remedy for problem (a): changing δk; (d) remedy for problem (b):
changing direction pk to an intermediate point.

Table 3. Computational time of the PFP model in various conditions.

MAXITER Size of Space Number of
Enemy Threats

δk αk
Computation

Time(s)

300

10×10
2

0.08 0.1
1.760

4 2.609

20×20
4

0.3 0.2
2.931

6 3.832

30×30
6

0.7 0.3
5.117

8 5.488

500

10×10
2

0.08 0.1
2.273

4 3.421

20×20
4

0.3 0.2
3.642

6 4.679

30×30
6

0.7 0.3
5.329

8 6.909

1000

10×10
2

0.08 0.1
3.306

4 4.918

20×20
4

0.3 0.2
5.087

6 6.760

30×30
6

0.7 0.3
8.171

8 11.302



Computation 2023, 11, 12 12 of 13

5. Conclusions

In this study, we presented a PFP model that provides a path for a friendly unit
from a start point to a target while avoiding enemy threats. To develop the PFP model,
we generated a potential field based on a penalty function in a two-dimensional space
that reflects properties of the ground battlefield. Additionally, we described features of
enemy threats induced by the enemy’s DFPs and suggested a threat function with an MSN
distribution. Our experiments, described in Section 4, showed that the PFP model can
obtain a path in near-real time. Additionally, as the size of the instance increases, our model
has an increasing advantage in computation time because the algorithm only requires
first-order information.

The findings regarding military perspectives derived from this study are as follows:

1. In the context of ground personnel forces such as special forces, conducting an
infiltration—reaching the target without being detected by the enemy—is the most
important operational task. The navigational equipment currently issued to the forces
only provides a straight path to the target or a map graphic. Due to this limitation,
accomplishing tasks depends on the commander’s ability to find a proper path. If the
PFP model is applied to the equipment, it can suggest an appropriate direction con-
sidering both enemy threats and the target point. The commander can then maneuver
to the target with less risk of exposure to enemy threats.

2. UGVs have been developed and are being used in ground battlefields. Their move-
ment is mostly based on sensors or remote control. For example, unmanned recon-
naissance vehicles follow a pre-planned path while avoiding obstacles detected by
sensors. This system also requires remote control, since there is a possibility of losing a
path if it deviates too much from the pre-planned path. The PFP algorithm is expected
to overcome these limitations, allowing autonomous systems to develop further with
technologies already in use. Additionally, adapting the algorithm to the system is not
a huge burden, since the algorithm is computationally cheap, as mentioned above.

The PFP model has limitations in that the parameters are chosen empirically, and
we applied a specific threat-function MSN distribution. Additionally, we assumed a two-
dimensional continuous space for applying the algorithm on the ground battlefield. In view
of these limitations, future research should define the parameters from a computational as-
pect. Additionally, based on literature reviewed in Section 2, for various obstacle functions
in potential field-based studies, we can assume various shapes of threat and implement
these as functions. In the context of military operations, research on other forms of induced
threat from enemy operations besides DFP is also required. In terms of the dimension
of space, since the same principle can be applied to our algorithm in a 3-dimensional
space, it is required to study the application of the algorithm to a 3-dimensional space in
consideration of the topographical effects of the ground battlefield.

Author Contributions: Conceptualization, N.C. and S.K.; methodology, N.S.; validation, N.C. and
S.K.; formal analysis, N.S.; writing—original draft preparation, N.S.;writing—review and editing,
N.C.; visualization, N.S.; supervision, N.C and S.K.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, N.V.; Kumar, C.S. Development of collision free path planning algorithm for warehouse mobile robot. Procedia Comput.

Sci. 2008, 133, 456–463. [CrossRef]
2. Hu, X.; Chen, L.; Tang, B.; Cao, D.; He, H. Dynamic path planning for autonomous driving on various roads with avoidance of

static and moving obstacles. Mech. Syst. Signal Process. 2018, 100, 482–500. [CrossRef]

http://doi.org/10.1016/j.procs.2018.07.056
http://dx.doi.org/10.1016/j.ymssp.2017.07.019


Computation 2023, 11, 12 13 of 13

3. Šišlák, D.; Volf, P.; Pechoucek, M. Accelerated A* trajectory planning: Grid-based path planning comparison. In Proceedings of
the 19th International Conference on Automated Planning & Scheduling (ICAPS), Thessaloniki, Greece, 19–23 September 2009;
AAAI Press: Menlo Park, CA., USA, 2009; pp. 74–81.

4. Iswanto, I.; Ma’arif, A.; Wahyunggoro, O.; Cahyadi, A.I. Artificial potential field algorithm implementation for quadrotor path
planning. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 575-585. [CrossRef]

5. Bruvoll, S. Situation Dependent Path Planning for Computer Generated Forces; Norwegian Defence Research Establishment (FFI):
Kjeller, Norway, 2014.

6. Oroko, J.A.; Nyakoe, G.N. Obstacle avoidance and path planning schemes for autonomous navigation of a mobile robot: A
review. In Proceedings of the Sustainable Research and Innovation Conference, Nairobi, Kenya, 12 November 2022; pp. 314–318.

7. Krishnaswamy, G.; Stentz, A. Resolution Independent Grid-Based Path Planning; Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst:
Pittsburgh, PA, USA, 1995.

8. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A survey of path planning algorithms for mobile robots. Vehicles 2021, 3, 448–468.
[CrossRef]

9. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles;
Springer: Boston, MA, USA, 1997; pp. 203–220.

10. Ajeil, F.H.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Grid-based mobile robot path planning using aging-based ant colony
optimization algorithm in static and dynamic environments. Sensors 2020, 20, 1880. [CrossRef] [PubMed]

11. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

12. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
13. Devaurs, D.; Siméon, T.; Cortés, J. Optimal path planning in complex cost spaces with sampling-based algorithms. IEEE Trans.

Autom. Sci. Eng. 2015, 13, 415–424. [CrossRef]
14. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 500–505.
15. Smith, A.E.; Coit, D.W.; Baeck, T.; Fogel, D.; Michalewicz, Z. Penalty functions. In Handbook of Evolutionary Computation; IOP

Publishing Ltd.: Bristol, UK, 1997; Volume 97, p. C5.
16. Kim, J.O.; Khosla, P. Real-Time Obstacle Avoidance Using Harmonic Potential Functions. IEEE Trans. Robot. Autom. 1992, 8,

338–349. [CrossRef]
17. Hwang, Y.K.; Ahuja, N. A potential field approach to path planning. IEEE Trans. Robot. Autom. 1992, 8, 23–32. [CrossRef]
18. Rasekhipour, Y.; Khajepour, A.; Chen, S.K.; Litkouhi, B. A potential field-based model predictive path-planning controller for

autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1255–1267. [CrossRef]
19. Azzalini, A.; Valle, A.D. The multivariate skew-normal distribution. Biometrika 1996, 83, 715–726. [CrossRef]
20. Wright, S.; Nocedal, J. (Eds.) Numerical Optimization; Springer: New York, NY, USA, 1999.
21. Bowyer R. Dictionary of Military Terms; Routledge: London, UK, 2018.
22. Lumelsky, V.; Stepanov, A. Dynamic path planning for a mobile automaton with limited information on the environment. IEEE

Trans. Autom. Control 1986, 31, 1058–1063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14569/IJACSA.2019.0100876
http://dx.doi.org/10.3390/vehicles3030027
http://dx.doi.org/10.3390/s20071880
http://www.ncbi.nlm.nih.gov/pubmed/32231091
http://dx.doi.org/10.1109/TASE.2015.2487881
http://dx.doi.org/10.1109/70.143352
http://dx.doi.org/10.1109/70.127236
http://dx.doi.org/10.1109/TITS.2016.2604240
http://dx.doi.org/10.1093/biomet/83.4.715
http://dx.doi.org/10.1109/TAC.1986.1104175

	Introduction
	Literature Review
	Methodology
	Assumption
	PFP (Potential Field Based on Penalty Function) Model
	PFP Algorithm

	Computational Results
	Conclusions
	References

