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Abstract: Many mechanical systems manifest nonlinear behavior under nonstationary random
excitations. Neglecting this nonlinearity in the modeling of a dynamic system would result in
unacceptable results. However, it is challenging to find exact solutions to nonlinear problems.
Therefore, equivalent linearization methods are often used to seek approximate solutions for this
kind of problem. To overcome the limitations of the existing equivalent linearization methods,
an orthogonal-function-based equivalent linearization method in the time domain is proposed
for nonlinear systems subjected to nonstationary random excitations. The proposed method is
first applied to a single-degree-of-freedom (SDOF) Duffing–Van der Pol oscillator subjected to
stationary and nonstationary excitations to validate its accuracy. Then, its applicability to nonlinear
MDOF systems is depicted by a 5DOF Duffing–Van der Pol system subjected to nonstationary
excitation, with different levels of system nonlinearity strength considered in the analysis. Results
show that the proposed method has the merit of predicting the nonlinear system response with high
accuracy and computation efficiency. In addition, it is applicable to any general type of nonstationary
random excitation.

Keywords: equivalent linearization; nonstationary excitation; orthogonal functions; nonlinearity;
random vibration

1. Introduction

Many physical and mechanical systems manifest nonlinear behavior under nonsta-
tionary excitations, which must be taken into account in the analysis and design to avoid
misleading and unacceptable results. While linear dynamic problems can typically be
solved using standard analytical approaches in both time and frequency domains, tack-
ling nonlinear systems subjected to nonstationary excitations is much more challenging.
A number of effective methods, such as the perturbation method [1], the Fokker–Planck–
Kolmogorov (FPK) equation method [2], the moment equation method [3], the equivalent
linearization (EL) method [4] and the Monte Carlo (MC) simulation method [5], have
been developed to conduct random vibration analyses of nonlinear systems. Although
exact analytical solutions to some particular nonlinear dynamic problems have been found
using the FPK method [2], it is generally not available in many practical problems. Conse-
quently, using approximation methods to determine the response of nonlinear dynamic
systems resulting from random nonstationary excitations becomes necessary. Among
various available approximation methods, the equivalent linearization (EL) method and
the Monte Carlo (MC) simulation method are more popular due to their applicability to
multi-degree-of-freedom (MDOF) systems and nonstationary excitation problems. The MC
simulation method involves a large number of sample tests and is thus very expensive
in computational cost. Hence, it is often used as a benchmark for other methods. The
EL methods do not have these restrictions and have broad applications. In general, this
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technique consists of two main steps. The first step requires finding analytical formulas
for linearization coefficients, which are based on the linearization criterion dependent on
unknown response statistical terms such as variance and higher-order moments. The actual
set of nonlinear equations is then replaced by an equivalent linear set for the solution. In
the EL methods, the coefficients of the equivalent system can be found based on a specified
optimization criterion in some probabilistic sense, such as the mean square criterion [4],
the spectral criteria [6], the probability density criteria [7] and the energy criteria [8].

Nonstationary excitations typically originate from uncertain transient loading condi-
tions, such as wind, earthquake and blast excitation. Although the nonstationary problems
attract much interest, the analysis of nonstationary responses of nonlinear systems has not
been fully explored due to the complexity of the problem. An analytical approach for SDOF
nonlinear systems with parameter uncertainty subjected to nonstationary excitation was
proposed by Huang and Iwan [9], where a set of orthogonal polynomials associated with
the probability density function was used as the solution basis for the response moments.
In 1987, Orabi and Ahmadi [10] studied a single-degree-of-freedom (SDOF) nonlinear
system under particular types of nonstationary excitations using the equivalent lineariza-
tion method. In addition, a new approach has been proposed for simulating rotational
components of earthquake excitation in terms of translational independent components
and TELM has been applied for a 3D structure considering rotational components of
earthquakes. A numerical example shows the abilities of the tail equivalent linearization
method in predicting the probabilities of failure in comparison with simulation results [11].
Ma et al. [12] used the pseudo-excitation method to obtain the solution to the nonstationary
random responses of MDOF nonlinear systems.

In practical applications, it is vital to precisely capture the behavior of nonlinear
systems under excitations possessing inherent nonstationary characteristics. However,
most of the existing methods can be computationally prohibitive in dealing with this kind
of problem, especially when large-scale nonlinear systems are involved. They are either
incapable of directly solving the system equation of motion or only focus on specific types
of external excitation and cannot be applied to more general loading cases. The stochastic
equivalent linearization (EL) method is one of the most popular approximate solutions for
nonlinear systems [13], but the implementation of this approach by numerical techniques
would be demanding. Recently, a number of researchers addressed this issue in the time
domain. In particular, Su and Xu [14] developed and applied an explicit time domain
approach to different random vibration problems associated with linear structures under
nonstationary excitations. Moreover, an explicit time domain method by using the direct
differentiation method has been proposed in [15]. An efficient approach by combining the
time domain explicit formulation method and the EL method for the random vibration
analysis of nonlinear MDOF structures subjected to nonstationary random excitations was
developed by Su et al. [16], except the formulation of the approach requires the provision
of the cross-correlation functions of the excitations in order to compute the correlation
matrix of the displacement vector to obtain the second-order moment of response. This
requirement would be challenging to satisfy in the case of general nonstationary random
excitations, such as seismic load. Therefore, there is an urgent need to develop an alternative
EL method in the time domain to accurately and efficiently predict the response of nonlinear
systems subjected to any type of general nonstationary random excitation. This is achieved
in the current study by introducing the orthogonal functions in the equivalent linearization.

The orthogonal functions have been extensively used in the numerical analysis and
approximation theory of various engineering problems to improve the accuracy of the
approximated responses and reduce the computational cost. For structural applications,
the orthogonal functions may be classified into three families, including the piecewise
constant orthogonal functions, the orthogonal polynomials and the Fourier functions [17].
These functions have been effective tools for the analysis of dynamic systems since the
1970s [18]. The application of these functions to controlling systems, as well as to system
identification and sensitivity analysis, can be found in some recent studies [19–24]. If
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an orthogonal function is converted to an orthonormal one, it would not only further
improve the approximation accuracy, but also simplify the mathematical operation. Among
various orthogonal functions, the block pulse (BP) functions, which are a set of orthogonal
functions with a unit pulse at each time step, are inherently orthonormal. They are capable
of reducing the original problem to the solution of a set of complex algebraic equations,
which is thus computationally more efficient.

The existing equivalent linearization methods are mostly limited to the nonlinear
systems with low to moderate nonlinearity and are applicable to stationary or particular
types of nonstationary excitation. The focus of the current study is to develop an orthogonal-
function-based equivalent linearization method in the time domain for analyzing MDOF
nonlinear systems with strong nonlinearity under nonstationary excitations, with the BP
function applied to the equivalent linearization procedure. In the proposed method, the
statistical moments of the nonstationary system responses can be directly determined in the
time domain and there is no need to convert the response to the frequency domain, which
is necessary in some available techniques. Thus, the proposed approach is more efficient
when compared to the mixed time–frequency domain methods, in which a large number
of time–history integrals are required at different frequency intervals when nonstationary
random excitations are involved. Even in complex MDOF systems, this approach is
capable of achieving rapid convergence. Further, the formulation of the proposed approach
allows it to be applicable to more general and realistic types of nonstationary excitation,
such as seismic load. An SDOF nonlinear Duffing–Van der Pol oscillator under both
stationary and nonstationary excitations is considered first to evaluate the validity of
the proposed method. Results show that the proposed method is more accurate than the
existing approaches. Although the required time for satisfying the convergence requirement
by the proposed method was almost the same as the other existing EL approaches, fewer
iterations were needed by the proposed approach. The applicability of the proposed
method to MDOF nonlinear systems under nonstationary excitation is demonstrated by
a 5DOF Duffing–Van der Pol nonlinear system. The computational advantage of the
proposed approach is even more predominant in analyzing MDOF nonlinear systems,
of which the computational time required for solving nonstationary excitation problems
was considerably less. The remainder of this paper is organized as follows: a review of
the orthogonal functions is presented in Section 2. Section 3 illustrates the equivalent
linearization process using the orthogonal functions. For comparison, case studies are
carried out in Section 4. Highlighting of the contributions and summarizing of the main
findings appear in Section 5.

2. Review of Orthogonal Functions

A set of functions φi(t)(i = 1, 2, 3, . . .) is said to be orthogonal over the interval [a, b] if

∫ b

a
φm(t)φn(t)dt = Kmn (1)

where Kmn is a nonzero positive constant, which satisfies{
Kmn = 0 if m 6= n
Kmn 6= 0 if m = n

If Kmn is the Kronecker delta function, the set of functions φi(t) is said to be orthonor-
mal. The following property, related to the successive integration of the vectorial basis,
holds for a set of r orthonormal functions:∫ t

0
. . .
∫ t

0
{φ(τ)}(dτ)n︸ ︷︷ ︸

n times

∼= [P]n{φ(t)} (2)
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where [P] ∈ Rr,r is a square matrix with constant elements, which is called an operator
or operational matrix and is dependent on the type of orthogonal function and {φ(t)} =
[φ0(t), φ1(t), . . . , φr−1(t)]

T is the vectorial basis of the orthonormal series. This operator
plays a key role in the methodology. The operators give a proper mathematical frame for
the orthogonal functions and are advantageous to the convergence analysis of their series
expansions. In other words, the operators would produce an image matrix or vector of
function f (t) in the orthogonal function domain.

A set of BP functions over a unit time interval [0, 1) is defined as [25]:

φi(t) =
{

1 i
m ≤ t ≤ i+1

m
0 otherwise

(3)

where i = 0, 1, 2, . . . , m− 1 where m is a positive integer value, and φi is the i-th BP function.
The block pulse operator B is determined in the BP domain as

B{ f (t)} = FT (4)

where vector F is evaluated from

F =
1
q

∫ T

0
f (t)φ(t)dt = [ f1, f2, . . . , fm] (5)

where q = 1/m. The BP operator has numerous operation rules, of which those that are
applied in the next section are listed below [25].

(a) For a real constant k, we have
B{k} = kET (6)

where ET is a constant vector with all entries being one.
(b) For addition and subtraction of functions f (t), g(t) ∈ [0, T), we have:

B{ f (t)± g(t)} = FT ± GT (7)

This relation can be derived directly from the linearity of the BP operator.
(c) For integration of a function f (t) ∈ [0, T), we have

B
{∫ T

0
f (t)dt

}
= FT P (8)

where P is a conventional integration operational matrix defined as

P =
q
2



1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0
... 1

 (9)

(d) For convolution integral of functions f (t), g(t) ∈ [0, T), we have:

B
{∫ T

0
f (τ)g(t− τ)dτ

}
∼=

q
2

F
T

JG ∼=
q
2

G
T

JF (10)
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where JG and JF are the convolution operational matrices defined in Equations (11)
and (12).

JF =
q
2


f1 f1 + f2 f2 + f3 · · · fm−1 + fm
0 f1 f1 + f2 · · · fm−2 + fm−1

0
...
0

0
...
0

f1
...
0

· · ·
. . .
· · ·

fm−3 + fm−2
...
f1

 (11)

JG =
q
2


g1 g1 + g2 g2 + g3 · · · gm−1 + gm
0 g1 g1 + g2 · · · gm−2 + gm−1

0
...
0

0
...
0

g1
...
0

· · ·
. . .
· · ·

gm−3 + gm−2
...

g1

 (12)

(e) For multiple integrals, we have the following rule:

B


∫ t

0
. . .
∫ t

0
f (t)dt · · · dt︸ ︷︷ ︸
k

 = FT Pk (13)

3. The Equivalent Linearization Technique Based on Orthogonal Functions
3.1. SDOF System

The equation of motion of an SDOF nonlinear system is given as

..
x(t) + 2β

.
x(t) + ω2x(t) + g

[
x(t),

.
x(t)

]
= w(t) (14)

with
β = ξω (15)

where ξ and ω are, respectively, the damping coefficient and the system frequency, x(t),
.
x(t)

and
..
x(t) are, respectively, the displacement, the velocity and the acceleration vectors,

g
[
x(t),

.
x(t)

]
is a nonlinear function of displacement and velocity, w(t) is the excitation,

which is assumed to be a zero-mean nonstationary random process.
In accord with the equivalent linearization method, Equation (14) can be replaced by

the following equation of motion as

..
y(t) + 2βeq

.
y(t) + ω2

eqy(t) = w(t) (16)

where the coefficients of linearization, βeq and ωeq, can be found by the equivalent lineariza-
tion approach. If the excitation to the original nonlinear system is a Gaussian function, the
response of the equivalent linear system will also be Gaussian. Therefore, the equivalent
linearization coefficients can be calculated by the simplified expressions proposed by Atalik
and Utku [26].

The coefficients βeq and ωeq are determined as follows:

2βeq = 2β + E

[
∂g
(

x,
.
x
)

∂
.
x

]
(17)

ω2
eq = ω2 + E

[
∂g
(
x,

.
x
)

∂x

]
(18)

where E[.] stands for the mathematical expectation.
For nonstationary analysis, the equivalent damping and frequency are functions of

time. For a system which is initially at rest (x(0) =
.
x(0) = 0) and by assuming that these
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coefficients are constants as in stationary analysis, the solution to Equation (16) in the time
domain can be expressed by the Duhamel integral as follows:

x(t) =
∫ ∞

−∞
h(τ1)w(t− τ1)dτ1 =

∫ ∞

−∞
h(t− τ1)w(τ1)dτ1 (19)

where h(t) is the impulse response of the linearized system and is defined as follows:

h(t) =

{
1

ωd
e−βeqtsin(ωdt) ; t ≥ 0

0 ; t < 0
(20)

where
ω2

d = ω2
eq − β2

eq (21)

Using Equation (19) to evaluate the mean square response or variance of the displace-
ment and velocity responses gives [27]

E
[

x2
]
=

∞x

−∞

h(t− τ1)w(τ1)w(τ2)h(t− τ2)dτ1dτ2 (22)

E
[ .

x2
]
=

∞x

−∞

.
h(t− τ1)w(τ1)w(τ2)

.
h(t− τ2)dτ1dτ2 (23)

The linearization coefficients can be determined by using the values calculated from
Equations (22) and (23). The solution of the mean square response as given is valid for
constant values of βeq and ωeq. However, as is obvious from Equations (17) and (18), the
equivalent damping and frequency are, in general, functions of time in the nonstationary
random process. Using the constant stationary limits with long duration for these coef-
ficients is a usual assumption. However, this assumption gives first-order approximate
solutions for the nonstationary responses. To overcome this limitation, an iterative solution
procedure is introduced to improve the accuracy of the solutions (see [10,28]).

1. Assign initial estimations of ceq and keq in order to obtain the mean square response

of displacement and velocity (E
[
x2], E

[ .
x2
]
).

2. Substitute the obtained values into Equations (17) and (18) to obtain new estimations
for βeq and ωeq.

3. In order to find new estimation for the mean square response, substitute the new
values of βeq and ωeq into Equation (20) and then Equations (22) and (23).

4. Use the obtained E
[
x2] and E

[ .
x2
]

values and return to step (2).

5. Repeat steps (2), (3) and (4) until the results satisfy the following convergence criterion:

E
[
x2]

i+1 − E
[
x2]

i
E[x2]i

< ε;
E
[ .

x2
]

i+1
− E

[ .
x2
]

i

E
[ .

x2
]

i

< ε (24)

where ε = 0.001 was used in the current study.

To reduce the computational complexity, the mean square response of the linearized
system is calculated using the operational rules of orthogonal functions in this paper, i.e.,
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Equations (10)–(13). By applying the convolution integral (Equation (10)) and the multiple
integral (Equation (13)) operators of the BP functions, we have:

E
[
x2] = ∞s

−∞
h(t− τ1)w(τ1)w(τ2)h(t− τ2)dτ1dτ2

=
∫ ∞
−∞ h2(t− τ)w2(τ)dτ =

∫ ∞
−∞ r(t− τ)w2(τ)dτ = q2

4 R
T

Jw
2

= q2

4 [r1, r2, . . . , rm]


w1 w1 + w2 w2 + w3 · · · wm−1 + wm
0 w1 w1 + w2 · · · wm−2 + wm−1
0
...
0

0
...
0

w1
...
0

· · ·
. . .
· · ·

wm−3 + wm−2
...

w1



2
(25)

where r(t− τ) = h2(t− τ) and

ri =
1
q

∫ (i+1)q

iq
r(t)φ(t)dt; wi =

1
q

∫ (i+1)q

iq
w(t)φ(t)dt (26)

and

E
[ .

x2
]
=

∞s

−∞

.
h(t− τ1)w(τ1)w(τ2)

.
h(t− τ2)dτ1dτ2

=
∫ ∞
−∞

.
h

2
(t− τ)w2(τ)dτ =

∫ ∞
−∞ l(t− τ)w2(τ)dτ = q2

4 L
T

Jw
2

= q2

4 [l1, l2, . . . , lm]


w1 w1 + w2 w2 + w3 · · · wm−1 + wm
0 w1 w1 + w2 · · · wm−2 + wm−1
0
...
0

0
...
0

w1
...
0

· · ·
. . .
· · ·

wm−3 + wm−2
...

w1



2
(27)

where l(t− τ) =
.
h

2
(t− τ) and

li =
1
q

∫ (i+1)q

iq
l(t)φ(t)dt (28)

3.2. MDOF System

The equation of motion of an n-degree-of-freedom nonlinear system is given as

M
..
x(t) + C

.
x(t) + Kx(t) + G

(
x(t),

.
x(t)

)
= φW(t) (29)

where M, C and K are the n× n mass matrix, damping matrix and elastic stiffness matrix
of the considered system, respectively; x(t),

.
x(t) and

..
x(t) denote the nodal displace-

ment vector and the corresponding velocity vector and acceleration vector, respectively;
G
(
x(t),

.
x(t)

)
= [g1(t)g2(t) . . . gn(t)]

T is an n-dimension nonlinear vector function of the
coordinate displacement and velocity, φ is an orientation matrix of the nonstationary
zero-mean Gaussian random loading vector W(t) = [W1(t)W2(t) . . . Wn(t)]

T , where the
superscript T denotes matrix transposition.

By assuming linear behavior for the mass matrix, Equation (29) can be replaced by the
following equivalent linear equation of motion as

M
..
x(t) +

[
C + Ceq(τ)

] .
x(t) +

[
K + Keq(τ)

]
x(t) = φW(t) (30)
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where Ceq(τ) and Keq(τ) are, respectively, the n× n equivalent matrices at time instant τ. By
assuming the Gaussian excitation and using the simplified expressions proposed in [26], the
elements of the equivalent linearization matrices can be obtained by the following equations:

Keq,ij(τ) = E

[
∂gi(τ)

∂xj(τ)

]
i, j = 1, 2, . . . , n (31)

Ceq,ij(τ) = E

[
∂gi(τ)

∂
.
xj(τ)

]
i, j = 1, 2, . . . , n (32)

where Keq,ij(τ) and Ceq,ij(τ) are the elements of Keq(τ) and Ceq(τ), respectively. It is evident
that the equivalent parameters in Equations (31) and (32) depend on the statistical responses.
Therefore, an iterative procedure proposed in the previous section is required to determine
the accurate equivalent matrices.

Again, we assume that the considered MDOF system would be initially at rest. By
conducting modal analysis, the solution to every degree of freedom (Equation (30)) in the
time domain can be evaluated using Equations (19)–(23). Therefore, in the case of an MDOF
system, the concept of orthogonal functions can be used to approximate the linearization
coefficients, and the mean square values of the system response. In the next section, the
proposed method will be applied to examples of SDOF and MDOF systems subjected to
nonstationary random excitations.

4. Numerical Examples
4.1. SDOF Duffing–Van der Pol Oscillator

The Duffing–Van der Pol oscillator has been successfully employed to solve physical
and engineering problems of which the response has a nonlinear dynamic nature. This type
of oscillator is a generalization of the classic Van der Pol oscillator. In the current section,
the proposed orthogonal-function-based equivalent linearization method is first applied to
study the behavior of an SDOF Duffing–Van der Pol oscillator.

Consider the SDOF Duffing–Van der Pol system shown in Figure 1, the behavior of
which can be described by the following nonlinear equation [29],

..
x(t)− β

[
1− µx(t)2

] .
x(t) + ω2

[
x(t) + γx3(t)

]
= w(t) (33)

where γ and µ are positive real constants representing the strength of the nonlinearity and
w(t) is the excitation. Based on Equations (17) and (18) and the following formula for the
Gaussian process x(t), i.e.,

E
[

x2n
]
= (2n− 1)!!

(
E
[

x2
])n

(n = 1, 2, 3, . . .) (34)

the linearization coefficient for the equivalent linear system becomes

βeq = β
(
−1 + µE

[
x2
])

(35)

ω2
eq = ω2

(
1 + 3γE

[
x2
])

(36)
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∞

−∞

𝑑𝜏2  

= 2𝜋𝑆0∫ ℎ2(𝑡 − 𝜏)𝑤2(𝜏)𝑑𝜏 = 2𝜋𝑆0∫ 𝑟(𝑡 − 𝜏)𝑤2(𝜏)𝑑𝜏 =
∞

−∞

∞

−∞

 2𝜋𝑆0 (
𝑞2

4
𝑅𝑇𝐽𝑤

2)

= 2𝜋𝑆0 ×
𝑞2

4
 [𝑟1, 𝑟2, … , 𝑟𝑚]  

[
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0
⋮
0

𝑤1
⋮
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Therefore, the equivalent linear equation of Equation (33) can be expressed as follows:

..
x(t) + β

(
−1 + µE

[
x2
]) .

x(t) + ω2
(

1 + 3γE
[

x2
])

x(t) = w(t) (37)

Now, by applying the proposed method and the iteration technique described earlier,
the following equation can be solved for E

[
x2] at each time step.

E
[
x2] = 2πS0

∞s

−∞
h(t− τ1)w(τ1)w(τ2)h(t− τ2)dτ1dτ2

= 2πS0
∫ ∞
−∞ h2(t− τ)w2(τ)dτ = 2πS0

∫ ∞
−∞ r(t− τ)w2(τ)dτ =2πS0

(
q2

4 R
T

Jw
2
)

= 2πS0 × q2

4 [r1, r2, . . . , rm]


w1 w1 + w2 w2 + w3 · · · wm−1 + wm
0 w1 w1 + w2 · · · wm−2 + wm−1
0
...
0

0
...
0

w1
...
0

· · ·
. . .
· · ·

wm−3 + wm−2
...

w1



2
(38)

where h(t) is the impulse response of the linearized system defined by Equation (20).
By using the iterative procedure illustrated in the previous section, the mean square
displacement response of the linearized system can be computed. For this SDOF system,
we consider both stationary and nonstationary excitations.

4.1.1. Stationary Excitation

For stationary excitation, the excitation force function in Equation (33) is assumed to
be a Gaussian white noise process, i.e.,

w(t) = e(t)n(t) (39)

where n(t) is a zero-mean stationary white noise process with the following statistical properties:

E[n(t)] = 0; E[n(t1)n(t2)] = 2πS0δ(t1 − t2) (40)

Again, here S0 is a constant power spectrum and δ(.) is the Dirac delta function. In
addition, e(t) is a unit function, i.e.,

e(t) = u(t) =
{

1, t ≥ 0
0, t < 0

(41)

Now, Equation (38) can be solved for E
[
x2] at each time step using the iteration

procedures outlined earlier. For ξ = 0.05 and two different nonlinearity strengths of
γ = µ = 1.0 and 10, the mean square response of the SDOF Duffing–Van der Pol oscillator
was evaluated by the proposed orthogonal-function-based equivalent linearization method
under the assumptions of S0 = 1

2π and ω = 2. The standard equivalent linearization
method (i.e., with the stationary constant value and without iteration) and the iteration
method proposed in [10] were also applied to analyze the response of the studied Duffing–
Van der Pol oscillator. In addition, an MC simulation with 1000 samples was exploited
to estimate the transient responses. The results obtained from the above four different
approaches are portrayed in Figures 2–5.
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It is observed from Figures 2–5 that besides the standard equivalent linearization
method and the iteration method proposed in [10], the proposed orthogonal-function-
based equivalent linearization method also underestimates the transient mean square
response of the studied SDOF Duffing–Van der Pol oscillator. However, when compared
with the former two methods, the responses determined by the proposed approach show
better agreement with the MC simulation. Further, it is found that the proposed approach
can give more accurate prediction should the behavior of the studied SDOF system have
less nonlinearity.

The number of iterations for convergence by the proposed method was compared with
that by Orabi and Ahmadi [10] to evaluate the computational efficiency of the proposed
method. Table 1 shows the results.

Table 1. Comparison of the number of iterations.

Strength of Nonlinearity

γ = 1.0, µ = 1.0 γ = 1.0, µ = 1.0 γ = 1.0, µ = 1.0 γ = 1.0, µ = 1.0

Orabi and Ahmadi
Method [10] 12 34 36 37

Proposed Method 11 30 32 35

It can be seen from the table that in all four studied cases, the proposed method needs
fewer iterations in comparison with the method in [10].

4.1.2. Nonstationary Excitation

Two types of nonstationary excitation are considered for the same SDOF Duffing–Van
der Pol oscillator, i.e., a nonwhite noise function and the El Centro (1940) earthquake record.

(a) Nonwhite noise forcing function

This forcing function can be expressed as

f (t) =
m

∑
j=1

tajexp
{
−β jt

}
cos(ωjt + θ) (42)

where aj, β j, ωj are constant system parameters, and θ is a random variable uniformly dis-
tributed over [0, 2π]. The forcing function in Equation (42) was proposed by Bogdanoff et al. [30]
as a model to describe the ground acceleration induced by earthquake. Again, by using the pro-
posed method, Equation (38) can be solved and the response variance due to this nonstationary
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excitation can be computed at each time step. If ρ1 = 0.2 and ω1 = 1 were assumed, the system
parameters in Equation (42) would become

aj = 1, ωj = jω1, β j = ρ1ωj (43)

Under this set of system parameters, the mean square response of the Duffing–Van
der Pol oscillator was evaluated for two different nonlinearity strengths of γ = µ = 1.0 and
γ = µ = 10.0. The results are shown in Figures 6–9. For the convenience of comparison,
the results predicted by the iteration method in [10] and the MC simulation are also shown
in these four figures.
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Similarly, results in Figures 6–9 indicate clearly that the proposed orthogonal-function-
based equivalent linearization method can give more accurate predictions on system
response than the existing approach. As the system behavior becomes less nonlinear,
the responses predicted by the proposed method become more agreeable with that of
the MC simulation. These suggest that the proposed approach is equally applicable to
an SDOF nonlinear system subjected to both stationary and nonstationary excitations.
Meanwhile, it can be seen that a stronger nonlinearity in the system stiffness could have a
more considerable impact on the accuracy of the existing methods.

A comparison has been carried out between the proposed method and the method by
Orabi and Ahmadi [10] in terms of the number of iterations required for convergence to
evaluate the computational efficiency. The results are shown in Table 2.
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Table 2. Comparison of the number of iterations.

Strength of Nonlinearity

γ = 1.0, µ = 1.0 γ = 1.0, µ = 10 γ =10, µ = 1.0 γ = 10, µ = 10

Orabi and Ahmadi
Method [10] 7 8 11 17

Present Method 4 6 8 10

It can be seen that for the four studied levels of nonlinearity strength, the proposed
method requires fewer iterations than the existing method in [10].

(b) El Centro (1940) earthquake record with S0 = 55.44

Figure 10 illustrates the mean square displacement response of the studied SDOF
nonlinear Duffing–Van der Pol oscillator when subjected to a nonstationary excitation in
terms of the El Centro (1940) earthquake record with S0 = 55.44 at three different levels
of stiffness nonlinearity strength of γ = 0.0 (linear), 5.0 and 15.0, when the nonlinearity
strength of damping remains at µ = 1.0. In addition, Figure 11 shows the mean square
displacement response of the considered oscillator at three different damping nonlinearity
strength levels of µ = 0.0 (linear), 5.0 and 15.0, when the stiffness nonlinearity strength is
γ = 1.0.
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From Figures 10 and 11, it is obvious that the mean square displacement time histories
of all three nonlinearity strength scenarios manifest the same pattern. The responses reach
the peak value at about 4 to 6 s and then decrease gradually. In addition, it is observed
that the damping nonlinearity has less impact on E

[
x2] values in comparison with stiffness

nonlinearity. As expected, the linear system (γ = µ = 0) has the largest variance and the
response amplitude decreases as the strength of nonlinearity increases.

This example demonstrates that the proposed method is applicable to analyze the
response of a nonlinear SDOF system subjected to either stationary or nonstationary
excitations with high accuracy. The introduction of orthogonal functions can considerably
reduce computational effort in the linearization procedures. The proposed method will be
extended to a 5DOF nonlinear Duffing–Van der Pol oscillator in the next section to evaluate
its applicability to an MDOF nonlinear system subjected to nonstationary excitations.

4.2. MDOF Duffing–Van der Pol Oscillator

The equation of motion of the n-degree-of-freedom Duffing–Van der Pol system shown
in Figure 12 is shown in Equation (44).

M
..
U(t) + C

.
U(t) + KU(t) + L(t) + G(t) = P(t) (44)

where U(t),
.

U(t) and
..
U(t) denote the horizontal displacement vector, the corresponding

velocity vector and the acceleration vector, respectively, i.e.,

..
U(t) =


..
u1..
u2
...

..
un

;
.

U(t) =


.
u1.
u2
...

.
un

; U(t) =


u1
u2
...

un

 (45)

where
..
ui,

.
ui and ui (i = 1, 2, . . . , n) are, respectively, the horizontal acceleration, velocity

and displacement of the i-th floor. P(t) = φW(t), where φ is the orientation matrix of the
nonstationary zero-mean Gaussian random excitation W(t) and the nonlinear terms G(t)
and L(t) can be expressed as

G(t) =



γ1k1x3
1 − γ2k2x3

2
γ2k2x3

2 − γ3k3x3
3

γ3k3x3
3 − γ4k4x3

4
...

γn−1kn−1x3
n−1 − γnknx3

n
γnknx3

n


;



x1
x2
x3
...

xn−1
xn


=



u1
u2 − u1
u3 − u2

...
un−1 − un−2

un − un−1


(46)

L(t) =



µ1c1x2
1

.
x1 − µ2c2x2

2
.
x2

µ2c2x2
2

.
x2 − µ3c3x2

3
.
x3

µ3c3x2
3

.
x3 − µ4c4x2

4
.
x4

...
µn−1cn−1x2

n−1
.
xn−1 − µncnx2

n
.
xn

µncnx2
n

.
xn


;



.
x1.

x2.
x3
...

.
xn−1.

xn


=



.
u1.

u2 −
.
u1.

u3 −
.
u2

...
.
un−1 −

.
un−2.

un −
.
un−1


(47)

where xi and
.
xi are the relative displacement and velocity between the i-th and (i − 1)-th

floors and can be expressed as xi = ui − ui−1 and
.
xi =

.
ui −

.
ui−1(i = 1, 2, . . . , n) with

u0 =
.
u0 = 0; ki and ci (i = 1, 2, . . . , n) are the linear stiffness and damping coefficients of

the i-th story and γi and µi (i = 1, 2, . . . , n) are the coefficients reflecting the stiffness and
damping nonlinearity at the i-th story.
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Substituting Equations (46) and (47) into Equations (17) and (18), the equivalent
linearized damping and stiffness matrices for Equation (30) can be obtained at the relevant
time instant τ as

Ceq(τ) =



Y1(τ) + Y2(τ) −Y2(τ) 0 . . . 0
−Y2(τ) Y2(τ) + Y3(τ) −Y3(τ)

0 −Y3(τ)
...

...
. . . −Yn(τ)

0 . . . −Yn(τ) Yn(τ)

 (48)

Keq(τ) = 3



χ1(τ) + χ2(τ) −χ2(τ) 0 . . . 0
−χ2(τ) χ2(τ) + χ3(τ) −χ3(τ)

0 −χ3(τ)
...

...
. . . −χn(τ)

0 . . . −χn(τ) χn(τ)

 (49)

where

Yi(τ) = µiciE
[

x2
i (τ)

]
= µici

(
E
[
u2

i (τ)
]
− E[ui(τ)ui−1(τ)] + E

[
u2

i−1(τ)
])

(50)

χi(τ) = γikiE
[

x2
i (τ)

]
= γiki

(
E
[
u2

i (τ)
]
− E[ui(τ)ui−1(τ)] + E

[
u2

i−1(τ)
])

(51)

Accordingly, the time-invariant equivalent linear system for the studied MDOF Duff-
ing system at time instant τ can be described using the following equivalent linear equation
of motion as

M
..
U(t) +

[
C + Ceq(τ)

] .
U(t) +

[
K + Keq(τ)

]
U(t) = φW(t) (52)

where U(t) = [u1u2 . . . un].
It can be seen from Equations (48)–(51) that, at the relevant time instant τ, the lin-

ear equivalent damping and stiffness matrices Ceq(τ) and Keq(τ) are dependent on the
second-order moment of the responses at the same time instant, which, in turn, need to
be determined through the nonstationary random vibration analysis of the equivalent
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linear system based on Equation (52). Therefore, an iterative procedure based on a series of
nonstationary linear random vibration analyses at each time instant is required.

As an illustrative example, we now consider a 5DOF Duffing–Van der Pol system. The
lumped masses of the system are taken to be m1,2,3 = 4 kg and m4,5 = 3 kg and the linear
stiffnesses of the five stories are assumed to be k1,2,3 = 150 N/m and k4,5 = 100 N/m. The
Rayleigh damping model is adopted to define the damping matrix and a critical damping
ratio of 0.05 is assumed for the first mode and the 5th mode of the initial linear system. Two
nonlinearity cases are considered with the nonlinear strength coefficients being γi = µi = 1
and γi = µi = 10(i = 1; 2; . . . , 5). The system is subjected to a nonstationary random
process defined by Equation (42) for the same excitation parameters chosen for the SDOF
Duffing-Van der Pol system except with ρ1 = 0.3, which is shown in Figure 13.
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Figure 13. The nonstationary excitation.

The orthogonal-function-based equivalent linearization method is used to determine
the variance of displacements at each floor. Again, to check the accuracy of the proposed
method, the MC simulation method with 1000 samples was exploited. Figures 14–17 show
the mean square lateral displacements of the first and the fifth floor of the studied 5DOF
Duffing–Van der Pol system.
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nonstationary excitation. (γ = 1.0, µ = 1.0).
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Figure 16. Mean square displacement response of a 5DOF Duffing–Van der Pol system under
nonstationary excitation. (γ = 10.0, µ = 1.0).

It is observed from Figures 14–17 that of the four studied nonlinearity strength cases,
the responses predicted by the proposed approach are in good agreement with those of
the MC simulation, with the maximum relative difference between the two methods for
γi = µi = 1 and γi = µi = 10 being 1.9% and 6.2%, respectively. Furthermore, the results
suggest that increasing the strength of stiffness nonlinearity would decrease the accuracy
of the proposed method. This not only demonstrates the accuracy of the proposed method,
but also indicates that as the nonlinearity of a system becomes stronger, the application
of the proposed equivalent linearization method would cause relatively larger error in
the predicted response. This fact is understandable, as the accuracy of the equivalent
linearization method decreases for strongly nonlinear systems.

In addition, the eigenvalue ratios between the equivalent linear system and the original
nonlinear one are shown in Figure 18 for the first five system modes when γi = µi = 10.
The pattern of the curves in Figure 18 suggests that the presence of nonlinearity has the
most impact on the system’s fundamental mode, whereas its influence becomes less for
the higher-order modes. It can be seen from the figure that for all five studied modes, the
eigenvalue ratios gradually increase until they reach the maximum value at t = 6.11 s. In
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particular, the eigenvalue ratio associated with the system’s fundamental mode increases
up to 26.62% at this time instance, indicating a significant increase in nonlinearity in the
system response within this time period. However, the magnitude of these five eigenvalue
ratios decreases afterward and converges to the same value of 1.013 at t = 20 s, which
implies that the nonlinearity of the system becomes progressively weaker, and the system
eventually behaves almost linearly. This “increase and then decrease” pattern of the system
nonlinearity is caused by the form of the nonstationary excitation applied to the system.
As shown in Figure 13, the amplitude of the given nonstationary excitation increases
monotonically within the first 1.5 s, then gradually decreases and diminishes slightly after
6 s. Thus, within the first 6 s or so, the system is under forced vibration. The input energy
by the excitation is more than that dissipated by system damping. Therefore, the response
amplitude gradually builds up, and the nonlinearity becomes stronger, whereas beyond
that, the system is under free vibration, of which the accumulated energy is gradually
dissipated by the damping mechanism. Thus, the response amplitude becomes less and less,
which weakens the system nonlinearity strength until it behaves more like a linear system.
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Table 3 lists the computation time required by the MC simulation method and the
proposed method for different studied scenarios. Results show that the total computation
time needed by the MC simulation method is significantly longer than that by the proposed
method in all cases. The comparison indicates that the proposed method has a very
high computational efficiency for nonlinear systems. It should be mentioned that all
computations were performed on a computer with Intel Core i7 2600, 2.0 GHz processor
and 4 G of RAM.

Table 3. Comparison of the required time by the MC simulation method and the proposed method.

Strength of Nonlinearity

γ = 1.0, µ = 1.0 γ = 1.0, µ = 10 γ = 10, µ = 1.0 γ = 10, µ = 10

MC Simulation Method (T 1) 3120 s 3201 s 3580 s 3666 s
Proposed Method(T 2) 26.25 s 47.5 s 48.1 s 67 s

T1/T2 119 67 74 55

5. Conclusions

This study suggests a time domain method for applying orthogonal functions to
accurately approximate the responses of nonlinear systems to nonstationary excitations.
The formulation of the proposed method has been presented first, and its validity and
accuracy have been verified through numerical examples. An SDOF nonlinear Duffing–
Van der Pol oscillator subjected to stationary or nonstationary excitation is taken into
consideration for this purpose. Then, the methodology is extended to analyzing a 5DOF
nonlinear Duffing–Van der Pol system subjected to nonstationary excitation. Both the
existing and suggested methods are used to calculate the mean square system responses
related to various nonlinearity levels. Following is a summary of the key findings:

1. Compared to other existing equivalent linearization methods, the system responses
predicted by the proposed method are in better agreement with those yielded from
the MC simulation, which is used as benchmark in this study.

2. The proposed method has high computational efficiency compared to MC simulation.
3. The proposed method is applicable to any general type of nonstationary random

excitations, especially when dealing with systems having higher nonlinearity and
more degrees of freedom.
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